
University of Amsterdam
Kruislaan 419, 1098 VA Amsterdam

VU University Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam

The Netherlands

SWI-Prolog 6.0
Reference Manual

Updated for version 6.0.0, February 2012

Jan Wielemaker
J.Wielemaker@cs.vu.nl

http://www.swi-prolog.org

SWI-Prolog is a Prolog implementation based on a subset of the WAM (Warren Abstract
Machine). SWI-Prolog was developed as an open Prolog environment, providing a pow-
erful and bi-directional interface to C in an era when this was unknown to other Prolog
implementations. This environment is required to deal with XPCE, an object-oriented
GUI system developed at SWI. XPCE is used at SWI for the development of knowledge-
intensive graphical applications.

As SWI-Prolog became more popular, a large user community provided requirements that
guided its development. Compatibility, portability, scalability, stability and providing a
powerful development environment have been the most important requirements. Edin-
burgh, Quintus, SICStus and the ISO-standard guide the development of the SWI-Prolog
primitives.

This document gives an overview of the features, system limits and built-in predicates.

Copyright c© 1990–2012, University of Amsterdam

Contents

1 Introduction 10
1.1 SWI-Prolog . 10

1.1.1 Books about Prolog . 10
1.2 Status . 11
1.3 Compliance to the ISO standard . 11
1.4 Should you be using SWI-Prolog? . 11
1.5 The XPCE GUI system for Prolog . 12
1.6 Release Notes . 13
1.7 Donate to the SWI-Prolog project . 19
1.8 Acknowledgements . 20

2 Overview 21
2.1 Getting started quickly . 21

2.1.1 Starting SWI-Prolog . 21
2.1.2 Executing a query . 22

2.2 The user’s initialisation file . 22
2.3 Initialisation files and goals . 23
2.4 Command-line options . 23

2.4.1 Controlling the stack-sizes . 24
2.4.2 Running goals from the commandline . 25
2.4.3 Compiler options . 25
2.4.4 Maintenance options . 26

2.5 GNU Emacs Interface . 26
2.6 Online Help . 27
2.7 Command-line history . 28
2.8 Reuse of top-level bindings . 28
2.9 Overview of the Debugger . 29
2.10 Compilation . 32

2.10.1 During program development . 32
2.10.2 For running the result . 33

2.11 Environment Control (Prolog flags) . 36
2.12 An overview of hook predicates . 46
2.13 Automatic loading of libraries . 47
2.14 Garbage Collection . 49
2.15 Syntax Notes . 49

2.15.1 ISO Syntax Support . 49
2.16 Rational trees (cyclic terms) . 53
2.17 Just-in-time clause indexing . 54

2.17.1 Future directions . 55
2.17.2 Indexing and portability . 55

SWI-Prolog 6.0 Reference Manual

Contents 3

2.18 Wide character support . 55
2.18.1 Wide character encodings on streams . 55

2.19 System limits . 57
2.19.1 Limits on memory areas . 57
2.19.2 Other Limits . 59
2.19.3 Reserved Names . 59

2.20 SWI-Prolog and 64-bit machines . 60
2.20.1 Supported platforms . 60
2.20.2 Comparing 32- and 64-bits Prolog . 60
2.20.3 Choosing between 32- and 64-bits Prolog 60

3 Initialising and Managing a Prolog Project 62
3.1 The project source files . 62

3.1.1 File Names and Locations . 62
3.1.2 Project Special Files . 63
3.1.3 International source files . 64

3.2 Using modules . 64
3.3 The test-edit-reload cycle . 65

3.3.1 Locating things to edit . 65
3.3.2 Editing and incremental compilation . 66

3.4 Using the PceEmacs built-in editor . 66
3.4.1 Activating PceEmacs . 66
3.4.2 Bluffing through PceEmacs . 67
3.4.3 Prolog Mode . 69

3.5 The Graphical Debugger . 71
3.5.1 Invoking the window-based debugger . 71

3.6 The Prolog Navigator . 72
3.7 Cross referencer . 72
3.8 Accessing the IDE from your program . 74
3.9 Summary of the IDE . 75

4 Built-in predicates 76
4.1 Notation of Predicate Descriptions . 76
4.2 Character representation . 76
4.3 Loading Prolog source files . 77

4.3.1 Conditional compilation and program transformation 86
4.3.2 Loading files, active code and threads . 89
4.3.3 Quick load files . 91

4.4 Listing and Editor Interface . 91
4.5 Verify Type of a Term . 93
4.6 Comparison and Unification of Terms . 95

4.6.1 Standard Order of Terms . 95
4.6.2 Special unification and comparison predicates 96

4.7 Control Predicates . 98
4.8 Meta-Call Predicates . 100
4.9 ISO compliant Exception handling . 103

4.9.1 Debugging and exceptions . 104

SWI-Prolog 6.0 Reference Manual

4

4.9.2 The exception term . 104
4.9.3 Printing messages . 104

4.10 Handling signals . 107
4.10.1 Notes on signal handling . 108

4.11 DCG Grammar rules . 109
4.12 Database . 110

4.12.1 Update view . 113
4.12.2 Indexing databases . 113

4.13 Declaring predicates properties . 114
4.14 Examining the program . 115
4.15 Input and output . 119

4.15.1 ISO Input and Output Streams . 120
4.15.2 Edinburgh-style I/O . 126
4.15.3 Switching Between Edinburgh and ISO I/O 128
4.15.4 Write onto atoms, code-lists, etc. 129

4.16 Status of streams . 129
4.17 Primitive character I/O . 131
4.18 Term reading and writing . 134
4.19 Analysing and Constructing Terms . 139

4.19.1 Non-logical operations on terms . 141
4.20 Analysing and Constructing Atoms . 143
4.21 Character properties . 145

4.21.1 Case conversion . 147
4.21.2 White space normalization . 147
4.21.3 Language specific comparison . 148

4.22 Representing text in strings . 148
4.23 Operators . 149
4.24 Character Conversion . 150
4.25 Arithmetic . 151

4.25.1 Special purpose integer arithmetic . 151
4.25.2 General purpose arithmetic . 152

4.26 Misc arithmetic support predicates . 159
4.27 Built-in list operations . 160
4.28 Finding all Solutions to a Goal . 161
4.29 Forall . 163
4.30 Formatted Write . 163

4.30.1 Writef . 163
4.30.2 Format . 164
4.30.3 Programming Format . 167

4.31 Terminal Control . 167
4.32 Operating System Interaction . 168

4.32.1 Dealing with time and date . 171
4.32.2 Controlling the swipl-win.exe console window 175

4.33 File System Interaction . 176
4.34 User Top-level Manipulation . 180
4.35 Creating a Protocol of the User Interaction . 181
4.36 Debugging and Tracing Programs . 182

SWI-Prolog 6.0 Reference Manual

Contents 5

4.37 Obtaining Runtime Statistics . 184
4.38 Execution profiling . 186

4.38.1 Profiling predicates . 186
4.38.2 Visualizing profiling data . 187
4.38.3 Information gathering . 188

4.39 Memory Management . 189
4.40 Windows DDE interface . 190

4.40.1 DDE client interface . 190
4.40.2 DDE server mode . 191

4.41 Miscellaneous . 192

5 Modules 194
5.1 Why Use Modules? . 194
5.2 Defining a Module . 194
5.3 Importing Predicates into a Module . 195
5.4 Defining a meta-predicate . 196
5.5 Overruling Module Boundaries . 198
5.6 Interacting with modules from the toplevel . 198
5.7 Composing modules from other modules . 199
5.8 Operators and modules . 199
5.9 Dynamic importing using import modules . 200
5.10 Reserved Modules and using the ‘user’ module . 201
5.11 An alternative import/export interface . 201
5.12 Dynamic Modules . 201
5.13 Transparent predicates: definition and context module 202
5.14 Module properties . 203
5.15 Compatibility of the Module System . 204

6 Special Variables and Coroutining 206
6.1 Attributed variables . 206

6.1.1 Attribute manipulation predicates . 208
6.1.2 Attributed variable hooks . 208
6.1.3 Operations on terms with attributed variables 209
6.1.4 Special purpose predicates for attributes . 209

6.2 Coroutining . 210
6.3 Global variables . 211

6.3.1 Compatibility of SWI-Prolog Global Variables 212

7 CHR: Constraint Handling Rules 213
7.1 Introduction . 213
7.2 Syntax and Semantics . 213

7.2.1 Syntax . 213
7.2.2 Semantics . 215

7.3 CHR in SWI-Prolog Programs . 216
7.3.1 Embedding in Prolog Programs . 216
7.3.2 Constraint declaration . 217
7.3.3 Compilation . 220

SWI-Prolog 6.0 Reference Manual

6

7.4 Debugging . 220
7.4.1 Ports . 220
7.4.2 Tracing . 221
7.4.3 CHR Debugging Predicates . 222

7.5 Examples . 223
7.6 Backwards Compatibility . 224

7.6.1 The Old SICStus CHR implemenation . 224
7.6.2 The Old ECLiPSe CHR implemenation . 225

7.7 Programming Tips and Tricks . 225
7.8 Compiler Errors and Warnings . 226

7.8.1 CHR Compiler Errors . 226

8 Multi-threaded applications 228
8.1 Creating and destroying Prolog threads . 228
8.2 Monitoring threads . 231
8.3 Thread communication . 232

8.3.1 Message queues . 232
8.3.2 Signalling threads . 235
8.3.3 Threads and dynamic predicates . 235

8.4 Thread synchronisation . 236
8.5 Thread support library(threadutil) . 238

8.5.1 Debugging threads . 238
8.5.2 Profiling threads . 239

8.6 Unbounded thread creation . 239
8.7 Multi-threaded mixed C and Prolog applications . 240

8.7.1 A Prolog thread for each native thread (one-to-one) 240
8.7.2 Pooling Prolog engines (many-to-many) . 241

8.8 Multithreading and the XPCE graphics system . 242

9 Foreign Language Interface 244
9.1 Overview of the Interface . 244
9.2 Linking Foreign Modules . 244

9.2.1 What linking is provided? . 245
9.2.2 What kind of loading should I be using? . 245
9.2.3 library(shlib): Utility library for loading foreign objects (DLLs, shared objects) 245
9.2.4 Low-level operations on shared libraries . 247
9.2.5 Static Linking . 248

9.3 Interface Data types . 249
9.3.1 Type term t: a reference to a Prolog term 249
9.3.2 Other foreign interface types . 250

9.4 The Foreign Include File . 251
9.4.1 Argument Passing and Control . 251
9.4.2 Atoms and functors . 253
9.4.3 Analysing Terms via the Foreign Interface 254
9.4.4 Constructing Terms . 263
9.4.5 Unifying data . 265
9.4.6 Convience functions to generate Prolog exceptions 271

SWI-Prolog 6.0 Reference Manual

Contents 7

9.4.7 BLOBS: Using atoms to store arbitrary binary data 273
9.4.8 Exchanging GMP numbers . 275
9.4.9 Calling Prolog from C . 277
9.4.10 Discarding Data . 279
9.4.11 Foreign Code and Modules . 280
9.4.12 Prolog exceptions in foreign code . 281
9.4.13 Catching Signals (Software Interrupts) . 283
9.4.14 Miscellaneous . 284
9.4.15 Errors and warnings . 286
9.4.16 Environment Control from Foreign Code 287
9.4.17 Querying Prolog . 287
9.4.18 Registering Foreign Predicates . 287
9.4.19 Foreign Code Hooks . 290
9.4.20 Storing foreign data . 292
9.4.21 Embedding SWI-Prolog in other applications 295

9.5 Linking embedded applications using swipl-ld . 298
9.5.1 A simple example . 300

9.6 The Prolog ‘home’ directory . 300
9.7 Example of Using the Foreign Interface . 302
9.8 Notes on Using Foreign Code . 305

9.8.1 Memory Allocation . 305
9.8.2 Compatibility between Prolog versions . 305
9.8.3 Debugging and profiling foreign code (valgrind) 306
9.8.4 Name Conflicts in C modules . 306
9.8.5 Compatibility of the Foreign Interface . 306

10 Generating Runtime Applications 308
10.1 Limitations of qsave program . 310
10.2 Runtimes and Foreign Code . 310
10.3 Using program resources . 311

10.3.1 Predicates Definitions . 312
10.3.2 The swipl-rc program . 313

10.4 Finding Application files . 313
10.4.1 Passing a path to the application . 314

A The SWI-Prolog library 315
A.1 library(aggregate): Aggregation operators on backtrackable predicates 315
A.2 library(apply): Apply predicates on a list . 318
A.3 assoc: Association lists . 318
A.4 broadcast: Broadcast and receive event notifications 320
A.5 library(charsio): I/O on Lists of Character Codes 322
A.6 check: Elementary completeness checks . 323
A.7 library(clpfd): Constraint Logic Programming over Finite Domains 324
A.8 clpqr: Constraint Logic Programming over Rationals and Reals 338

A.8.1 Solver predicates . 339
A.8.2 Syntax of the predicate arguments . 340
A.8.3 Use of unification . 340

SWI-Prolog 6.0 Reference Manual

8

A.8.4 Non-linear constraints . 341
A.8.5 Status and known problems . 341

A.9 library(csv): Process CSV (Comma-Separated Values) data 342
A.10 library(debug): Print debug messages and test assertions 343
A.11 gensym: Generate unique identifiers . 344
A.12 library(lists): List Manipulation . 345
A.13 nb set: Non-backtrackable set . 349
A.14 www browser: Activating your Web-browser . 350
A.15 library(option): Option list processing . 350
A.16 library(optparse): command line parsing . 352

A.16.1 Notes and tips . 356
A.17 library(ordsets): Ordered set manipulation . 358
A.18 library(pairs): Operations on key-value lists . 360
A.19 pio: Pure I/O . 361

A.19.1 library(pure input): Pure Input from files 361
A.20 predicate options: Declare option-processing of predicates 362

A.20.1 The strength and weakness of predicate options 362
A.20.2 Options as arguments or environment? . 363
A.20.3 Improving on the current situation . 364

A.21 prolog xref: Cross-reference data collection library 366
A.21.1 Extending the library . 367

A.22 library(random): Random numbers . 368
A.23 readutil: Reading lines, streams and files . 370
A.24 record: Access named fields in a term . 371
A.25 registry: Manipulating the Windows registry 372
A.26 simplex: Solve linear programming problems . 373

A.26.1 Example 1 . 375
A.26.2 Example 2 . 375
A.26.3 Example 3 . 376

A.27 library(thread pool): Resource bounded thread management 377
A.28 ugraphs: Unweighted Graphs . 379
A.29 library(url): Analysing and constructing URL . 382
A.30 library(varnumbers): Utilities for numbered terms 384

B Hackers corner 386
B.1 Examining the Environment Stack . 386
B.2 Intercepting the Tracer . 388
B.3 Adding context to errors: prolog exception hook 390
B.4 Hooks using the exception predicate . 390
B.5 Hooks for integrating libraries . 391
B.6 Hooks for loading files . 392
B.7 Readline Interaction . 392

C Compatibility with other Prolog dialects 394
C.1 Some considerations for writing portable code . 395

D Glossary of Terms 398

SWI-Prolog 6.0 Reference Manual

Contents 9

E SWI-Prolog License Conditions and Tools 404
E.1 The SWI-Prolog kernel and foreign libraries . 404

E.1.1 The SWI-Prolog Prolog libraries . 404
E.2 Contributing to the SWI-Prolog project . 405
E.3 Software support to keep track of license conditions 405
E.4 License conditions inherited from used code . 406

E.4.1 Cryptographic routines . 406

F Summary 408
F.1 Predicates . 408
F.2 Library predicates . 422

F.2.1 aggregate . 422
F.2.2 apply . 422
F.2.3 assoc . 422
F.2.4 broadcast . 422
F.2.5 charsio . 423
F.2.6 check . 423
F.2.7 csv . 423
F.2.8 lists . 423
F.2.9 debug . 424
F.2.10 option . 424
F.2.11 optparse . 425
F.2.12 ordsets . 425
F.2.13 prologxref . 425
F.2.14 pairs . 425
F.2.15 pio . 426
F.2.16 random . 426
F.2.17 readutil . 426
F.2.18 record . 426
F.2.19 registry . 427
F.2.20 ugraphs . 427
F.2.21 url . 427
F.2.22 www browser . 428
F.2.23 clp/clpfd . 428
F.2.24 clpqr . 429
F.2.25 clp/simplex . 429
F.2.26 thread pool . 429
F.2.27 varnumbers . 429

F.3 Arithmetic Functions . 430
F.4 Operators . 432

SWI-Prolog 6.0 Reference Manual

Introduction 1
1.1 SWI-Prolog

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. Those days Prolog
systems were very aware of its environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focussing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a very simple Prolog virtual machine called ZIP [Bowen et al., 1983,
Neumerkel, 1993] which defines only 7 instructions. Prolog can easily be compiled into this language
and the abstract machine code is easily decompiled back into Prolog. As it is also possible to wire a
standard 4-port debugger in the virtual machine there is no need for a distinction between compiled
and interpreted code. Besides simplifying the design of the Prolog system itself this approach has
advantages for program development: the compiler is simple and fast, the user does not have to
decide in advance whether debugging is required and the system only runs slightly slower when in
debug mode. The price we have to pay is some performance degradation (taking out the debugger
from the VM interpreter improves performance by about 20%) and somewhat additional memory
usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [Bowen et al., 1983] to improve
performance. While extending this set care has been taken to maintain the advantages of decompi-
lation and tracing of compiled code. The extensions include specialised instructions for unification,
predicate invocation, some frequently used built-in predicates, arithmetic, and control (;/2, |/2),
if-then (->/2) and negation-by-failure (\+/1).

1.1.1 Books about Prolog

This manual does not describe the full syntax and semantics of Prolog, nor how one should write a pro-
gram in Prolog. These subjects have been described extensively in the literature. See [Bratko, 1986],
[Sterling & Shapiro, 1986], and [Clocksin & Melish, 1987]. For more advanced Prolog material see
[O’Keefe, 1990]. Syntax and standard operator declarations conform to the ‘Edinburgh standard’.
Most built-in predicates are compatible with those described in [Clocksin & Melish, 1987]. SWI-
Prolog also offers a number of primitive predicates compatible with Quintus Prolog1 [Qui, 1997] and
BIM Prolog2 [BIM, 1989].

ISO compliant predicates are based on “Prolog: The Standard”, [Deransart et al., 1996], validated
using [Hodgson, 1998].

1Quintus is a trademark of Quintus Computer Systems Inc., USA
2BIM is a trademark of BIM sa/nv., Belgium

SWI-Prolog 6.0 Reference Manual

1.2. STATUS 11

1.2 Status

This manual describes version 6.0 of SWI-Prolog. SWI-Prolog has been used now for many years.
The application range includes Prolog course material, meta-interpreters, simulation of parallel Pro-
log, learning systems, natural language processing, complex interactive systems, web-server and web-
server components. Although in our experience rather obvious and critical bugs can remain unnoticed
for a remarkably long period, we assume the basic Prolog system is fairly stable. Bugs can be expected
in infrequently used built-in predicates.

Some bugs are known to the author. They are described as footnotes in this manual.

1.3 Compliance to the ISO standard

SWI-Prolog 3.3.0 implements all predicates described in “Prolog: The Standard”
[Deransart et al., 1996].

Exceptions and warnings are still weak. Some SWI-Prolog predicates silently fail on conditions
where the ISO specification requires an exception (functor/3 for example). Some predicates print
warnings rather than raising an exception. All predicates where exceptions may be caused due to a
correct program operating in an imperfect world (I/O, arithmetic, resource overflows) should behave
according to the ISO standard. In other words: SWI-Prolog should be able to execute any program
conforming to [Deransart et al., 1996] that does not rely on exceptions generated by errors in the
program.

1.4 Should you be using SWI-Prolog?

There are a number of reasons why you better choose a commercial Prolog system, or another aca-
demic product:

• SWI-Prolog is not supported
Although I usually fix bugs shortly after a bug report arrives, I cannot promise anything. Now
that the sources are provided, you can always dig into them yourself.

• Memory requirements and performance are your first concerns
A number of commercial compilers are more keen on memory and performance than SWI-
Prolog. I do not wish to sacrifice some of the nice features of the system, nor its portability to
compete on raw performance.

• You need features not offered by SWI-Prolog
In this case you may wish to give me suggestions for extensions. If you have great plans, please
contact me (you might have to implement them yourself however).

On the other hand, SWI-Prolog offers some nice facilities:

• Nice environment
This includes ‘Do What I Mean’, automatic completion of atom names, history mechanism and
a tracer that operates on single key-strokes. Interfaces to some standard editors are provided
(and can be extended), as well as a facility to maintain programs (see make/0).

SWI-Prolog 6.0 Reference Manual

12 CHAPTER 1. INTRODUCTION

• Very fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is a Quick Load Format that is slightly more compact and loading is almost always I/O
bound.

• Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not. Also, performance is much better than the performance of most interpreters.

• Profiling
SWI-Prolog offers tools for performance analysis, which can be very useful to optimise pro-
grams. Unless you are very familiar with Prolog and Prolog performance considerations this
might be more helpful than a better compiler without these facilities.

• Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C
as well as C calling Prolog (see section 9). It can also be embedded in external programs (see
section 9.5). System predicates can be redefined locally to provide compatibility with other
Prolog systems.

• Integration with XPCE
SWI-Prolog offers a tight integration to the Object Oriented Package for User Interface De-
velopment, called XPCE [Anjewierden & Wielemaker, 1989]. XPCE allows you to implement
graphical user interfaces that are source-code compatible over Unix/X11, Win32 (Windows
95/98/ME and NT/2000/XP) and MacOS X (darwin).

1.5 The XPCE GUI system for Prolog

The XPCE GUI system for dynamically typed languages has been with SWI-Prolog for a long time.
It is developed by Anjo Anjewierden and Jan Wielemaker from the department of SWI, University of
Amsterdam. It aims at a high-productive development environment for graphical applications based
on Prolog.

Object oriented technology has proven to be a suitable model for implementing GUIs, which
typically deal with things Prolog is not very good at: event-driven control and global state. With
XPCE, we designed a system that has similar characteristics that make Prolog such a powerful tool:
dynamic typing, meta-programming and dynamic modification of the running system.

XPCE is an object-system written in the C-language. It provides for the implementation of meth-
ods in multiple languages. New XPCE classes may be defined from Prolog using a simple, natural
syntax. The body of the method is executed by Prolog itself, providing a natural interface between the
two systems. Below is a very simple class definition.

:- pce_begin_class(prolog_lister, frame,
"List Prolog predicates").

initialise(Self) :->
"As the C++ constructor"::
send_super(Self, initialise, ’Prolog Lister’),

SWI-Prolog 6.0 Reference Manual

1.6. RELEASE NOTES 13

send(Self, append, new(D, dialog)),
send(D, append,

text_item(predicate, message(Self, list, @arg1))),
send(new(view), below, D).

list(Self, From:name) :->
"List predicates from specification"::
(catch(term_to_atom(Term, From), _, fail)
-> get(Self, member, view, V),

current_output(Old),
pce_open(V, write, Fd),
set_output(Fd),
listing(Term),
close(Fd),
set_output(Old)

; send(Self, report, error, ’Syntax error’)
).

:- pce_end_class.

test :- send(new(prolog_lister), open).

Its 165 built-in classes deal with the meta-environment, data-representation and—of course—
graphics. The graphics classes concentrate on direct-manipulation of diagrammatic representations.

Availability. XPCE runs on most Unixtm platforms, Windows 95/98/ME, Windows NT/2000/XP
and MacOS X (using X11). In the past, versions for Quintus- and SICStus Prolog as well as some
Lisp dialects have existed. After discontinuing active Lisp development at SWI the Lisp versions
have died. Active development on the Quintus and SICStus versions has been stopped due to lack
of standardisation in the Prolog community. If adequate standards emerge we are happy to actively
support other Prolog implementations.

Info. further information is available from http://www.swi-prolog.org/packages/xpce/
or by E-mail to info@www.swi-prolog.org.

1.6 Release Notes

Collected release-notes. This section only contains some highlights. Smaller changes to especially
older releases have been removed. For a complete log, see the file ChangeLog from the distribution.

Version 1.8 Release Notes

Version 1.8 offers a stack-shifter to provide dynamically expanding stacks on machines that do not
offer operating-system support for implementing dynamic stacks.

SWI-Prolog 6.0 Reference Manual

14 CHAPTER 1. INTRODUCTION

Version 1.9 Release Notes

Version 1.9 offers better portability including an MS-Windows 3.1 version. Changes to the Prolog
system include:

• Redefinition of system predicates
Redefinition of system predicates was allowed silently in older versions. Version 1.9 only allows
it if the new definition is headed by a :- redefine system predicate/1 directive.

• Top-level ‘answer’ reuse
The top-level maintains a table of bindings returned by top-level goals and allows for reuse of
these bindings by prefixing the variables with the $ sign. See section 2.8.

• Better source code administration
Allows for proper updating of multifile predicates and finding the sources of individual clauses.

Version 2.0 Release Notes

New features offered:

• 32-bit Virtual Machine
Removes various limits and improves performance.

• Inline foreign functions
‘Simple’ foreign predicates no longer build a Prolog stack-frame, but are directly called from
the VM. Notably provides a speedup for the test predicates such as var/1, etc.

• Various compatibility improvements

• Stream based I/O library
All SWI-Prolog’s I/O is now handled by the stream-package defined in the foreign include
file SWI-Stream.h. Physical I/O of Prolog streams may be redefined through the foreign
language interface, facilitating much simpler integration in window environments.

Version 2.5 Release Notes

Version 2.5 is an intermediate release on the path from 2.1 to 3.0. All changes are to the foreign-
language interface, both to user- and system-predicates implemented in the C-language. The aim
is twofold. First of all to make garbage-collection and stack-expansion (stack-shifts) possible while
foreign code is active without the C-programmer having to worry about locking and unlocking C-
variables pointing to Prolog terms. The new approach is closely compatible with the Quintus and
SICStus Prolog foreign interface using the +term argument specification (see their respective man-
uals). This allows for writing foreign interfaces that are easily portable over these three Prolog plat-
forms.

Apart from various bug fixes listed in the ChangeLog file, these are the main changes since 2.1.0:

• ISO compatibility
Many ISO compatibility features have been added: open/4, arithmetic functions, syntax, etc.

SWI-Prolog 6.0 Reference Manual

1.6. RELEASE NOTES 15

• Win32
Many fixes for the Win32 (NT, ’95 and win32s) platforms. Notably many problems related to
pathnames and a problem in the garbage collector.

• Performance
Many changes to the clause indexing system: added hash-tables, lazy computation of the index
information, etc.

• Portable saved-states
The predicate qsave program/[1,2] allows for the creation of machine independent
saved-states that load very quickly.

Version 2.6 Release Notes

Version 2.6 provides a stable implementation of the features added in the 2.5.x releases, but at the
same time implements a number of new features that may have impact on the system stability.

• 32-bit integer and double float arithmetic
The biggest change is the support for full 32-bit signed integers and raw machine-format double
precision floats. The internal data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.

• Embedding for Win32 applications
The Win32 version has been reorganised. The Prolog kernel is now implemented as Win32 DLL
that may be embedded in C-applications. Two front ends are provided, one for window-based
operation and one to run as a Win32 console application.

• Creating stand-alone executables
Version 2.6.0 can create stand-alone executables by attaching the saved-state to the emulator.
See qsave program/2.

Version 2.7 Release Notes

Version 2.7 reorganises the entire data-representation of the Prolog data itself. The aim is to remove
most of the assumption on the machine’s memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation or on how the executable
is linked. The latter is notably a problem on the Win32 platforms. Porting to 64-bit architectures is
feasible now.

Furthermore, 2.7 lifts the limits on arity of predicates and number of variables in a clause consid-
erably and allows for further expansion at minimal cost.

Version 2.8 Release Notes

With version 2.8, we declare the data-representation changes of 2.7.x stable. Version 2.8 exploits the
changes of 2.7 to support 64-bit processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now represented in a compiled format.
SWI-Prolog no longer limits the use of malloc() or uses assumptions on the addresses returned by this
function.

SWI-Prolog 6.0 Reference Manual

16 CHAPTER 1. INTRODUCTION

Version 2.9 Release Notes

Version 2.9 is the next step towards version 3.0, improving ISO compliance and introducing ISO com-
pliant exception handling. New are catch/3, throw/1, abolish/1, write term/[2,3],
write canonical/[1,2] and the C-functions PL exception() and PL throw(). The
predicates display/[1,2] and displayq/[1,2] have been moved to backcomp, so old code
referring to them will autoload them.

The interface to PL open query() has changed. The debug argument is replaced by a bitwise
or’ed flags argument. The values FALSE and TRUE have their familiar meaning, making old code
using these constants compatible. Non-zero values other than TRUE (1) will be interpreted different.

Version 3.0 Release Notes

Complete redesign of the saved-state mechanism, providing the possibility of ‘program resources’.
See resource/3, open resource/3, and qsave program/[1,2].

Version 3.1 Release Notes

Improvements on exception-handling. Allows relating software interrupts (signals) to exceptions,
handling signals in Prolog and C (see on signal/3 and PL signal()). Prolog stack overflows
now raise the resource error exception and thus can be handled in Prolog using catch/3.

Version 3.3 Release Notes

Version 3.3 is a major release, changing many things internally and externally. The highlights are a
complete redesign of the high-level I/O system, which is now based on explicit streams rather than
current input/output. The old Edinburgh predicates (see/1, tell/1, etc.) are now defined on top
of this layer instead of the other way around. This fixes various internal problems and removes Prolog
limits on the number of streams.

Much progress has been made to improve ISO compliance: handling strings as lists of one-
character atoms is now supported (next to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised using Quintus and SICStus Pro-
log compatible print message/2, message hook/3 and print message lines/3. All
predicates described in [Deransart et al., 1996] are now implemented.

As of version 3.3, SWI-Prolog adheres to the ISO logical update view for dynamic predicates. See
section 4.12.1 for details.

SWI-Prolog 3.3 includes garbage collection on atoms, removing the last serious memory leak
especially in text-manipulation applications. See section 9.4.2. In addition, both the user-level and
foreign interface support atoms holding 0-bytes.

Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is added. This version is still
much slower than the single-threaded version due to frequent access to ‘thread-local-data’ as well as
some too detailed mutex locks. The basic thread API is ready for serious use and testing however. See
section 8.

Incompatible changes

A number of incompatible changes result from this upgrade. They are all easily fixed however.

SWI-Prolog 6.0 Reference Manual

1.6. RELEASE NOTES 17

• !/0, call/1
The cut now behaves according to the ISO standard. This implies it works in compound goals
passed to call/1 and is local to the condition part of if-then-else as well as the argument of
\+/1.

• atom chars/2
This predicate is now ISO compliant and thus generates a list of one-character atoms. The
behaviour of the old predicate is available in the —also ISO compliant— atom codes/2
predicate. Safest repair is a replacement of all atom chars into atom codes. If you do not
want to change any source-code, you might want to use

user:goal_expansion(atom_chars(A,B), atom_codes(A,B)).

• number chars/2
Same applies for number chars/2 and number codes/2.

• feature/2, set feature/2
These are replaced by the ISO compliant current prolog flag/2 and
set prolog flag/2. The library backcomp provides definitions for these predicates, so
no source must be updated.

• Accessing command-line arguments
This used to be provided by the undocumented ’$argv’/1 and Quintus compatible library
unix/1. Now there is also documented current prolog flag(argv, Argv).

• dup stream/2
Has been deleted. New stream-aliases can deal with most of the problems for which
dup stream/2 was designed and dup/2 from the clib package can with most others.

• op/3
Operators are now local to modules. This implies any modification of the operator-table does
not influence other modules. This is consistent with the proposed ISO behaviour and a necessity
to have any usable handling of operators in a multi-threaded environment.

• set prolog flag(character escapes, Bool)
This Prolog flag is now an interface to changing attributes on the current source-module, effec-
tively making this flag module-local as well. This is required for consistent handling of sources
written with ISO (obligatory) character-escape sequences together with old Edinburgh code.

• current stream/3 and stream position
These predicates have been moved to quintus.

Version 3.4 Release Notes

The 3.4 release is a consolidation release. It consolidates the improvements and standard conformance
of the 3.3 releases. This version is closely compatible with the 3.3 version except for one important
change:

SWI-Prolog 6.0 Reference Manual

18 CHAPTER 1. INTRODUCTION

• Argument order in select/3
The list-processing predicate select/3 somehow got into a very early version of SWI-Prolog
with the wrong argument order. This has been fixed in 3.4.0. The correct order is select(?Elem,
?List, ?Rest).

As select/3 has no error conditions, runtime checking cannot be done. To simplify debug-
ging, the library module checkselect will print references to select/3 in your source
code and install a version of select that enters the debugger if select is called and the second
argument is not a list.

This library can be loaded explicitly or by calling check old select/0.

Version 4.0 Release Notes

As of version 4.0 the standard distribution of SWI-Prolog is bundled with a number of its popular
extension packages, among which the now open source XPCE GUI toolkit (see section 1.5). No
significant changes have been made to the basic SWI-Prolog engine.

Some useful tricks in the integrated environment:

• Register the GUI tracer
Using a call to guitracer/0, hooks are installed that replace the normal command-line
driven tracer with a graphical front-end.

• Register PceEmacs for editing files
From your initialisation file. you can load emacs/swi prolog that cause edit/1 to use
the built-in PceEmacs editor.

Version 5.0 Release Notes

Version 5.0 marks a breakpoint in the philosophy, where SWI-Prolog moves from a dual
GPL/proprietary to a uniform LGPL (Lesser GNU Public Licence) schema, providing a widely usable
Free Source Prolog implementation.

On the technical site the development environment, consisting of source-level debugger, integrated
editor and various analysis and navigation tools progress steadily towards a mature set of tools.

Many portability issues have been improved, including a port to MacOS X (Darwin).
For details, please visit the new website at http://www.swi-prolog.org

Version 5.1 Release Notes

Version 5.1 is a beta-series introducing portable multi-threading. See chapter 8. In addition it intro-
duces many new facilities to support server applications, such as the new rlimit library to limit
system resources and the possibility to set timeouts on input streams.

Version 5.2 Release Notes

Version 5.2 consolidates the 5.1.x beta series that introduced threading and many related modifications
to the kernel.

SWI-Prolog 6.0 Reference Manual

1.7. DONATE TO THE SWI-PROLOG PROJECT 19

Version 5.3 Release Notes

Version 5.3.x is a development series for adding coroutining, constraints, global variables, cyclic terms
(infinite trees) and other goodies to the kernel. The package JPL, providing a bidirectional Java/Prolog
interface is added to the common source-tree and common binary packages.

Version 5.4 Release Notes

Version 5.4 consolidates the 5.3.x beta series.

Version 5.5 Release Notes

Version 5.5.x provides support for wide characters with UTF-8 and UNICODE I/O (section 2.18.1).
On both 32 and 64-bit hardware Prolog integers are now at minimum 64-bit integers. If available,
SWI-Prolog arithmetic uses the GNU GMP library to provide unbounded integer arithmetic as well as
rational arithmetic. Adding GMP support is sponsored by Scientific Software and Systems Limited,
www.sss.co.nz. This version also incorporates clp(r) by Christian Holzbaur, brought to SWI-
Prolog by Tom Schrijvers and Leslie De Koninck (section A.8).

Version 5.6 Release Notes

Version 5.6 consolidates the 5.5.x beta series.

Version 5.7 Release Notes

The aim of the 5.7 series is to clean up much of the system. Notably, the virtual machine has a much
simpler setup that makes it much easier to add new instructions. This facility has been exploited to en-
hance performance and provide proper support for the meta predicate/1 directive for enhanced
portability.

Version 5.10 Release Notes

The 5.9 series has enhanced SWI-Prolog in terms of memory management, scalability and robustness.
Notably, threads are much cheaper and now limited in count only by the OS. Database and stream-
handles have become safe. Compatibility to YAP and SISCtus has been improved.

1.7 Donate to the SWI-Prolog project

If you are happy with SWI-Prolog and you care that it stays around longer while it becomes faster,
more stable and with more features, you should consider donating to the SWI-Prolog foundation.
Please visit the page below.

http://www.swi-prolog.org/donate.html

SWI-Prolog 6.0 Reference Manual

20 CHAPTER 1. INTRODUCTION

1.8 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Edin-
burgh C-Prolog code: grammar rule compilation and writef/2. Also some of the C-code originates
from C-Prolog: finding the path of the currently running executable and some of the code underlying
absolute file name/2. Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

I also would like to thank those who had the fate of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novell1.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual.

Horst von Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!
Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables

and support for cyclic terms to the kernel. Tom has provided the integer interval constraint solver, the
CHR compiler and some of the coroutining predicates.

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

Scientific Software and Systems Limited, www.sss.co.nz has sponsored the development of
the SSL library as well as unbounded integer and rational number arithmetic.

Leslie de Koninck has made clp(QR) available to SWI-Prolog.
Markus Triska has contributed to various libraries.
Paulo Moura’s great experience in maintaining Logtalk for many Prolog systems including SWI-

Prolog has helped in many places fixing compatibility issues. He also worked on the MacOS port and
fixed many typos in the 5.6.9 release of the documentation.

SWI-Prolog 6.0 Reference Manual

Overview 2
2.1 Getting started quickly

2.1.1 Starting SWI-Prolog

Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘swipl’. The command-line arguments of SWI-Prolog itself
and its utility programs are documented using standard Unix man pages. SWI-Prolog is normally
operated as an interactive application simply by starting the program:

machine% swipl
Welcome to SWI-Prolog (Version \plversion)
...

1 ?-

After starting Prolog, one normally loads a program into it using consult/1, which — for historical
reasons — may be abbreviated by putting the name of the program file between square brackets. The
following goal loads the file likes.pl containing clauses for the predicates likes/2:

?- [likes].
% likes compiled, 0.00 sec, 596 bytes.

Yes
?-

After this point, Unix and Windows users unite, so if you are using Unix please continue at sec-
tion 2.1.2.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

• A folder (called directory in the remainder of this document) called pl containing the executa-
bles, libraries, etc. of the system. No files are installed outside this directory.

• A program swipl-win.exe, providing a window for interaction with Prolog. The program
swipl.exe is a version of SWI-Prolog that runs in a DOS-box.

SWI-Prolog 6.0 Reference Manual

22 CHAPTER 2. OVERVIEW

• The file-extension .pl is associated with the program swipl-win.exe. Opening a .pl file
will cause swipl-win.exe to start, change directory to the directory in which the file-to-
open resides and load this file.

The normal way to start with the likes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds with X = 〈value〉 if it can prove the goal for a certain X.
The user can type the semi-colon (;)1 if (s)he wants another solution, or RETURN if (s)he is satisfied,
after which Prolog will say Yes. If Prolog answers No, it indicates it cannot find any (more) answers
to the query. Finally, Prolog can answer using an error message to indicate the query or program
contains an error.

?- likes(sam, X).

X = dahl ;

X = tandoori ;

...

X = chips ;

No
?-

2.2 The user’s initialisation file

After the necessary system initialisation the system consults (see consult/1) the user’s startup file.
The base-name of this file follows conventions of the operating system. On MS-Windows, it is the
file pl.ini and on Unix systems .plrc. The file is searched using the file search path/2
clauses for user profile. The table below shows the default value for this search-path. The
phrase 〈appdata〉 refers to the Windows CSIDL name for the folder. The actual name depends on the
Windows language. English versions typically use ApplicationData. See also win folder/2

Unix Windows
local . .
home ˜ 〈appdata〉/SWI-Prolog

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘-f file’ option. If File denotes an absolute path,

1On most installations, single-character commands are executed without waiting for the RETURN key.

SWI-Prolog 6.0 Reference Manual

2.3. INITIALISATION FILES AND GOALS 23

this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none, no file is loaded.

See also the -s (script) and -F (system-wide initialisation) in section 2.4 and section 2.3.

2.3 Initialisation files and goals

Using command-line arguments (see section 2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options are
-f file or -s file to make Prolog load a file, -g goal to define an initialisation goal and
-t goal to define the top-level goal. The following is a typical example for starting an application
directly from the command-line.

machine% swipl -s load.pl -g go -t halt

It tells SWI-Prolog to load load.pl, start the application using the entry-point go/0 and —instead
of entering the interactive top-level— exit after completing go/0. The -q may be used to suppress
all informational messages.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined command-
line arguments. A typically seen alternative is to write a file run.plwith content as illustrated below.
Double-clicking run.pl will start the application.

:- [load]. % load program
:- go. % run it
:- halt. % and exit

Section 2.10.2 discusses further scripting options and chapter 10 discusses the generation of runtime
executables. Runtime executables are a means to deliver executables that do not require the Prolog
system.

2.4 Command-line options

The full set of command-line options is given below:

--arch
When given as the only option, it prints the architecture identifier (see Prolog flag arch) and
exits. See also -dump-runtime-variables. Also available as -arch.

--dump-runtime-variables
When given as the only option, it prints a sequence of variable settings that can be used in
shell-scripts to deal with Prolog parameters. This feature is also used by swipl-ld
(see section 9.5). Below is a typical example of using this feature. Also available as
-dump-runtime-variables.

eval ‘swipl --dump-runtime-variables‘
cc -I$PLBASE/include -L$PLBASE/lib/$PLARCH ...

SWI-Prolog 6.0 Reference Manual

24 CHAPTER 2. OVERVIEW

The option can be followed by =sh to dump in POSIX shell format (default) or cmd to dump
in MS-Windows cmd.exe compatible format.

--help
When given as the only option, it summarises the most important options. Also available as -h
and -help.

--home=DIR
Use DIR as home directory. See section 9.6 for details.

--quiet
Set the Prolog flag verbose to silent, suppressing informational and banner messages.
Also available as -q.

--nodebug
Disable debugging. See the current prolog flag/2 flag generate debug info for
details.

--nosignals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flag signals to false. See section 9.4.21 for details.

-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer and get single char/1. By default manipulating the terminal is enabled unless
the system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior
process. This flag is sometimes required for smooth interaction with other applications.

--version
When given as the only option, it summarises the version and the architecture identifier. Also
available as -v.

--win app
This option is available only in swipl-win.exe and is used for the start-menu item. If
causes plwin to start in the folder ...\My Documents\Prolog or local equivalent
thereof (see win folder/2). The Prolog subdirectory is created if it does not exist.

--
Stops scanning for more arguments, so you can pass arguments for your application after this
one. See current prolog flag/2 using the flag argv for obtaining the command-line
arguments.

2.4.1 Controlling the stack-sizes

As of SWI-Prolog 5.9.8, the default limit for the stack-sizes is 128Mb on 32-bit and 256Mb on 64-
bit hardware. The 128Mb limit on 32-bit system is the highest possible value and this option can
thus only be used to lower the limit. On 64-bit systems, the limit can both be reduced and enlarged.
See section 2.19. Here are two examples, the first reducing the local stack limit to catch unbounded
recursion really quickly and the second using a really big (32Gb) global limit on a 64-bit machine:

SWI-Prolog 6.0 Reference Manual

2.4. COMMAND-LINE OPTIONS 25

$ swipl -L8m
$ swipl -G32g

-Gsize[kmg]
Limit for the global stack (sometimes also called term-stack or heap). This is where compound
terms and large numbers live.

-Lsize[kmg]
Limit for the local stack ((sometimes also called environment-stack). This is where environ-
ments and choice-points live.

-Tsize[kmg]
Limit for the trail stack. This is where we keep track of assignments, so we can rollback on
backtracking or exceptions.

2.4.2 Running goals from the commandline

-g goal
Goal is executed just before entering the top level. Default is a predicate which prints the
welcome message. The welcome message can be suppressed with --quiet, but also with
-g true. goal can be a complex term. In this case quotes are normally needed to protect it
from being expanded by the shell. A safe way to run a goal non-interactively is here:

% swipl <options> -g go,halt -t ’halt(1)’

-t goal
Use goal as interactive top-level instead of the default goal prolog/0. goal can be a complex
term. If the top-level goal succeeds SWI-Prolog exits with status 0. If it fails the exit status is
1. If the toplevel raises an exception, this is printed as an uncaught error and the toplevel is
restarted. This flag also determines the goal started by break/0 and abort/0. If you want
to stop the user from entering interactive mode start the application with ‘-g goal’ and give
‘halt’ as top-level.

2.4.3 Compiler options

-c file . . .
Compile files into an ‘intermediate code file’. See section 2.10.

-o output
Used in combination with -c or -b to determine output file for compilation.

-O
Optimised compilation. See current prolog flag/2 flag optimise for details.

-s file
Use file as a script-file. The script file is loaded after the initialisation file specified with the
-f file option. Unlike -f file, using -s does not stop Prolog from loading the personal
initialisation file.

SWI-Prolog 6.0 Reference Manual

26 CHAPTER 2. OVERVIEW

-f file
Use file as initialisation file instead of the default .plrc (Unix) or pl.ini (Windows).
‘-f none’ stops SWI-Prolog from searching for a startup file. This option can be used as an
alternative to -s file that stops Prolog from loading the personal initialisation file. See also
section 2.2.

-F script
Selects a startup-script from the SWI-Prolog home directory. The script-file is named
〈script〉.rc. The default script name is deduced from the executable, taking the leading
alphanumerical characters (letters, digits and underscore) from the program-name. -F none
stops looking for a script. Intended for simple management of slightly different versions.
One could for example write a script iso.rc and then select ISO compatibility mode using
pl -F iso or make a link from iso-pl to pl.

-x bootfile
Boot from bootfile instead of the system’s default boot file. A bootfile is a file result-
ing from a Prolog compilation using the -b or -c option or a program saved using
qsave program/[1,2].

-p alias=path1[:path2 . . .]
Define a path alias for file search path. alias is the name of the alias, path1 ... is a list of
values for the alias. On Windows the list-separator is ;. On other systems it is :. A value
is either a term of the form alias(value) or pathname. The computed aliases are added to
file search path/2 using asserta/1, so they precede predefined values for the alias.
See file search path/2 for details on using this file-location mechanism.

2.4.4 Maintenance options

The following options are for system maintenance. They are given for reference only.

-b initfile . . .-c file . . .
Boot compilation. initfile . . . are compiled by the C-written bootstrap compiler, file . . . by the
normal Prolog compiler. System maintenance only.

-d level
Set debug level to level. Only has effect if the system is compiled with the -DO DEBUG flag.
System maintenance only.

2.5 GNU Emacs Interface

The default Prolog mode for GNU-Emacs can be activated by adding the following rules to your
Emacs initialisation file:

(setq auto-mode-alist
(append
’(("\\.pl" . prolog-mode))
auto-mode-alist))

(setq prolog-program-name "swipl")

SWI-Prolog 6.0 Reference Manual

2.6. ONLINE HELP 27

(setq prolog-consult-string "[user].\n")
;If you want this. Indentation is either poor or I don’t use
;it as intended.
;(setq prolog-indent-width 8)

Unfortunately the default Prolog mode of GNU-Emacs is not very good. There are several alternatives
though:

• http://turing.ubishops.ca/home/bruda/emacs-prolog/
• http://stud4.tuwien.ac.at/ e0225855/ediprolog/ediprolog.html
• http://stud4.tuwien.ac.at/ e0225855/pceprolog/pceprolog.html
• http://stud4.tuwien.ac.at/ e0225855/etrace/etrace.html

2.6 Online Help

Online help provides a fast lookup and browsing facility to this manual. The online manual can show
predicate definitions as well as entire sections of the manual.

The online help is displayed from the file ’MANUAL’. The file helpidx provides an index
into this file. ’MANUAL’ is created from the LATEX sources with a modified version of dvitty,
using overstrike for printing bold text and underlining for rendering italic text. XPCE is shipped
with swi help, presenting the information from the online help in a hypertext window. The Prolog
flag write help with overstrike controls whether or not help/1 writes its output using
overstrike to realise bold and underlined output or not. If this Prolog flag is not set it is initialised by
the help library to true if the TERM variable equals xterm and false otherwise. If this default
does not satisfy you, add the following line to your personal startup file (see section 2.2):

:- set_prolog_flag(write_help_with_overstrike, true).

help
Equivalent to help(help/1).

help(+What)
Show specified part of the manual. What is one of:

〈Name〉/〈Arity〉 Give help on specified predicate
〈Name〉 Give help on named predicate with any arity or C interface

function with that name
〈Section〉 Display specified section. Section numbers are dash-

separated numbers: 2-3 refers to section 2.3 of the man-
ual. Section numbers are obtained using apropos/1.

Examples:

?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help(’PL retry’). Give help on interface function PL retry()

SWI-Prolog 6.0 Reference Manual

28 CHAPTER 2. OVERVIEW

!!. Repeat last query
!nr. Repeat query numbered 〈nr〉
!str. Repeat last query starting with 〈str〉
h. Show history of commands
!h. Show this list

Table 2.1: History commands

See also apropos/1 and the SWI-Prolog home page at http://www.swi-prolog.org,
which provides a FAQ, an HTML version of the manual for online browsing, and HTML and
PDF versions for downloading.

apropos(+Pattern)
Display all predicates, functions and sections that have Pattern in their name or summary
description. Lowercase letters in Pattern also match a corresponding uppercase letter. Example:

?- apropos(file). Display predicates, functions and sections that have ‘file’
(or ‘File’, etc.) in their summary description.

explain(+ToExplain)
Give an explanation on the given ‘object’. The argument may be any Prolog data object. If the
argument is an atom, a term of the form Name/Arity or a term of the form Module:Name/Arity,
explain/1 describes the predicate as well as possible references to it. See also gxref/0.

explain(+ToExplain, -Explanation)
Unify Explanation with an explanation for ToExplain. Backtracking yields further explanations.

2.7 Command-line history

SWI-Prolog offers a query substitution mechanism called ‘history’. The availability of this feature
is controlled by set prolog flag/2, using the history Prolog flag. By default, history is
available if the Prolog flag readline is false. To enable this feature, remembering the last 50
commands, put the following into your startup file (see section 2.2):

:- set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. The available history commands are shown in table 2.1. History expansion is not done
if these sequences appear in quoted atoms or strings.

2.8 Reuse of top-level bindings

Bindings resulting from the successful execution of a top-level goal are asserted in a database. These
values may be reused in further top-level queries as $Var. Only the latest binding is available. Exam-
ple:

Note that variables may be set by executing =/2:

SWI-Prolog 6.0 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 29

1 ?- maplist(plus(1), "hello", X).

X = [105,102,109,109,112]

Yes
2 ?- format(’˜s˜n’, [$X]).
ifmmp

Yes
3 ?-

Figure 2.1: Reusing top-level bindings

6 ?- X = statistics.

X = statistics

Yes
7 ?- $X.
28.00 seconds cpu time for 183,128 inferences
4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references

Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes
Global stack : 4,096,000 16,384 968 Bytes
Trail stack : 4,096,000 8,192 432 Bytes

Yes
8 ?-

2.9 Overview of the Debugger

SWI-Prolog has a 6-port tracer, extending the standard 4-port Byrd box model tracer [Byrd, 1980,
Clocksin & Melish, 1987] with two additional ports. The optional unify port allows the user to inspect
the result after unification of the head. The exception port shows exceptions raised by throw/1 or
one of the built-in predicates. See section 4.9.

The standard ports are called call, exit, redo, fail and unify. The tracer is started by the
trace/0 command, when a spy point is reached and the system is in debugging mode (see spy/1
and debug/0) or when an exception is raised.

The interactive top-level goal trace/0 means “trace the next query”. The tracer shows
the port, displaying the port name, the current depth of the recursion and the goal. The goal

SWI-Prolog 6.0 Reference Manual

30 CHAPTER 2. OVERVIEW

min_numlist([H|T], Min) :-
min_numlist(T, H, Min).

min_numlist([], Min, Min).
min_numlist([H|T], Min0, Min) :-

Min1 is min(H, Min0),
min_numlist(T, Min1, Min).

1 ?- visible(+all), leash(-exit).
true.

2 ?- trace, min_numlist([3, 2], X).
Call: (7) min_numlist([3, 2], _G0) ? creep
Unify: (7) min_numlist([3, 2], _G0)
Call: (8) min_numlist([2], 3, _G0) ? creep
Unify: (8) min_numlist([2], 3, _G0)

ˆ Call: (9) _G54 is min(2, 3) ? creep
ˆ Exit: (9) 2 is min(2, 3)

Call: (9) min_numlist([], 2, _G0) ? creep
Unify: (9) min_numlist([], 2, 2)
Exit: (9) min_numlist([], 2, 2)
Exit: (8) min_numlist([2], 3, 2)
Exit: (7) min_numlist([3, 2], 2)

X = 2.

Figure 2.2: Example trace of the program above showing all ports. The lines marked ˆ indicate calls
to transparent predicates. See section 5.

is printed using the Prolog predicate write term/2. The style is defined by the Prolog flag
debugger print options and can be modified using this flag or using the w, p and d com-
mands of the tracer.

On leashed ports (set with the predicate leash/1, default are call, exit, redo and fail)
the user is prompted for an action. All actions are single character commands which are executed
without waiting for a return, unless the command-line option -tty is active. Tracer options:

+ (Spy)
Set a spy point (see spy/1) on the current predicate.

- (No spy)
Remove the spy point (see nospy/1) from the current predicate.

/ (Find)
Search for a port. After the ‘/’, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for

SWI-Prolog 6.0 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 31

any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

/f Search for any fail port
/fe solve Search for a fail or exit port of any goal with name

solve
/c solve(a,) Search for a call to solve/2 whose first argument

is a variable or the atom a
/a member(,) Search for any port on member/2. This is equiv-

alent to setting a spy point on member/2.

. (Repeat find)
Repeat the last find command (see ‘/’).

A (Alternatives)
Show all goals that have alternatives.

C (Context)
Toggle ‘Show Context’. If on, the context module of the goal is displayed between square
brackets (see section 5). Default is off.

L (Listing)
List the current predicate with listing/1.

a (Abort)
Abort Prolog execution (see abort/0).

b (Break)
Enter a Prolog break environment (see break/0).

c (Creep)
Continue execution, stop at next port. (Also return, space).

d (Display)
Set the max depth(Depth) option of debugger print options, limiting the depth to
which terms are printed. See also the w and p options.

e (Exit)
Terminate Prolog (see halt/0).

f (Fail)
Force failure of the current goal.

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

h (Help)
Show available options (also ‘?’).

i (Ignore)
Ignore the current goal, pretending it succeeded.

SWI-Prolog 6.0 Reference Manual

32 CHAPTER 2. OVERVIEW

l (Leap)
Continue execution, stop at next spy point.

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Set the Prolog flag debugger print options to [quoted(true),
portray(true), max depth(10), priority(699)]. This is the default.

r (Retry)
Undo all actions (except for database and i/o actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next port of this goal (thus skipping all calls to children of this
goal).

u (Up)
Continue execution, stop at the next port of the parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

w (Write)
Set the Prolog flag debugger print options to [quoted(true),
attributes(write), priority(699)], bypassing portray/1, etc.

The ideal 4 port Byrd box model [Byrd, 1980] as described in many Prolog books
[Clocksin & Melish, 1987] is not visible in many Prolog implementations because code optimisa-
tion removes part of the choice- and exit-points. Backtrack points are not shown if either the goal
succeeded deterministically or its alternatives were removed using the cut. When running in debug
mode (debug/0) choice points are only destroyed when removed by the cut. In debug mode, last
call optimisation is switched off.2

Reference information to all predicates available for manipulating the debugger is in section 4.36.

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded using consult/1, or the list abbre-
viation. It is common practice to organise a project as a collection of source files and a load-file, a
Prolog file containing only use module/[1,2] or ensure loaded/1 directives, possibly with
a definition of the entry-point of the program, the predicate that is normally used to start the program.
This file is often called load.pl. If the entry-point is called go, a typical session starts as:

% swipl
<banner>

2This implies the system can run out of local stack in debug mode, while no problems arise when running in non-debug
mode.

SWI-Prolog 6.0 Reference Manual

2.10. COMPILATION 33

1 ?- [load].
<compilation messages>

Yes
2 ?- go.
<program interaction>

When using Windows, the user may open load.pl from the Windows explorer, which will cause
swipl-win.exe to be started in the directory holding load.pl. Prolog loads load.pl before
entering the top-level.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program and the operating system (Unix vs. Windows).

Using PrologScript

New in version 4.0.5 is the possibility to use a Prolog source file directly as a Unix script-file. The
same mechanism is useful to specify additional parameters for running a Prolog file on Windows.

If the first letter of a Prolog file is #, the first line is treated as comment.3 To create a Prolog script,
make the first line start like this:

#!/path/to/pl 〈options〉 -s

Prolog recognises this starting sequence and causes the interpreter to receive the following
argument-list:

/path/to/pl 〈options〉 -s 〈script〉 -- 〈ScriptArguments〉

Instead of -s, the user may use -f to stop Prolog from looking for a personal initialisation file.
Here is a simple script doing expression evaluation:

#!/usr/bin/pl -q -t main -f

eval :-
current_prolog_flag(argv, Argv),
append(_, [--|Args], Argv),
concat_atom(Args, ’ ’, SingleArg),
term_to_atom(Term, SingleArg),
Val is Term,
format(’˜w˜n’, [Val]).

main :-

3The #-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header-comment.

SWI-Prolog 6.0 Reference Manual

34 CHAPTER 2. OVERVIEW

catch(eval, E, (print_message(error, E), fail)),
halt.

main :-
halt(1).

And here are two example runs:

% eval 1+2
3
% eval foo
ERROR: Arithmetic: ‘foo/0’ is not a function
%

The Windows version supports the #! construct too, but here it serves a rather different role. The
Windows shell already allows the user to start Prolog source files directly through the Windows file-
type association. Windows however makes it rather complicated to provide additional parameters,
such as the required stack-size for an individual Prolog file. The #! line provides for this, providing a
more flexible approach than changing the global defaults. The following starts Prolog with unlimited
stack-size on the given source file:

#!/usr/bin/pl -L0 -T0 -G0 -s

....

Note the use of /usr/bin/pl, which specifies the interpreter. This argument is ignored in the
Windows version, but required to ensure best cross-platform compatibility.

Creating a shell-script

With the introduction of PrologScript (see section 2.10.2), using shell-scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell-script that simply loads
your application and calls the entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute-path-to-source>
PL=pl

exec $PL -f none -g "load_files([’$base/load’],[silent(true)])" \
-t go -- $*

SWI-Prolog 6.0 Reference Manual

2.10. COMPILATION 35

go :-
current_prolog_flag(argv, Arguments),
append(_SytemArgs, [--|Args], Arguments), !,
go(Args).

go(Args) :-
...

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a .bat file.

Creating a saved-state

For larger programs, as well as for programs that are required to run on systems that do not have the
SWI-Prolog development system installed, creating a saved state is the best solution. A saved state
is created using qsave program/[1,2] or using the linker swipl-ld(1). A saved state is a file
containing machine-independent intermediate code in a format dedicated for fast loading. Option-
ally, the emulator may be integrated in the saved state, creating a single-file, but machine-dependent,
executable. This process is described in chapter 10.

Compilation using the -c command-line option

This mechanism loads a series of Prolog source files and then creates a saved-state as
qsave program/2 does. The command syntax is:

% swipl [option ...] [-o output] -c file ...

The options argument are options to qsave program/2 written in the format below. The option-
names and their values are described with qsave program/2.

--option-name=option-value

For example, to create a stand-alone executable that starts by executing main/0 and for which
the source is loaded through load.pl, use the command

% swipl --goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

% swipl
<banner>

?- [load].
?- qsave_program(myprog,

[goal(main),
stand_alone(true)

]).
?- halt.

SWI-Prolog 6.0 Reference Manual

36 CHAPTER 2. OVERVIEW

2.11 Environment Control (Prolog flags)

The predicates current prolog flag/2 and set prolog flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign-code environment, command-line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current prolog flag(?Key, -Value) [ISO]

The predicate current prolog flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all
defined Prolog flags. With ‘Key’ instantiated, it unifies the value of the Prolog flag. Flag values
are typed. Flags marked as bool can have the values true and false. Some Prolog flags
are not defined in all versions, which is normally indicated in the documentation below as “if
present and true”. A Boolean Prolog flag is true iff the Prolog flag is present and the Value is
the atom true. Tests for such flags should be written as below.

(current_prolog_flag(windows, true)
-> <Do MS-Windows things>
; <Do normal things>
)

access level (atom, changeable)
This flag defines a normal ‘user’ view (user, default) or a ‘system’ view. In system view
all system code is fully accessible as if it was normal user code. In user view, certain
operations are not permitted and some details are kept invisible. We leave the exact
consequences undefined, but for example system code can be traced using system access
and system predicates can be redefined.

address bits (integer)
Address-size of the hosting machine. Typically 32 or 64. Except for the maximum stack
limit, this has few implications to the user. See also the Prolog flag arch.

agc margin (integer, changeable)
If this amount of atoms has been created since the last atom garbage collection, perform
atom garbage collection at the first opportunity. Initial value is 10,000. May be changed.
A value of 0 (zero) disables atom garbage collection. See also PL register atom().

allow variable name as functor (bool, changeable)
If true (default is false), Functor(arg) is read as if it was written ’Functor’(arg).
Some applications use the Prolog read/1 predicate for reading an application defined
script language. In these cases, it is often difficult to explain to non-Prolog users of the
application that constants and functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by calling read term/2
using the option variable names and binding the variables to their name. Using this
feature, F(x) can be turned into valid syntax for such script languages. Suggested by
Robert van Engelen. SWI-Prolog specific.

SWI-Prolog 6.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 37

argv (list)
List is a list of atoms representing the command-line arguments used to invoke SWI-
Prolog. Please note that all arguments are included in the list returned.

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on.
Used to select foreign files for the right architecture. See also section 9.2.3 and
file search path/2.

associate (atom, changeable)
On Windows systems, this is set to the filename extension (pl (default) or pro (can be
selected in the installer)) associated with swipl-win.exe.

autoload (bool, changeable)
If true (default) autoloading of library functions is enabled.

backquoted string (bool, changeable)
If true (default false), read translates text between backquotes into a string object
(see section 4.22). This flag is mainly for compatibility with LPA Prolog.

bounded (bool)
ISO Prolog flag. If true, integer representation is bound by min integer and
max integer. If false integers can be arbitrarily large and the min integer and
max integer are not present. See section 4.25.2.

break level (integer)
Current break-level. The initial toplevel (started with -t) has value 0. See break/0.
This flag is absent from threads that are not running a toplevel loop.

c cc (atom)
Name of the C-compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section 9.5.

c ldflags (atom)
Special linker flags passed to link SWI-Prolog. See section 9.5.

c libs (atom)
Libraries passed to the C-linker when SWI-Prolog was linked. May be used to determine
the libraries needed to create statically linked extensions for SWI-Prolog. See section 9.5.

char conversion (bool, changeable)
Determines whether character-conversion takes place while reading terms. See also
char conversion/2.

character escapes (bool, changeable)
If true (default), read/1 interprets \ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed.

compile meta arguments (atom, changeable)
Experimental flag that controls compilation of arguments passed to meta-calls marked ‘0’
or ‘ˆ’ (see meta predicate/1). Supported values are:

false
(default). Meta-arguments are passed verbatim.

control
Compile meta-arguments that contain control-structures ((A,B), (A;B), (A-¿B;C),

SWI-Prolog 6.0 Reference Manual

38 CHAPTER 2. OVERVIEW

etc.). If not compiled at compile-time, such arguments are compiled to a temporary
clause before execution. Using this option enhances performance of processing
complex meta-goals that are known at compile-time.

true
Also compile references to normal user-predicates. This harms performance (a lit-
tle), but enhances the power of poor-mens consistency check used by make/0 and
implemented by list undefined/0.

always
Always create an intermediate clause, even for system predicates. This prepares for a
replacing the normal head of the generated predicate with a special reference (similar
to database-references as used by e.g., assert/2) that provides direct access to the
executable code, thus avoiding runtime lookup of predicates for meta-calling.

compiled at (atom)
Describes when the system has been compiled. Only available if the C-compiler used to
compile SWI-Prolog provides the DATE and TIME macros.

console menu (bool)
Set to true in swipl-win.exe to indicate the console supports menus. See also
section 4.32.2.

cpu count (integer, changeable)
Number of physical CPUs in the system. Unfortunately there is no standard to get this
number, so on most operating systems this flag is not available. It is marked read-write
both to allow obtaining this value later and to allow pretending the system has more or
less processors. See also thread setconcurrency/2 and the library thread.
Currently this flag is supported in Windows and Linux if /proc is enabled. If you can
provide us with a C-code fragment getting the number for a specific OS, please submit an
enhancement report at http://gollem.science.uva.nl/bugzilla/

dde (bool)
Set to true if this instance of Prolog supports DDE as described in section 4.40.

debug (bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy-points (see spy/1) and trace-points (see trace/1). In addition, last-call optimi-
sation is disabled and the system is more conservative in destroying choice points to
simplify debugging.
Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

debug on error (bool, changeable)
If true, start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See also fileerrors/2 and the Prolog
flag report error. May be changed. Default is true, except for the runtime version.

debugger print options (term, changeable)
This argument is given as option-list to write term/2 for printing goals by
the debugger. Modified by the ‘w’, ‘p’ and ‘〈N〉 d’ commands of the debug-
ger. Default is [quoted(true), portray(true), max depth(10),
attributes(portray)].

SWI-Prolog 6.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 39

debugger show context (bool, changeable)
If true, show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

dialect (atom)
Fixed to swi. The code below is a reliable and portable way to detect SWI-Prolog.

is_dialect(swi) :-
catch(current_prolog_flag(dialect, swi), _, fail).

double quotes (codes,chars,atom,string, changeable)
This flag determines how double quoted strings are read by Prolog and is —like
character escapes— maintained for each module. If codes (default), a list of
character-codes is returned, if chars a list of one-character atoms, if atom double
quotes are the same as single-quotes and finally, string reads the text into a Prolog
string (see section 4.22). See also atom chars/2 and atom codes/2.

editor (atom, changeable)
Determines the editor used by edit/1. See section 4.4 for details on selecting the editor
used.

emacs inferior process (bool)
If true, SWI-Prolog is running as an inferior process of (GNU/X-)Emacs. SWI-Prolog
assumes this is the case if the environment variable EMACS is t and INFERIOR is yes.

encoding (atom, changeable)
Default encoding used for opening files in text mode. The initial value is deduced from
the environment. See section 2.18.1 for details.

executable (atom)
Path-name of the running executable. Used by qsave program/2 as default emulator.

file name variables (bool, changeable)
If true (default false), expand $varname and ˜ in arguments of built-in predicates
that accept a file name (open/3, exists file/1, access file/2, etc.). The
predicate expand file name/2 can be used to expand environment variables and
wildcard patterns. This Prolog flag is intended for backward compatibility with older
versions of SWI-Prolog.

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage-collection, nor
stack-shifts will take place, even not on explicit request. May be changed.

generate debug info (bool, changeable)
If true (default) generate code that can be debugged using trace/0, spy/1, etc. Can
be set to false using the -nodebug. The predicate load files/2 restores the value
of this flag after loading a file, causing modifications to be local to a source file. Many of
the libraries have :- set_prolog_flag(generate_debug_info, false) to
hide their details from a normal trace.4

gmp version (integer)
If Prolog is linked with GMP, this flag gives the major version of the GMP library used.
See also section 9.4.8.

4In the current implementation this only causes a flag to be set on the predicate that causes children to be hidden from
the debugger. The name anticipates on anticipated changes to the compiler.

SWI-Prolog 6.0 Reference Manual

40 CHAPTER 2. OVERVIEW

gui (bool)
Set to true if XPCE is around and can be used for graphics.

history (integer, changeable)
If integer > 0, support Unix csh(1) like history as described in section 2.7. Otherwise,
only support reusing commands through the command-line editor. The default is to set
this Prolog flag to 0 if a command-line editor is provided (see Prolog flag readline)
and 15 otherwise.

home (atom)
SWI-Prolog’s notion of the home-directory. SWI-Prolog uses its home directory to find
its startup file as 〈home〉/boot32.prc (32-bit machines) or 〈home〉/boot64.prc
(64-bit machines) and to find its library as 〈home〉/library.

hwnd (integer)
In swipl-win.exe, this refers to the MS-Windows window-handle of the console
window.

integer rounding function (down,toward zero)
ISO Prolog flag describing rounding by // and rem arithmetic functions. Value depends
on the C-compiler used.

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible with normal SWI-Prolog
behaviour. Currently it has the following effect:
• The //2 (float division) always return a float, even if applied to integers that can be

divided.
• In the standard order of terms (see section 4.6.1), all floats are before all integers.
• atom length/2 yields a type error if the first argument is a number.
• clause/[2,3] raises a permission error when accessing static predicates.
• abolish/[1,2] raises a permission error when accessing static predicates.
• Syntax is closer to the ISO standard.

– Unquoted commas and bars appearing as atoms are not allowed. Instead of
f(,,a) now write f(’,’,a). Unquoted commas can only be used to sep-
arate arguments in functional notation and list notation, and as a conjunction
operator. Unquoted bars can only appear within lists to separate head and tail
like [Head|Tail], and as infix operator for alternation in grammar rules like
a --> b | c.

– Within functional notation and list notation terms must have priority below
1000. That means that rules and control constructs appearing as arguments need
bracketing. A term like [a :- b, c]. must now be disambiguated to mean
[(a :- b), c]. or [(a :- b, c)].

– Operators appearing as operands must be bracketed. Instead of
X == -, true. write X == (-), true. Currently, this is not en-
tirely enforced.

large files (bool)
If present and true, SWI-Prolog has been compiled with large file support (LFS) and is
capable to access files larger than 2GB on 32-bit hardware. Large file-support is default
on installations built using configure that support it and may be switched off using
the configure option --disable-largefile.

SWI-Prolog 6.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 41

max arity (unbounded)
ISO Prolog flag describing there is no maximum arity to compound terms.

max integer (integer)
Maximum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.25.2.

max tagged integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require 1 word
storage. Larger integers are represented as ‘indirect data’ and require significantly more
space.

min integer (integer)
Minimum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.25.2.

min tagged integer (integer)
Start of the tagged-integer value range.

occurs check (atom, changeable)
This flag controls unification that creates an infinite tree (also called cyclic term) and can
have three values. Using false (default), unification succeeds, creating an infinite tree.
Using true, unification behaves as unify with occurs check/2, failing silently.
Using error, an attempt to create a cyclic term results in an occurs check exception.
The latter is intended for debugging unintentional creations of cyclic terms. Note that this
flag is a global flag modifying fundamental behaviour of Prolog. Changing the flag from
its default may cause libraries to stop functioning properly.

open shared object (bool)
If true, open shared object/2 and friends are implemented, providing access to
shared libraries (.so files) or dynamic link libraries (.DLL files).

optimise (bool, changeable)
If true, compile in optimised mode. The initial value is true if Prolog was started with
the -O command-line option.
Currently optimise compilation implies compilation of arithmetic, and deletion of redun-
dant true/0 that may result from expand goal/2.
Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

pid (int)
Process identifier of the running Prolog process. Existence of this flag is implementation
defined.

pipe (bool, changeable)
If true, open(pipe(command), mode, Stream), etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

preprocessor (atom, changeable)
Current preprocessor. See preprocessor/2. The reserved atom =none= (default)
implies no preprocessor.

SWI-Prolog 6.0 Reference Manual

42 CHAPTER 2. OVERVIEW

prompt alternatives on (atom, changeable)
Determines prompting for alternatives in the Prolog toplevel. Default is determinism,
which implies the system prompts for alternatives if the goal succeeded while leaving
choicepoints. Many classical Prolog systems behave as groundness: they prompt for
alternatives if and only if the query contains variables.

qcompile (atom, changeable)
This option provides the default for the qcompile(+Atom) option of load files/2.

readline (bool)
If true, SWI-Prolog is linked with the readline library. This is done by default if you have
this library installed on your system. It is also true for the Win32 swipl-win.exe version
of SWI-Prolog, which realises a subset of the readline functionality.

resource database (atom)
Set to the absolute-filename of the attached state. Typically this is the file boot32.prc,
the file specified with -x or the running executable. See also resource/3.

report error (bool, changeable)
If true, print error messages, otherwise suppress them. May be changed. See also the
debug on error Prolog flag. Default is true, except for the runtime version.

runtime (bool)
If present and true, SWI-Prolog is compiled with -DO RUNTIME, disabling various
useful development features (currently the tracer and profiler).

saved program (bool)
If present and true, Prolog has been started from a state saved with
qsave program/[1,2].

shared object extension (atom)
Extension used by the operating system for shared objects. .so for most Unix systems
and .dll for Windows. Used for locating files using the file type executable.
See also absolute file name/3.

shared object search path (atom)
Name of the environment variable used by the system to search for shared objects.

signals (bool)
Determine whether Prolog is handling signals (software interrupts). This flag is false
if the hosting OS does not support signal handling or the command-line option
-nosignals is active. See section 9.4.21 for details.

stream type check (atom, changeable)
Defines whether and how strictly the system validates that byte IO should not be applied
to text-streams and text IO should not be applied to binary streams. Values are false
(no checking), true (full checking) and loose. Using checking mode loose (default),
the system accepts byte I/O from text stream that use ISO Latin-1 encoding and accepts
writing text to binary streams.

system thread id (int)
Available in multi-threaded version (see section 8) where the operating system provides
system-wide integer thread identifiers. The integer is the thread-identifier used by the
operating system for the calling thread. See also thread self/1.

SWI-Prolog 6.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 43

last call optimisation (bool, changeable)
Determines whether or not last-call optimisation is enabled. Normally the value of this
flag is equal to the debug flag. As programs may run out of stack if last-call optimisation
is omitted, it is sometimes necessary to enable it during debugging.

timezone (integer)
Offset in seconds west of GMT of the current time-zone. Set at initialization time
from the timezone variable associated with the POSIX tzset() function. See also
convert time/2.

toplevel print anon (bool, changeable)
If true, top-level variables starting with an underscore () are printed normally. If false
they are hidden. This may be used to hide bindings in complex queries from the top-level.

toplevel print factorized (bool, changeable)
If true (default false) show the internal sharing of subterms in the answer substi-
tution. The example below reveals internal sharing of leaf-nodes in red-black trees as
implemented by the rbtrees predicate rb new/1:

?- set_prolog_flag(toplevel_print_factorized, true).
?- rb_new(X).
X = t(_S1, _S1), % where

_S1 = black(’’, _G387, _G388, ’’).

If this flag is false, the % where notation is still used to indicate cycles as illustrated
below. This example also shows that the implementation reveals the internal cycle length,
and not the minimal cycle length. Cycles of different length are indistinguishable in Prolog
(as illustrated by S == R).

?- S = s(S), R = s(s(R)), S == R.
S = s(S),
R = s(s(R)).

toplevel print options (term, changeable)
This argument is given as option-list to write term/2 for printing results of queries.
Default is [quoted(true), portray(true), max depth(10), attributes(portray)].

toplevel prompt (atom, changeable)
Define the prompt that is used by the interactive toplevel. The following ˜ (tilde) se-
quences are replaced:

˜m Type in module if not user (see module/1)
˜l Break level if not 0 (see break/0)
˜d Debugging state if not normal execution (see debug/0, trace/0)
˜! History event if history is enabled (see flag history)

toplevel var size (int, changeable)
Maximum size counted in literals of a term returned as a binding for a variable in a
top-level query that is saved for re-use using the $ variable reference. See section 2.8.

trace gc (bool, changeable)
If true (false is the default), garbage collections and stack-shifts will be reported on the

SWI-Prolog 6.0 Reference Manual

44 CHAPTER 2. OVERVIEW

terminal. May be changed. Values are reported in bytes as G+T , where G is the global
stack value and T the trail stack value. ‘Gained’ describes the number of bytes reclaimed.
‘used’ the number of bytes on the stack after GC and ‘free’ the number of bytes allocated,
but not in use. Below is an example output.

% GC: gained 236,416+163,424 in 0.00 sec; used 13,448+5,808; free 72,568+47,440

tty control (bool, changeable)
Determines whether the terminal is switched to raw mode for get single char/1,
which also reads the user-actions for the trace. May be set. See also the +/-tty
command-line option.

unix (bool)
If present and true, the operating system is some version of Unix. Defined if the C-
compiler used to compile this version of SWI-Prolog either defines __unix__ or unix.
On other systems this flag is not available.

unknown (fail,warning,error, changeable)
Determines the behaviour if an undefined procedure is encountered. If fail, the pred-
icate fails silently. If warn, a warning is printed, and execution continues as if the
predicate was not defined and if error (default), an existence error exception is
raised. This flag is local to each module and inherited from the module’s import-module.
Using default setup, this implies that normal modules inherit the flag from user, which
in turn inherits the value error from system. The user may change the flag for module
user to change the default for all application modules or for a specific module. It is
strongly advised to keep the error default and use dynamic/1 and/or multifile/1
to specify possible non-existence of a predicate.

user flags (Atom, changeable)
Define the behaviour of set prolog flag/2 if the flag is not known. Values are
silent, warning and error. The first two create the flag on-the-fly, where
warning prints a message. The value error is consistent with ISO: it raises an
existence error and does not create the flag. See also create prolog flag/3. The
default is silent, but future versions may change that. Developers are encouraged to
use another value and ensure proper use of create prolog flag/3 to create flags
for their library.

verbose (Atom, changeable)
This flag is used by print message/2. If its value is silent, messages of type
informational and banner are suppressed. The -q switches the value from the
initial normal to silent.

verbose autoload (bool, changeable)
If true the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

verbose load (bool, changeable)
If false normal consult messages will be suppressed. Default is true. The value of this
flag is normally controlled by the option silent(Bool) provided by load files/2.

verbose file search (bool, changeable)
If true (default false), print messages indicating the progress of

SWI-Prolog 6.0 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 45

absolute file name/[2,3] in locating files. Intended for debugging com-
plicated file-search paths. See also file search path/2.

version (integer)
The version identifier is an integer with value:

10000×Major + 100×Minor + Patch

Note that in releases up to 2.7.10 this Prolog flag yielded an atom holding the three
numbers separated by dots. The current representation is much easier for implementing
version-conditional statements.

version data (swi(Major, Minor, Patch, Extra))
Part of the dialect compatibility layer; see also the Prolog flag dialect and section C.
Extra provides platform-specific version information. Currently it is simply unified to [].

version git (atom)
Available if created from a git repository. See git-describe for details.

windows (bool)
If present and true, the operating system is an implementation of Microsoft Windows
(NT/2000/XP, etc.). This flag is only available on MS-Windows based versions.

write attributes (atom, changeable)
Defines how write/1 and friends write attributed variables. The option values are
described with the attributes option of write term/3. Default is ignore.

write help with overstrike (bool)
Internal flag used by help/1 when writing to a terminal. If present and true it prints
bold and underlined text using overstrike.

xpce (bool)
Available and set to true if the XPCE graphics system is loaded.

xpce version (atom)
Available and set to the version of the loaded XPCE system.

set prolog flag(:Key, +Value) [ISO]

Define a new Prolog flag or change its value. Key is an atom. If the flag is a system-
defined flag that is not marked changeable above, an attempt to modify the flag yields
a permission error. If the provided Value does not match the type of the flag, a
type error is raised.

Some flags (e.g., unknown) are maintained on a per-module basis. The addressed module is
determined by the Key argument.

In addition to ISO, SWI-Prolog allows for user-defined Prolog flags. The type of the flag is de-
termined from the initial value and cannot be changed afterwards. Defined types are boolean
(if the initial value is one of false, true, on or off), atom if the initial value is any other
atom, integer if the value is an integer that can be expressed as a 64-bit signed value. Any
other initial value results in an untyped flag that can represent any valid Prolog term.

Originally, SWI-Prolog’s set prolog flag/2 created a new Prolog flag if the flag
Key did not exist. It still does this, but now prints a warning. New code must use
create prolog flag/3 to introduce new flags. Future versions are likely to replace this
printed warning with an existence error.

SWI-Prolog 6.0 Reference Manual

46 CHAPTER 2. OVERVIEW

create prolog flag(+Key, +Value, +Options) [YAP]

Create a new Prolog flag. The ISO standard does not foresee creation of new flags, but many
libraries introduce new flags. Options is a list of the following options:

access(+Access)
Define access-rights for the flag. Values are read write and read only. The default
is read write.

type(+Atom)
Define a type-restriction. Possible values are boolean, atom, integer, float and
term. The default is determined from the initial value. Note that term restricts the term
to be ground.

This predicate behaves as set prolog flag/2 if the flag already exists. See also
user flags.

2.12 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

• portray/1
Hook into write term/3 to alter the way terms are printed (ISO).

• message hook/3
Hook into print message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

• library directory/1
Hook into absolute file name/3 to define new library directories (most Prolog systems).

• file search path/2
Hook into absolute file name/3 to define new search-paths (Quintus/SICStus).

• term expansion/2
Hook into load files/2 to modify read terms before they are compiled (macro-processing)
(most Prolog systems).

• goal expansion/2
Same as term expansion/2 for individual goals (SICStus).

• prolog load file/2
Hook into load files/2 to load other data-formats for Prolog sources from ‘non-file’ re-
sources. The load files/2 predicate is the ancestor of consult/1, use module/1,
etc.

• prolog edit:locate/3
Hook into edit/1 to locate objects (SWI).

SWI-Prolog 6.0 Reference Manual

2.13. AUTOMATIC LOADING OF LIBRARIES 47

• prolog edit:edit source/1
Hook into edit/1 to call an internal editor (SWI).

• prolog edit:edit command/2
Hook into edit/1 to define the external editor to use (SWI).

• prolog list goal/1
Hook into the tracer to list the code associated to a particular goal (SWI).

• prolog trace interception/4
Hook into the tracer to handle trace-events (SWI).

• prolog:debug control hook/1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these control-
predicates to higher-level libraries.

• prolog:help hook/1
Hook in help/0, help/1 and apropos/1 to extend the help-system.

• resource/3
Defines a new resource (not really a hook, but similar) (SWI).

• exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

• attr unify hook/2
Unification hook for attributed variables. Can be defined in any module. See section 6.1 for
details.

2.13 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped, the system will first try to import the pred-
icate from the module’s default module (see section 5.9. If this fails the auto loader is acti-
vated.5 On first activation an index to all library files in all library directories is loaded in core (see
library directory/1, file search path/2 and reload library index/0). If the
undefined predicate can be located in one of the libraries, that library file is automatically loaded and
the call to the (previously undefined) predicate is restarted. By default this mechanism loads the file
silently. The current prolog flag/2 key verbose autoload is provided to get verbose
loading. The Prolog flag autoload can be used to enable/disable the autoload system.

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 5. The files are loaded with use module/2 and only the trapped undefined predicate is imported
into the module where the undefined predicate was called. Each library directory must hold a file
INDEX.pl that contains an index to all library files in the directory. This file consists of lines of the
following format:

index(Name, Arity, Module, File).

5Actually, the hook user:exception/3 is called; only if this hook fails it calles the autoloader.

SWI-Prolog 6.0 Reference Manual

48 CHAPTER 2. OVERVIEW

The predicate make/0 updates the autoload index. It searches for all library directories
(see library directory/1 and file search path/2) holding the file MKINDEX.pl or
INDEX.pl. If the current user can write or create the file INDEX.pl and it does not exist or
is older than the directory or one of its files, the index for this directory is updated. If the file
MKINDEX.pl exists updating is achieved by loading this file, normally containing a directive calling
make library index/2. Otherwise make library index/1 is called, creating an index for
all *.pl files containing a module.

Below is an example creating an indexed library directory.

% mkdir ˜/lib/prolog
% cd ˜/lib/prolog
% swipl -g true -t ’make_library_index(.)’

If there is more than one library file containing the desired predicate, the following search schema is
followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appear in the library directory/1
predicate and within the directory alphabetically.

autoload path(+DirAlias)
Add DirAlias to the libraries that are used by the autoloader. This extends the search path
autoload and reloads the library index. For example:

:- autoload_path(library(http)).

If this call appears as a directive, it is term-expanded into a clause for user:file search path/2 and
a directive calling reload library index/0. This keeps source information and allows
for removing this directive.

make library index(+Directory)
Create an index for this directory. The index is written to the file ’INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

make library index(+Directory, +ListOfPatterns)
Normally used in MKINDEX.pl, this predicate creates INDEX.pl for Directory, indexing all
files that match one of the file-patterns in ListOfPatterns.

Sometimes library packages consist of one public load file and a number of files used by this
load-file, exporting predicates that should not be used directly by the end-user. Such a library
can be placed in a sub-directory of the library and the files containing public functionality can
be added to the index of the library. As an example we give the XPCE library’s MKINDEX.pl,
including the public functionality of trace/browse.pl to the autoloadable predicates for
the XPCE package.

SWI-Prolog 6.0 Reference Manual

2.14. GARBAGE COLLECTION 49

:- make_library_index(’.’,
[’*.pl’,

’trace/browse.pl’
]).

reload library index
Force reloading the index after modifying the set of library directories by changing the rules for
library directory/1, file search path/2, adding or deleting INDEX.pl files.
This predicate does not update the INDEX.pl files. Check make library index/[1,2]
and make/0 for updating the index files.

Normally, the index is reloaded automatically if a predicate cannot be found in the index and
the set of library directories has changed. Using reload library index/0 is necessary if
directories are removed or the order of the library directories is changed.

When creating an executable using either qsave program/2 or the -c command line options,
it is necessarry to load all predicates that would normally be autoloaded explicitly. This is discussed
in section 10. See autoload/0.

2.14 Garbage Collection

SWI-Prolog provides garbage-collection, last-call optimization and atom garbage collection. These
features are controlled using Prolog flags (see current prolog flag/2).

2.15 Syntax Notes

SWI-Prolog syntax is close to ISO-Prolog standard syntax, which is closely compatible with Edin-
burgh Prolog syntax. A description of this syntax can be found in the Prolog books referenced in
the introduction. Below are some non-standard or non-common constructs that are accepted by SWI-
Prolog:

• /* .../* ...*/ ...*/
The /* ...*/ comment statement can be nested. This is useful if some code with /* ...*/
comment statements in it should be commented out.

2.15.1 ISO Syntax Support

SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.

Processor Character Set

The processor character set specifies the class of each character used for parsing Prolog source text.
Character classification is fixed to use UCS/Unicode as provided by the C-library wchar t based
primitives. See also section 2.18.

SWI-Prolog 6.0 Reference Manual

50 CHAPTER 2. OVERVIEW

Character Escape Syntax

Within quoted atoms (using single quotes: ’<atom>’) special characters are represented using es-
cape sequences. An escape sequence is led in by the backslash (\) character. The list of escape
sequences is compatible with the ISO standard but contains some extensions, and the interpretation of
numerically specified characters is slightly more flexible to improve compatibility.

\a
Alert character. Normally the ASCII character 7 (beep).

\b
Backspace character.

\c
No output. All input characters up to but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. For compatibility with Quintus
Prolog. Not supported by ISO. Example:

format(’This is a long line that looks better if it was \c
split across multiple physical lines in the input’)

\〈RETURN〉
No output. Skips input to the next non-layout character or to the end of the next line. ISO
demands skipping only the newline. We advise using \c or putting the layout before the \, as
shown below. Using \c is supported by various other Prolog implementations and will remain
supported by SWI-Prolog. The style shown below is the most compatible solution.6

format(’This is a long line that looks better if it was \
split across multiple physical lines in the input’)

instead of

format(’This is a long line that looks better if it was\
split across multiple physical lines in the input’)

\e
Escape character (ASCII 27). Not ISO, but widely supported.

\f
Form-feed character.

\n
Next-line character.

\r
Carriage-return only (i.e., go back to the start of the line).

6Future versions are likely to interpret \〈return〉 according to ISO.

SWI-Prolog 6.0 Reference Manual

2.15. SYNTAX NOTES 51

\s
Space character. Intended to allow writing 0’\s to get the character code of the space charac-
ter. Not ISO.

\t
Horizontal tab-character.

\v
Vertical tab-character (ASCII 11).

\xXX..\
Hexadecimal specification of a character. The closing \ is obligatory according to the ISO
standard, but optional in SWI-Prolog to enhance compatibility with the older Edinburgh stan-
dard. The code \xa\3 emits the character 10 (hexadecimal ‘a’) followed by ‘3’. Characters
specified this way are interpreted as Unicode characters. See also \u.

\uXXXX
Unicode character specification where the character is specified using exactly 4 hexadecimal
digits. This is an extension to the ISO standard fixing two problems. First of all, where \x
defines a numeric character code, it doesn’t specify the character set in which the character
should be interpreted. Second, it is not needed to use the idiosyncratic closing \ ISO Prolog
syntax.

\UXXXXXXXX
Same as \uXXXX, but using 8 digits to cover the whole Unicode set.

\40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications as well.

\〈character〉
Any character immediately preceded by a \ and not covered by the above escape sequences is
copied verbatim. Thus, ’\\’ is an atom consisting of a single \ and ’\’’ and ’’’’ both
describe the atom with a single ’.

Character escaping is only available if current prolog flag(character escapes, true)
is active (default). See current prolog flag/2. Character escapes conflict with writef/2 in
two ways: \40 is interpreted as decimal 40 by writef/2, but as octal 40 (decimal 32) by read.
Also, \l is translated to a single ‘l’. It is advised to use the more widely supported format/[2,3]
predicate instead. If you insist upon using writef/2, either switch character escapes to
false, or use double \\, as in writef(’\\l’).

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as 〈radix〉’<number>, where 〈radix〉 is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using 0[bxo]〈number〉. For
example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

SWI-Prolog 6.0 Reference Manual

52 CHAPTER 2. OVERVIEW

Unicode Prolog source

The ISO standard specifies the Prolog syntax in ASCII characters. As SWI-Prolog supports Unicode
in source files we must extend the syntax. This section describes the implication for the source files,
while writing international source files is described in section 3.1.3.

The SWI-Prolog Unicode character classification is based on version 6.0.0 of the Unicode stan-
dard. Please note that char type/2 and friends, intended to be used with all text except Prolog
source code, is based on the C-library locale-based classification routines.

• Quoted atoms and strings
Any character of any script can be used in quoted atoms and strings. The escape sequences
\uXXXX and \UXXXXXXXX (see section 2.15.1) were introduced to specify Unicode code
points in ASCII files.

• Atoms and Variables
We handle them in one item as they are closely related. The Unicode standard defines a syntax
for identifiers in computer languages.7 In this syntax identifiers start with ID Start followed
by a sequence of ID Continue codes. Such sequences are handled as a single token in SWI-
Prolog. The token is a variable iff it starts with an uppercase character or an underscore ().
Otherwise it is an atom. Note that many languages do not have the notion of character-case. In
such languages variables must be written as _name.

• White space
All characters marked as separators (Z*) in the Unicode tables are handled as layout characters.

• Control and unassigned characters
Control and unassigned (C*) characters produce a syntax error if encountered outside quoted
atoms/strings and outside comments.

• Other characters
The first 128 characters follow the ISO Prolog standard. Unicode symbol and punctuation
characters (general category S* and P*) act as glueing symbol characters (i.e., just like ==: an
unquoted sequence of symbol characters are combined into an atom).

Other characters (this is mainly No: a numeric character of other type) are currently handled as
‘solo’.

Singleton variable checking

A singleton variable is a variable that appears only one time in a clause. It can always be replaced
by _, the anonymous variable. In some cases however people prefer to give the variable a name. As
mistyping a variable is a common mistake, Prolog systems generally give a warning (controlled by
style check/1) if a variable is used only once. The system can be informed a variable is known
to appear once by starting it with an underscore. E.g. _Name. Please note that any variable, except
plain _, shares with variables of the same name. The term t(_X, _X) is equivalent to t(X, X),
which is different from t(_, _).

As Unicode requires variables to start with an underscore in many languages this schema needs to
be extended.8 First we define the two classes of named variables.

7http://www.unicode.org/reports/tr31/
8After a proposal by Richard O’Keefe.

SWI-Prolog 6.0 Reference Manual

2.16. RATIONAL TREES (CYCLIC TERMS) 53

• Named singleton variables
Named singletons start with a double underscore (__) or a single underscore followed by an
uppercase letter. E.g. __var or _Var.

• Normal variables
All other variables are ‘normal’ variables. Note this makes _var a normal variable.9

Any normal variable appearing exactly once in the clause and any named singleton variables
appearing more than once are reported. Below are some examples with warnings in the right column.
Singleton messages can be suppressed using the style check/1 directive.

test().
test(a). Singleton variables: [a]
test(12). Singleton variables: [12]
test(A). Singleton variables: [A]
test(A).
test(a).
test(,).
test(a, a).
test(a, a). Singleton-marked variables appearing more than once: [a]
test(A, A). Singleton-marked variables appearing more than once: [A]
test(A, A).

2.16 Rational trees (cyclic terms)

SWI-Prolog supports rational trees, also known as cyclic terms. ‘Supports’ is defined
that most relevant built-in predicates terminate when faced with rational trees. Almost
all SWI-Prolog’s built-in term manipulation predicates process terms in a time that is lin-
ear to the amount of memory used to represent the term on the stack. The fol-
lowing set of predicates safely handles rational trees: =../2, ==/2, =@=/2, =/2,
@</2, @=</2, @>=/2, @>/2, \==/2, \=@=/2, \=/2, acyclic term/1, bagof/3,
compare/3, copy term/2, cyclic term/1, dif/2, duplicate term/2, findall/3,
ground/1, term hash/2, numbervars/[3,4], recorda/3, recordz/3, setof/3,
term variables/2, throw/1, unify with occurs check/2, unifiable/3, when/2,
write/1 (and related predicates) .

In addition, some built-ins recognise rational trees and raise an appropriate exception. Arithmetic
evaluation belongs to this group. The compiler (asserta/1, etc.) also raises an exception. Future
versions may support rational trees. Predicates that could provide meaningful processing of rational
trees raise a representation error. Predicates for which rational trees have no meaningful
interpretation raise a type error. For example:

1 ?- A = f(A), asserta(a(A)).
ERROR: asserta/1: Cannot represent due to ‘cyclic_term’
2 ?- A = 1+A, B is A.
ERROR: is/2: Type error: ‘expression’ expected, found

‘@(S_1,[S_1=1+S_1])’ (cyclic term)

9Some Prolog dialects write variables this way.

SWI-Prolog 6.0 Reference Manual

54 CHAPTER 2. OVERVIEW

2.17 Just-in-time clause indexing

SWI-Prolog provides ‘just-in-time’ indexing over multiple arguments.10 ‘Just-in-time’ means that
clause indexes are not built by the compiler (or asserta/1 for dynamic predicates), but on the
first call to such a predicate where an index might help (i.e., a call where at least one argument is
instantiated). This section describes the rules used by the indexing logic. Note that this logic is not
‘set in stone’. The indexing capabilities of the system will change. Although this inevitably leads to
some regressing on some particular use cases, we strive to avoid significant slowdowns.

The list below describes the clause selection process for various predicates and calls. The alterna-
tives are considered in the order they are presented.

• Special purpose code
Currently two special cases are recognised by the compiler: static code with exactly one clause
and static code with two clauses, one where the first argument is the empty list ([]) and one
where the first argument is a non-empty list ([_|_]).

• Linear scan on first argument
The principal clause list maintains a key for the first argument. An indexing key is either a
constant or a functor (name/arity reference). Calls with an instantiated first argument and less
than 10 clauses perform a linear scan for a possible matching clause using this index key.

• Hash lookup
If none of the above applies, the system considers the available hash tables for which the cor-
responding argument is instantiated. If one or more of such tables exist, it selects the most
selective one. If no such table exists, it iterates over all instantiated arguments and computes
the hash-opportunity for each argument by processing the virtual machine code for each clause.
If the best table has acceptable characteristics, this table is created and associated with the
predicate.

If an argument is considered unsuitable for indexing, it is added to a bit vector to avoid repeated
re-evaluation. This also indicates the worst case scenario: a call where it is not possible to create
an index for any of the instantiated argument(s) will continuously scan the instantiation pattern
of the call and test the bit vector.

Clauses that have a variable at an otherwise indexable argument must be linked into all hash
buckets. Currently, predicates that have more than 10% such clauses for a specific argument are
not considered for indexing on that argument.

The indexes of dynamic predicates are deleted if the number of clauses is doubled since its
creation or reduced below 1/4th. The JIT approach will recreate a suitable index on the next
call. Indexes of running predicates cannot be deleted. They are added to a ‘removed index list’
associated to the predicate. Dynamic predicates maintain a counter for the number of goals
running the predicate (a predicate can ‘run’ multiple times due to recursion, open choice-points
and it can run in multiple threads) and destroy removed indexes if this count drops to zero.
Outdated indexes of static predicates (e.g., due to reconsult or enlarging multifile predicates)
are reclaimed by garbage collect clauses/0.

10JIT indexing was added in version 5.11.29 (Oct. 2011).

SWI-Prolog 6.0 Reference Manual

2.18. WIDE CHARACTER SUPPORT 55

2.17.1 Future directions

• The current indexing system is largely prepared for secondary indexes. This implies that if there
are many clauses that match a given key, the system could (JIT) create a secondary index. This
secondary index could exploit another argument or, if the key denotes a functor, an argument
inside the compound term.

• The ‘special cases’ can be extended. This is notably attractive for static predicates with a
relatively small number of clauses where a hash lookup is too costly.

2.17.2 Indexing and portability

The base-line functionality of Prolog implementations provide indexing on constants and functor
(name/arity) on the first argument. This must be your assumption if wide portability of your program
is important. This can typically be achieved by exploiting term hash/2 or term hash/4 and/or
maintaining multiple copies of a predicate with reordered arguments and wrappers that update all
implementations (assert/retract) and selects the appropriate implementation (query).

YAP provides full JIT indexing, including indexing arguments of compound terms. YAP’s index-
ing has been the inspiration for enhancing SWI-Prolog’s indexing capabilities.

2.18 Wide character support

SWI-Prolog supports wide characters, characters with character codes above 255 that cannot be rep-
resented in a single byte. Universal Character Set (UCS) is the ISO/IEC 10646 standard that specifies
a unique 31-bit unsigned integer for any character in any language. It is a superset of 16-bit Unicode,
which in turn is a superset of ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages, and character classification (uppercase, lowercase,
digit, etc.) and operations such as case conversion are unambiguously defined.

For this reason SWI-Prolog has two representations for atoms and string objects (see section 4.22).
If the text fits in ISO Latin-1, it is represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue is completely transparent to the
Prolog user. Users of the foreign language interface as described in chapter 9 sometimes need to be
aware of these issues though.

Character coding comes into view when characters of strings need to be read from or written to
file or when they have to be communicated to other software components using the foreign language
interface. In this section we only deal with I/O through streams, which includes file I/O as well as I/O
through network sockets.

2.18.1 Wide character encodings on streams

Although characters are uniquely coded using the UCS standard internally, streams and files are byte
(8-bit) oriented and there are a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web, is UTF-8. Bytes 0 . . . 127
represent simply the corresponding US-ASCII character, while bytes 128 . . . 255 are used for multi-
byte encoding of characters placed higher in the UCS space. Especially on MS-Windows the 16-bit
Unicode standard, represented by pairs of bytes, is also popular.

Prolog I/O streams have a property called encoding which specifies the used encoding that influ-
ences get code/2 and put code/2 as well as all the other text I/O predicates.

SWI-Prolog 6.0 Reference Manual

56 CHAPTER 2. OVERVIEW

The default encoding for files is derived from the Prolog flag encoding, which is initialised
from the environment. If the environment variable LANG ends in ”UTF-8”, this encoding is as-
sumed. Otherwise the default is text and the translation is left to the wide-character functions
of the C-library. 11 The encoding can be specified explicitly in load files/2 for loading Prolog
source with an alternative encoding, open/4 when opening files or using set stream/2 on any
open stream. For Prolog source files we also provide the encoding/1 directive that can be used
to switch between encodings that are compatible with US-ASCII (ascii, iso latin 1, utf8
and many locales). See also section 3.1.3 for writing Prolog files with non-US-ASCII characters
and section 2.15.1 for syntax issues. For additional information and Unicode resources, please visit
http://www.unicode.org/.

SWI-Prolog currently defines and supports the following encodings:

octet
Default encoding for binary streams. This causes the stream to be read and written fully
untranslated.

ascii
7-bit encoding in 8-bit bytes. Equivalent to iso latin 1, but generates errors and warnings
on encountering values above 127.

iso latin 1
8-bit encoding supporting many western languages. This causes the stream to be read and
written fully untranslated.

text
C-library default locale encoding for text files. Files are read and written using the C-library
functions mbrtowc() and wcrtomb(). This may be the same as one of the other locales, notably
it may be the same as iso latin 1 for western languages and utf8 in a UTF-8 context.

utf8
Multi-byte encoding of full UCS, compatible with ascii. See above.

unicode be
Unicode Big Endian. Reads input in pairs of bytes, most significant byte first. Can only repre-
sent 16-bit characters.

unicode le
Unicode Little Endian. Reads input in pairs of bytes, least significant byte first. Can only
represent 16-bit characters.

Note that not all encodings can represent all characters. This implies that writing text to a stream
may cause errors because the stream cannot represent these characters. The behaviour of a stream
on these errors can be controlled using set stream/2. Initially the terminal stream writes the
characters using Prolog escape sequences while other streams generate an I/O exception.

11The Prolog native UTF-8 mode is considerably faster than the generic mbrtowc() one.

SWI-Prolog 6.0 Reference Manual

2.19. SYSTEM LIMITS 57

BOM: Byte Order Mark

From section 2.18.1, you may have got the impression that text files are complicated. This section
deals with a related topic, making life often easier for the user, but providing another worry to the
programmer. BOM or Byte Order Marker is a technique for identifying Unicode text files as well as
the encoding they use. Such files start with the Unicode character 0xFEFF, a non-breaking, zero-width
space character. This is a pretty unique sequence that is not likely to be the start of a non-Unicode
file and uniquely distinguishes the various Unicode file formats. As it is a zero-width blank, it even
doesn’t produce any output. This solves all problems, or . . .

Some formats start off as US-ASCII and may contain some encoding mark to switch to UTF-8,
such as the encoding="UTF-8" in an XML header. Such formats often explicitly forbid the use
of a UTF-8 BOM. In other cases there is additional information revealing the encoding, making the
use of a BOM redundant or even illegal.

The BOM is handled by SWI-Prolog open/4 predicate. By default, text files are probed for the
BOM when opened for reading. If a BOM is found, the encoding is set accordingly and the property
bom(true) is available through stream property/2. When opening a file for writing, writing a
BOM can be requested using the option bom(true) with open/4.

2.19 System limits

2.19.1 Limits on memory areas

SWI-Prolog has a number of memory areas which are only enlarged to a certain limit. The internal
data representation limits the local-, global- and trail-stack to 128 Mbytes on 32 bit processors, or
more generally to 2bits-per-pointer−5 bytes. Considering that almost all modern hardware can deal
with this amount of memory with ease, the default limits are set to their maximum on 32-bit hardware.
The representation limits can easily exceed physical memory on 64-bit hardware. The default limits on
64-bit hardware are double of 32-bit hardware, which allows for storing the same amount of (Prolog)
data.

The limits can be changed from the command line as well as at runtime using
set prolog stack/2. The table below shows these areas. The first column gives the option
name to modify the size of the area. The option character is immediately followed by a number and
optionally by a k or m. With k or no unit indicator, the value is interpreted in Kbytes (1024 bytes),
with m, the value is interpreted in Mbytes (1024× 1024 bytes).

The PrologScript facility described in section 2.10.2 provides a mechanism for specifying options
with the load file. On Windows the default stack sizes are controlled using the Windows registry
on the key HKEY_CURRENT_USER\Software\SWI\Prolog using the names localSize,
globalSize and trailSize. The value is a DWORD expressing the default stack size in Kbytes.
A GUI for modifying these values is provided using the XPCE package. To use this, start the XPCE
manual tools using manpce/0, after which you find Preferences in the File menu.

Considering portability, applications that need to modify the default limits are advised to do so
using set prolog stack/2.

The heap

With the heap, we refer to the memory area used by malloc() and friends. SWI-Prolog uses the area to
store atoms, functors, predicates and their clauses, records and other dynamic data. As of SWI-Prolog

SWI-Prolog 6.0 Reference Manual

58 CHAPTER 2. OVERVIEW

Option Default Area name Description
-L 128M local stack The local stack is used to store

the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the al-
ternatives are cut off with the
!/0 predicate or no choice points
have been created since the invo-
cation and the last subclause is
started (last call optimisation).

-G 128M global stack The global stack is used to store
terms created during Prolog’s
execution. Terms on this stack
will be reclaimed by backtrack-
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).

-T 128M trail stack The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are no
longer needed.

-A 1M argument stack The argument stack is used to
store one of the Virtual Ma-
chine’s registers. The amount
of space needed on this stack is
determined entirely by the depth
in which terms are nested in the
clauses that constitute the pro-
gram. Overflow is unlikely.

Table 2.2: Memory areas

SWI-Prolog 6.0 Reference Manual

2.19. SYSTEM LIMITS 59

2.8.5, no limits are imposed on the addresses returned by malloc() and friends.
On some machines, the runtime stacks described above are allocated using ‘sparse allocation’.

Virtual space up to the limit is claimed at startup and committed and released while the area grows
and shrinks. On Win32 platforms this is realised using VirtualAlloc() and friends. On Unix systems
this is realised using mmap().

2.19.2 Other Limits

Clauses The only limit on clauses is their arity (the number of arguments to the head), which is
limited to 1024. Raising this limit is easy and relatively cheap, removing it is harder.

Atoms and Strings SWI-Prolog has no limits on the sizes of atoms and strings. read/1 and its
derivatives however normally limit the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off with style check/1.

The number of atoms is limited to 16777216 (16M) on 32-bit machines. On 64-bit machines
this is virtually unlimited. See also section 9.4.2.

Memory areas On 32-bit hardware, SWI-Prolog data is packed in a 32-bit word, which contains both
type and value information. The size of the various memory areas is limited to 128 Mb for each
of the areas, except for the program heap, which is not limited. On 64-bit hardware there are no
meaningful limits.

Nesting of terms Many built-in predicates process nested terms using recursive C functions. Too
deeply nested terms generally cause a fatal crash. All these functions avoid recursion on the
right-most argument and therefore terms are not limited on the nesting level of the last argument.
This notably covers long lists. Most functions use a stack for correct handling of rational trees
(cyclic terms). This stack is segmented, where different segments are allocated using malloc().
Overflow causes a non-graceful exit.

Integers On most systems SWI-Prolog is compiled with support for unbounded integers by means of
the GNU GMP library. In practice this means that integers are bound by the global stack size.
Too large integers cause a resource error. On systems that lack GMP, integers are 64-bit
on 32- as well as 64-bit machines.

Integers up to the value of the max tagged integer Prolog flag are represented more effi-
ciently on the stack. For clauses and records the difference is much smaller.

Floating point numbers Floating point numbers are represented as C-native double precision floats,
64-bit IEEE on most machines.

2.19.3 Reserved Names

The boot compiler (see -b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database keys, etc., that
should be hidden from the user start with a dollar ($) sign.

SWI-Prolog 6.0 Reference Manual

60 CHAPTER 2. OVERVIEW

2.20 SWI-Prolog and 64-bit machines

Most of today’s 64-bit platforms are capable of running both 32-bit and 64-bit applications. This asks
for some clarifications on the advantages and drawbacks of 64-bit addressing for (SWI-)Prolog.

2.20.1 Supported platforms

SWI-Prolog can be compiled for a 32- or 64-bit address space on any system with a suitable C-
compiler. Pointer arithmetic is based on the type (u)intptr t from stdint.h, with suitable emulation
on MS-Windows.

2.20.2 Comparing 32- and 64-bits Prolog

Most of Prolog’s memory usage consists of pointers. This indicates the primary drawback: Prolog
memory usage almost doubles when using the 64-bit addressing model. Using more memory means
copying more data between CPU and main memory, slowing down the system.

What then are the advantages? First of all, SWI-Prolog’s addressing of the Prolog stacks does not
cover the whole address space due to the use of type tag bits and garbage collection flags. On 32-bit
hardware the stacks are limited to 128MB each. This tends to be too low for demanding applications
on modern hardware. On 64-bit hardware the limit is 232 times higher, exceeding the addressing
capabilities of today’s CPUs and operating systems. This implies Prolog can be started with stack
sizes that use the full capabilities of your hardware.

Multi-threaded applications profit much more because every thread has its own set of stacks. The
Prolog stacks start small and are dynamically expanded (see section 2.19.1). The C-stack is also
dynamically expanded, but the maximum size is reserved when a thread is started. Using 100 threads
at the maximum default C-stack of 8Mb (Linux) costs 800Mb virtual memory!12

The implications of theoretical performance loss due to increased memory bandwidth implied by
exchanging wider pointers depend on the design of the hardware. We only have data for the popular
IA32 vs. AMD64 architectures. Here, it appears that the loss is compensated for by an instruction set
that has been optimized for modern programming. In particular, the AMD64 has more registers and
the relative addressing capabilities have been improved. Where we see a 10% performance degra-
dation when placing the SWI-Prolog kernel in a Unix shared object, we cannot find a measurable
difference on AMD64.

2.20.3 Choosing between 32- and 64-bits Prolog

For those cases where we can choose between 32- and 64-bits, either because the hardware and OS
support both or because we can still choose the hardware and OS, we give guidelines for this decision.

First of all, if SWI-Prolog needs to be linked against 32- or 64-bit native libraries, there is no
choice as it is not possible to link 32- and 64-bit code into a single executable. Only if all required
libraries are available in both sizes and there is no clear reason to use either do the different character-
istics of Prolog become important.

Prolog applications that require more than the 128MB stack limit provided in 32-bit addressing
mode must use the 64-bit edition. Note however that the limits must be doubled to accommodate the
same Prolog application.

12C-recursion over Prolog data structures is removed from most of SWI-Prolog. When removed from all predicates it
will often be possible to use lower limits in threads. See http://www.swi-prolog.org/Devel/CStack.html

SWI-Prolog 6.0 Reference Manual

2.20. SWI-PROLOG AND 64-BIT MACHINES 61

If the system is tight on physical memory, 32-bit Prolog has the clear advantage of using only
slightly more than half of the memory of 64-bit Prolog. This argument applies as long as the applica-
tion fits in the virtual address space of the machine. The virtual address space of 32-bit hardware is
4GB, but in many cases the operating system provides less to user applications.

The only standard SWI-Prolog library adding significantly to this calculation is the RDF database
provided by the semweb package. It uses approximately 80 bytes per triple on 32-bit hardware and
150 bytes on 64-bit hardware. Details depend on how many different resources and literals appear in
the dataset as well as desired additional literal indexes.

Summarizing, if applications are small enough to fit comfortably in virtual and physical memory,
simply take the model used by most of the applications on the OS. If applications require more than
128MB per stack, use the 64-bit edition. If applications approach the size of physical memory, fit
in the 128MB stack limit and fit in virtual memory, the 32-bit version has clear advantages. For
demanding applications on 64-bit hardware with more than about 6GB physical memory the 64-bit
model is the model of choice.

SWI-Prolog 6.0 Reference Manual

Initialising and Managing a
Prolog Project 3
Prolog text-books give you an overview of the Prolog language. The manual tells you what predicates
are provided in the system and what they do. This chapter explains how to run a project. There is
no ultimate ‘right’ way to do this. Over the years we developed some practice in this area and SWI-
Prolog’s commands are there to support this practice. This chapter describes the conventions and
supporting commands.

The first two sections (section 3.1 and section 3.2) only require plain Prolog. The remainder
discusses the use of the built-in graphical tools that require the XPCE graphical library installed on
your system.

3.1 The project source files

Organisation of source files depends largely on the size of your project. If you are doing exercises for
a Prolog course you’ll normally use one file for each exercise. If you have a small project you’ll work
with one directory holding a couple of files and some files to link it all together. Even bigger projects
will be organised in sub-projects, each using its own directory.

3.1.1 File Names and Locations

File Name Extensions

The first consideration is what extension to use for the source files. Tradition calls for .pl, but con-
flicts with Perl force the use of another extension on systems where extensions have global meaning,
such as MS-Windows. On such systems .pro is the common alternative.1

All versions of SWI-Prolog load files with the extension .pl as well as with the registered alter-
native extension without explicitly specifying the extension. For portability reasons we propose the
following convention:

If there is no conflict because you do not use a conflicting application or the system does not force
a unique relation between extension and application, use .pl.

With a conflict choose .pro and use this extension for the files you want to load through your file
manager. Use .pl for all other files for maximal portability.

Project Directories

Large projects are generally composed of sub-projects, each using its own directory or directory struc-
ture. If nobody else will ever touch your files and you use only one computer, there is little to worry

1On MS-Windows, the alternative extension is stored in the registry key
HKEY CURRENT USER/Software/SWI/Prolog/fileExtension or HKEY LOCAL MACHINE/Software/SWI/Prolog/fileExtension

SWI-Prolog 6.0 Reference Manual

3.1. THE PROJECT SOURCE FILES 63

about, but this is rarely the case with a large project.
To improve portability, SWI-Prolog uses the POSIX notation for filenames, which uses the

forward slash (/) to separate directories. Just before reaching the file system, SWI-Prolog uses
prolog to os filename/2 to convert the filename to the conventions used by the hosting oper-
ating system. It is strongly advised to write paths using the /, especially on systems using the \ for
this purpose (MS-Windows). Using \ violates the portability rules and requires you to double the \
due to the Prolog quoted-atom escape rules.

Portable code should use prolog to os filename/2 to convert computed paths into system
paths when constructing commands for shell/1 and friends.

Sub-projects using search paths

Thanks to Quintus, Prolog adapted an extensible mechanism for searching files using
file search path/2. This mechanism allows for comfortable and readable specifications.

Suppose you have extensive library packages on graph algorithms, set operations and GUI primi-
tives. These sub-projects are likely candidates for re-use in future projects. A good choice is to create
a directory with sub-directories for each of these sub-projects.

Next, there are three options. One is to add the sub-projects to the directory hierarchy of the
current project. Another is to use a completely dislocated directory. Third, the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typical file search path/2 is:

:- prolog_load_context(directory, Dir),
asserta(user:file_search_path(myapp, Dir)).

user:file_search_path(graph, myapp(graph)).
user:file_search_path(ui, myapp(ui)).

When using sub-projects in the SWI-Prolog hierarchy, one should use the path alias swi as basis. For
a system-wide installation, use an absolute path.

Extensive sub-projects with a small well-defined API should define a load file with calls to
use module/1 to import the various library components and export the API.

3.1.2 Project Special Files

There are a number of tasks you typically carry out on your project, such as loading it, creating a
saved state, debugging it, etc. Good practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give it a file extension that makes
starting easy (see section 3.1.1). The task load is generally central to these tasks. Here is a tentative
list:

• load.pl
Use this file to set up the environment (Prolog flags and file search paths) and load the sources.
Quite commonly this file also provides convenient predicates to parse command-line options
and start the application.

• run.pl
Use this file to start the application. Normally it loads load.pl in silent-mode, and calls one
of the starting predicates from load.pl.

SWI-Prolog 6.0 Reference Manual

64 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

• save.pl
Use this file to create a saved state of the application by loading load.pl and calling
qsave program/2 to generate a saved state with the proper options.

• debug.pl
Loads the program for debugging. In addition to loading load.pl this file defines rules for
portray/1 to modify printing rules for complex terms and customisation rules for the debug-
ger and editing environment. It may start some of these tools.

3.1.3 International source files

As discussed in section 2.18, SWI-Prolog supports international character handling. Its internal en-
coding is UNICODE. I/O streams convert to/from this internal format. This section discusses the
options for source files not in US-ASCII.

SWI-Prolog can read files in any of the encodings described in section 2.18. Two encodings are of
particular interest. The text encoding deals with the current locale, the default used by this computer
for representing text files. The encodings utf8, unicode le and unicode be are UNICODE
encodings: they can represent—in the same file—characters of virtually any known language. In
addition, they do so unambiguously.

If one wants to represent non US-ASCII text as Prolog terms in a source file, there are several
options:

• Use escape sequences
This approach describes NON-ASCII as sequences of the form \octal\. The numerical argu-
ment is interpreted as a UNICODE character.2 The resulting Prolog file is strict 7-bit US-ASCII,
but if there are many NON-ASCII characters it becomes very unreadable.

• Use local conventions
Alternatively the file may be specified using local conventions, such as the EUC encoding for
Japanese text. The disadvantage is portability. If the file is moved to another machine, this
machine must use the same locale or the file is unreadable. There is no elegant way if files from
multiple locales must be united in one application using this technique. In other words, it is fine
for local projects in countries with uniform locale conventions.

• Using UTF-8 files
The best way to specify source files with many NON-ASCII characters is definitely the use of
UTF-8 encoding. Prolog can be notified of this encoding in two ways, using a UTF-8 BOM (see
section 2.18.1) or using the directive :- encoding(utf8). Many of today’s text editors,
including PceEmacs, are capable of editing UTF-8 files. Projects that were started using local
conventions can be re-coded using the Unix iconv tool or often using commands offered by
the editor.

3.2 Using modules

Modules have been debated fiercely in the Prolog world. Despite all counter-arguments we feel they
are extremely useful because:

2To my knowledge, the ISO escape sequence is limited to 3 octal digits, which means most characters cannot be repre-
sented.

SWI-Prolog 6.0 Reference Manual

3.3. THE TEST-EDIT-RELOAD CYCLE 65

• They hide local predicates
This is the reason they were invented in the first place. Hiding provides two features. They
allow for short predicate names without worrying about conflicts. Given the flat name-space in-
troduced by modules, they still require meaningful module names as well as meaningful names
for exported predicates.

• They document the interface
Possibly more important than avoiding name conflicts is their role in documenting which part
of the file is for public usage and which is private. When editing a module you may assume you
can reorganise anything except the name and the semantics of the exported predicates without
worrying.

• They help the editor
The PceEmacs built-in editor does on-the-fly cross-referencing of the current module, colouring
predicates based on their origin and usage. Using modules, the editor can quickly find out what
is provided by the imported modules by reading just the first term. This allows it to indicate in
real-time which predicates are not used or not defined.

Using modules is generally easy. Only if you write meta-predicates (predicates reasoning about
other predicates) that are exported from a module is a good understanding required of the resolution
of terms to predicates inside a module. Here is a typical example from readutil.

:- module(read_util,
[read_line_to_codes/2, % +Fd, -Codes

read_line_to_codes/3, % +Fd, -Codes, ?Tail
read_stream_to_codes/2, % +Fd, -Codes
read_stream_to_codes/3, % +Fd, -Codes, ?Tail
read_file_to_codes/3, % +File, -Codes, +Options
read_file_to_terms/3 % +File, -Terms, +Options

]).

3.3 The test-edit-reload cycle

SWI-Prolog does not enforce the use of a particular editor for writing Prolog source code. Editors are
complicated programs that must be mastered in detail for real productive programming. If you are
familiar with a specific editor you should not be forced to change. You may specify your favourite
editor using the Prolog flag editor, the environment variable EDITOR or by defining rules for
prolog_edit:edit_source/1 (see section 4.4).

The use of a built-in editor, which is selected by setting the Prolog flag editor to pce emacs,
has advantages. The XPCE editor object, around which the built-in PceEmacs is built, can be opened
as a Prolog stream allowing analysis of your source by the real Prolog system.

3.3.1 Locating things to edit

The central predicate for editing something is edit/1, an extensible front-end that searches for
objects (files, predicates, modules, as well as XPCE classes and methods) in the Prolog database.

SWI-Prolog 6.0 Reference Manual

66 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

If multiple matches are found it provides a choice. Together with the built-in completion on atoms
bound to the TAB key this provides a quick way to edit objects:

?- edit(country).
Please select item to edit:

1 chat:country/10 ’/staff/jan/lib/prolog/chat/countr.pl’:16
2 chat:country/1 ’/staff/jan/lib/prolog/chat/world0.pl’:72

Your choice?

3.3.2 Editing and incremental compilation

One of the nice features of Prolog is that the code can be modified while the program is running.
Using pure Prolog you can trace a program, find it is misbehaving, enter a break environment, modify
the source code, reload it and finally do retry on the misbehaving predicate and try again. This
sequence is not uncommon for long-running programs. For faster programs one will normally abort
after understanding the misbehaviour, edit the source, reload it and try again.

One of the nice features of SWI-Prolog is the availability of make/0, a simple predicate that
checks all loaded source files to see which ones you have modified. It then reloads these files, consid-
ering the module from which the file was loaded originally. This greatly simplifies the trace-edit-verify
development cycle. For example, after the tracer reveals there is something wrong with prove/3,
you do:

?- edit(prove).

Now edit the source, possibly switching to other files and making multiple changes. After finishing,
invoke make/0, either through the editor UI (Compile/Make (Control-C Control-M)) or on
the top-level, and watch the files being reloaded.3

?- make.
% show compiled into photo_gallery 0.03 sec, 3,360 bytes

3.4 Using the PceEmacs built-in editor

3.4.1 Activating PceEmacs

Initially edit/1 uses the editor specified in the EDITOR environment variable. There are two ways
to force it to use the built-in editor. One is to set the Prolog flag editor to pce emacs and the
other is by starting the editor explicitly using the emacs/[0,1] predicates.

3Watching these files is a good habit. If expected files are not reloaded you may have forgotten to save them from the
editor or you may have been editing the wrong file (wrong directory).

SWI-Prolog 6.0 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 67

3.4.2 Bluffing through PceEmacs

PceEmacs closely mimics Richard Stallman’s GNU-Emacs commands, adding features from modern
window-based editors to make it more acceptable for beginners.4

At the basis, PceEmacs maps keyboard sequences to methods defined on the extended editor
object. Some frequently used commands are, with their key-binding, presented in the menu bar above
each editor window. A complete overview of the bindings for the current mode is provided through
Help/Show key bindings (Control-h Control-b).

Edit modes

Modes are the heart of (Pce)Emacs. Modes define dedicated editing support for a particular kind of
(source-)text. For our purpose we want Prolog mode. There are various ways to make PceEmacs use
Prolog mode for a file.

• Using the proper extension
If the file ends in .pl or the selected alternative (e.g. .pro) extension, Prolog mode is selected.

• Using #!/path/to/pl
If the file is a Prolog Script file, starting with the line #!/path/to/pl options -s, Pro-
log mode is selected regardless of the extension.

• Using -*- Prolog -*-
If the above sequence appears in the first line of the file (inside a Prolog comment) Prolog mode
is selected.

• Explicit selection
Finally, using File/Mode/Prolog (y)ou can switch to Prolog mode explicitly.

Frequently used editor commands

Below we list a few important commands and how to activate them.

• Cut/Copy/Paste
These commands follow Unix/X11 traditions. You’re best suited with a three-button mouse.
After selecting using the left-mouse (double-click uses word-mode and triple line-mode), the
selected text is automatically copied to the clipboard (X11 primary selection on Unix). Cut is
achieved using the DEL key or by typing something else at the location. Paste is achieved using
the middle-mouse (or wheel) button. If you don’t have a middle-mouse button, pressing the
left- and right-button at the same time is interpreted as a middle-button click. If nothing helps,
there is the Edit/Paste menu entry. Text is pasted at the caret location.

• Undo
Undo is bound to the GNU-Emacs Control- as well as the MS-Windows Control-Z sequence.

• Abort
Multi-key sequences can be aborted at any stage using Control-G.

4Decent merging with MS-Windows control-key conventions is difficult as many conflict with GNU-Emacs. Especially
the cut/copy/paste commands conflict with important GNU-Emacs commands.

SWI-Prolog 6.0 Reference Manual

68 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

• Find
Find (Search) is started using Control-S (forward) or Control-R (backward). PceEmacs imple-
ments incremental search. This is difficult to use for novices, but very powerful once you get
the clue. After one of the above start keys, the system indicates search mode in the status line.
As you are typing the search string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green background.

If the target cannot be found, PceEmacs warns you and no longer extends the search string.5

During search, some characters have special meaning. Typing anything but these characters
commits the search, re-starting normal edit mode. Special commands are:

Control-S
Search forwards for next.

Control-R
Search backwards for next.

Control-W
Extend search to next word boundary.

Control-G
Cancel search, go back to where it started.

ESC
Commit search, leaving caret at found location.

Backspace
Remove a character from the search string.

• Dynamic Abbreviation
Also called dabbrev, dynamic abbreviation is an important feature of Emacs clones to support
programming. After typing the first few letters of an identifier, you may press Alt-/, causing
PceEmacs to search backwards for identifiers that start the same and use it to complete the text
you typed. A second Alt-/ searches further backwards. If there are no hits before the caret, it
starts searching forwards. With some practice, this system allows for entering code very fast
with nice and readable identifiers (or other difficult long words).

• Open (a file)
Is called File/Find file (Control-x Control-f). By default the file is loaded into the
current window. If you want to keep this window, press Alt-s or click the little icon at the
bottom left to make the window sticky.

• Split view
Sometimes you want to look at two places in the same file. To do this, use Control-x 2 to create
a new window pointing to the same file. Do not worry, you can edit as well as move around in
both. Control-x 1 kills all other windows running on the same file.

These are the most commonly used commands. In section 3.4.3 we discuss specific support for
dealing with Prolog source code.

5GNU-Emacs keeps extending the string, but why? Adding more text will not make it match.

SWI-Prolog 6.0 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 69

3.4.3 Prolog Mode

In the previous section (section 3.4.2) we explained the basics of PceEmacs. Here we continue with
Prolog-specific functionality. Possibly the most interesting is Syntax highlighting. Unlike most editors
where this is based on simple patterns, PceEmacs syntax highlighting is achieved by Prolog itself ac-
tually reading and interpreting the source as you type it. There are three moments at which PceEmacs
checks (part of) the syntax.

• After typing a .
After typing a . that is not preceded by a symbol character, the system assumes you completed
a clause, tries to find the start of this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given below. Colouring is done using
information from the last full check on this file. If it fails, the syntax error is displayed in the
status line and the clause is not coloured.

• After the command Control-c Control-s
Acronym for Check Syntax, it performs the same checks as above for the clause surrounding
the caret. On a syntax error, however, the caret is moved to the expected location of the error.6

• After pausing for two seconds
After a short pause (2 seconds), PceEmacs opens the edit buffer and reads it as a whole, creating
an index of defined, called, dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid syntax.

• After typing Control-l Control-l
The Control-l command re-centers the window (scrolls the window to make the caret the center
of the window). Typing this command twice starts the same process as above.

The colour schema itself is defined in emacs/prolog colour. The colouring can be extended
and modified using multifile predicates. Please check this source file for details. In general, underlined
objects have a popup (right-mouse button) associated with common commands such as viewing the
documentation or source. Bold text is used to indicate the definition of objects (typically predicates
when using plain Prolog). Other colours follow intuitive conventions. See table 3.4.3.

Layout support Layout is not ‘just nice’, it is essential for writing readable code. There is much
debate on the proper layout of Prolog. PceEmacs, being a rather small project, supports only one
particular style for layout.7 Below are examples of typical constructs.

head(arg1, arg2).

head(arg1, arg2) :- !.

head(Arg1, arg2) :- !,
call1(Arg1).

head(Arg1, arg2) :-

6In most cases the location where the parser cannot proceed is further down the file than the actual error location.
7Defined in Prolog in the file emacs/prolog mode, you may wish to extend this. Please contribute your extensions!

SWI-Prolog 6.0 Reference Manual

70 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Clauses
Blue bold Head of an exported predicate
Red bold Head of a predicate that is not called
Black bold Head of remaining predicates

Calls in the clause body
Blue Call to built-in or imported predicate
Red Call to undefined predicate
Purple Call to dynamic predicate

Other entities
Dark green Comment
Dark blue Quoted atom or string
Brown Variable

Table 3.1: Colour conventions

(if(Arg1)
-> then
; else
).

head(Arg1) :-
(a
; b
).

head :-
a(many,
long,
arguments(with,

many,
more),

and([a,
long,
list,
with,
a,

| tail
])).

PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents the current line according
to the syntax rules. Alt-q indents all lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument lists broken across multiple lines as illustrated
above.

SWI-Prolog 6.0 Reference Manual

3.5. THE GRAPHICAL DEBUGGER 71

Finding your way around

The command Alt-. extracts name and arity from the caret location and jumps (after conformation
or edit) to the definition of the predicate. It does so based on the source-location database of loaded
predicates also used by edit/1. This makes locating predicates reliable if all sources are loaded and
up-to-date (see make/0).

In addition, references to files in use module/[1,2], consult/1, etc. are red if the file can-
not be found and underlined blue if the file can be loaded. A popup allows for opening the referenced
file.

3.5 The Graphical Debugger

SWI-Prolog offers two debuggers. One is the traditional text console-based 4-port Prolog tracer and
the other is a window-based source level debugger. The window-based debugger requires XPCE
installed. It operates based on the prolog trace interception/4 hook and other low-level
functionality described in chapter B.

Window-based tracing provides a much better overview due to the eminent relation to your source
code, a clear list of named variables and their bindings as well as a graphical overview of the call and
choice-point stack. There are some drawbacks though. Using a textual trace on the console, one can
scroll back and examine the past, while the graphical debugger just presents a (much better) overview
of the current state.

3.5.1 Invoking the window-based debugger

Whether the text-based or window-based debugger is used is controlled using the predicates
guitracer/0 and noguitracer/0. Entering debug mode is controlled using the normal pred-
icates for this: trace/0 and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control-c b) to insert a break-point at a specific location in the source code.

The graphical tracer is particulary useful for debugging threads. The tracer must be loaded from
the main thread before it can be used from a background thread.

guitracer
This predicate installs the above-mentioned hooks that redirect tracing to the window-based
environment. No window appears. The debugger window appears as actual tracing is started
through trace/0, by hitting a spy-point defined by spy/1 or a break-point defined using the
PceEmacs command Prolog/Break at (Control-c b).

noguitracer
Disable the hooks installed by guitracer/0, reverting to normal text console-based tracing.

gtrace
Utility defined as guitracer,trace.

gdebug
Utility defined as guitracer,debug.

gspy(+Predicate)
Utility defined as guitracer,spy(Predicate).

SWI-Prolog 6.0 Reference Manual

72 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.6 The Prolog Navigator

Another tool is the Prolog Navigator. This tool can be started from PceEmacs using the command
Browse/Prolog navigator, from the GUI debugger or using the programmatic IDE interface de-
scribed in section 3.8.

3.7 Cross referencer

A cross-referencers is a tool examining the caller-callee relation between predicates and using this
information to explicate dependency relations between source files, find calls to non-existing predi-
cates and predicates for which no callers can be found. Cross-referencing is useful during program
development, reorganisation, cleanup, porting and other program maintenance tasks. The dynamic
nature of Prolog makes the task non-trivial. Goals can be created dynamically call/1 after con-
struction of a goal term. Abtract interpretation can find some of such calls, but the ultimately they
can come from external communication, making it completely impossible to predict the callee. In
other words, the cross-referencer has only partial understanding of the program and its results are
necessarily incomplete. Still, it provides valuable information to the developer.

SWI-Prolog’s cross-referencer is split into two parts. The standard Prolog library prolog xref
is an extensible library for information gathering described in section A.21 and the XPCE

library pce xref provides a graphical frontend for the cross-referencer described here. We
demonstrate the tool on CHAT80, a natural language question and answer system by Fernando C.N.
Pereira and David H.D. Warren.

gxref
Run cross-referencer on all currently loaded files and present a graphical overview of the result.
As the predicate operates on the currently loaded application it must be run after loading the
application.

The left window (see figure 3.1 provides browsers for loaded files and predicates. To avoid
long file paths the file hierarchy has three main branches. The first is the current directory hold-
ing the sources. The second is marked alias and below it are the file-search-path aliases (see
file search path/2 and absolute file name/3). Here you find files loaded from the sys-
tem as well as modules of the program loaded from other locations using file search path. All loaded
files that fall outside these categories are below the last branch called /. File where the system found
suspicious dependencies are marked with an exclamation mark. This also holds for directories holding
such files. Clicking on a file opens a File info window in the right pane.

The File info window shows a file, its main properties, its undefined and not-called predicates and
its import- and export relations to other files in the project. Both predicates and files can be opened
by clicking on them. The number of callers in a file for a certain predicate is indicated with a blue
underlined number. A left-click will open a list and allows to edit the calling predicate.

The Dependencies (see figure 3.2) window displays a graphical overview of dependencies be-
tween files. Using the background menu a complete graph of the project can be created. It is also
possible to drag files onto the graph window and use the menu on the nodes to incrementally expand
the graph. The underlined blue text indicates the number of predicates used in the destination file.
Left-clicking opens a menu to open the definition or select one of the callers.

SWI-Prolog 6.0 Reference Manual

3.7. CROSS REFERENCER 73

Figure 3.1: File info for chattop.pl, part of CHAT80

Figure 3.2: Dependencies between source files of CHAT80

SWI-Prolog 6.0 Reference Manual

74 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Module and non-module files The cross-referencer threads module and non-module project files
differently. Module files have explicit import and export relations and the tool shows the usage and
consistency of the relations. Using the menu-command Header the tool creates a consistent import
list for the module that can be included in the file. The tool computes the dependency relations
between the non-module files. If the user wishes to convert the project into a module-based one
the Header command generates an appropriate module header and import list. Note that the cross-
referencer may have missed dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.

Settings The following settings can be controlled from the settings menu:

Warn autoload
By default disabled. If enabled, modules that require predicates to be autoloaded are flagged
with a warning and the file info window of a module shows the required autoload predicates.

Warn not called
If enabled (default), the file-overview shows an alert icon for files that have predicates that are
not called.

3.8 Accessing the IDE from your program

Over the years a collection of IDE components have been developed, each with its own interface.
In addition, some of these components require each other, and loading IDE components must be on
demand to avoid the IDE being part of a saved state (see qsave program/2). For this reason,
access to the IDE is concentrated on a single interface called prolog ide/1:

prolog ide(+Action)
This predicate ensures the IDE-enabling XPCE component is loaded, cre-
ates the XPCE class prolog ide and sends Action to its one and only instance
\index{@prolog_ide}\objectname{prolog_ide}. Action is one of the fol-
lowing:

open navigator(+Directory)
Open the Prolog Navigator (see section 3.6) in the given Directory.

open debug status
Open a window to edit spy- and trace-points.

open query window
Open a little window to run Prolog queries from a GUI component.

thread monitor
Open a graphical window indicating existing threads and their status.

debug monitor
Open a graphical front-end for the debug library that provides an overview of the topics
and catches messages.

xref
Open a graphical front-end for the cross-referencer that provides an overview of predicates
and their callers.

SWI-Prolog 6.0 Reference Manual

3.9. SUMMARY OF THE IDE 75

3.9 Summary of the IDE

The SWI-Prolog development environment consists of a number of interrelated but not (yet) integrated
tools. Here is a list of the most important features and tips.

• Atom completion
The console8 completes a partial atom on the TAB key and shows alternatives on the command
Alt-?.

• Use edit/1 for finding locations
The command edit/1 takes the name of a file, module, predicate or other entity registered
through extensions and starts the user’s preferred editor at the right location.

• Select editor
External editors are selected using the EDITOR environment variable, by setting the Prolog flag
editor, or by defining the hook prolog edit:edit source/1.

• Update Prolog after editing
Using make/0, all files you have edited are re-loaded.

• PceEmacs
Offers syntax highlighting and checking based on real-time parsing of the editor’s buffer, layout
support and navigation support.

• Using the graphical debugger
The predicates guitracer/0 and noguitracer/0 switch between traditional text-based
and window-based debugging. The tracer is activated using the trace/0, spy/1 or menu
items from PceEmacs or the Prolog Navigator.

• The Prolog Navigator
Shows the file structure and structure inside the file. It allows for loading files, editing, setting
spy-points, etc.

8On Windows this is realised by swipl-win.exe, on Unix through the GNU readline library, which is included automati-
cally when found by configure.

SWI-Prolog 6.0 Reference Manual

Built-in predicates 4
4.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a mode indicator
There is no complete agreement on mode indicators in the Prolog community. We use the following
definitions:1

+ Argument must be fully instantiated to a term that satisfies the required
argument type. Think of the argument as input.

- Argument must be unbound. Think of the argument as output.
? Argument must be bound to a partial term of the indicated type.

Note that a variable is a partial term for any type. Think of
the argument as either input or output or both input and out-
put. E.g. In stream property(S, reposition(Bool)), the
reposition part of the term is input and the uninstantiated Bool is
output.

: Argument is a meta-argument. Implies +. See section 5 for more infor-
mation on module-handing.

@ Argument is not further instantiated. Typically used for type-tests.
! Argument contains a mutable structure that may be modified using

setarg/3 or nb setarg/3.

Referring to a predicate in running text is done using a predicate indicator. The canonical and
most generic form of a predicate indicator is a term 〈module〉:〈name〉/〈arity〉. If the module is irrele-
vant (built-in predicate) or can be inferred from the context it is often omitted. Compliant to the ISO
standard draft on DCG (see section 4.11), SWI-Prolog also allows for [〈module〉]:〈name〉//〈arity〉 to
refer to a grammar rule. For all non-negative arity, 〈name〉//〈arity〉 is the same as 〈name〉/¡arity+2¿,
regardless on whether or not the referenced predicate is defined or can be used as a grammar rule. The
//-notation can be used in all places that traditionally allow for a predicate indicator, e.g., the module
declaration, spy/1, and dynamic/1.

4.2 Character representation

In traditional (Edinburgh-) Prolog, characters are represented using character-codes. Character codes
are integer indices into a specific character set. Traditionally the character set was 7-bits US-ASCII.

1These definitions are taken from PlDoc. The current manual has only one mode declaration per predicate and therefore
predicates with mode (+,-) and (-,+) are described as (?,?). The @-mode is often replaced by +.

SWI-Prolog 6.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 77

8-bit character sets have been allowed for a long time, providing support for national character sets,
of which iso-latin-1 (ISO 8859-1) is applicable to many western languages.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (see open/4). These types are:

• code
A character-code is an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text-file is in general not the same as reading a byte.

• char
Alternatively, characters may be represented as one-character-atoms. This is a natural repre-
sentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

• byte
Bytes are used for accessing binary-streams.

In SWI-Prolog, character-codes are always the Unicode equivalent of the encoding. I.e., if
get code/1 reads from a stream encoded as KOI8-R (used for the Cyrillic alphabet), it re-
turns the corresponding Unicode code-points. Similar, assembling or deassembling atoms using
atom codes/2 interprets the codes as Unicode points. See section 2.18.1 for details.

To ease the pain of the two character representations (code and char), SWI-Prolog’s built-in predi-
cates dealing with character-data work as flexible as possible: they accept data in any of these formats
as long as the interpretation is unambiguous. In addition, for output arguments that are instantiated,
the character is extracted before unification. This implies that the following two calls are identical,
both testing whether the next input characters is an a.

peek_code(Stream, a).
peek_code(Stream, 97).

The two character representations are handled by a large number of built-in predicates,
all of which are ISO-compatible. For converting between code and character there is
char code/2. For breaking atoms and numbers into characters are are atom chars/2,
atom codes/2, number codes/2 and number chars/2. For character I/O on streams
there is get char/[1,2], get code/[1,2], get byte/[1,2], peek char/[1,2],
peek code/[1,2], peek byte/[1,2], put code/[1,2], put char/[1,2] and
put byte/[1,2]. The Prolog flag double quotes controls how text between double-quotes is
interpreted.

4.3 Loading Prolog source files

This section deals with loading Prolog source-files. A Prolog source file is a plain text file containing
a Prolog program or part thereof. Prolog source files come in three flavours:

SWI-Prolog 6.0 Reference Manual

78 CHAPTER 4. BUILT-IN PREDICATES

A traditional Prolog source file contains Prolog clauses and directives, but no module-declaration.
They are normally loaded using consult/1 or ensure loaded/1. Currently, a non-
module file can only be loaded into a single module.2

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module and only the public predicates are made available to the context load-
ing the module. Module files are normally loaded using use module/[1,2]. See chapter 5
for details.

An include Prolog source file is loaded using the include/1 directive and normally contains only
directives.

Prolog source-files are located using absolute file name/3 with the following options:

locate_prolog_file(Spec, Path) :-
absolute_file_name(Spec,

[file_type(prolog),
access(read)

],
Path).

The file type(prolog) option is used to determine the extension of the file using
prolog file type/2. The default extension is .pl. Spec allows for the path-alias
construct defined by absolute file name/3. The most commonly used path-alias is
library(LibraryFile). The example below loads the library file ordsets.pl (containing predi-
cates for manipulating ordered sets).

:- use_module(library(ordsets)).

SWI-Prolog recognises grammar rules (DCG) as defined in [Clocksin & Melish, 1987]. The
user may define additional compilation of the source file by defining the dynamic predicates
term expansion/2 and goal expansion/2. Transformations by term expansion/2
overrule the systems grammar rule transformations. It is not allowed to use assert/1, retract/1
or any other database predicate in term expansion/2 other than for local computational pur-
poses.3 Code that needs to create additional clauses must use compile aux clauses/1. See
library(apply macros) for an example.

A directive is an instruction to the compiler. Directives are used to set (predicate) properties (see
section 4.13), set flags (see set prolog fag/2) and load files (this section). Directives are terms
of the form :- 〈term〉.. Here are some examples:

:- use_module(library(lists)).
:- dynamic

store/2. % Name, Value

2This limitation may be lifted in the future. Existing limitations in SWI-Prolog’s source-code administration make this
non-trivial.

3It does work for normal loading, but not for qcompile/1.

SWI-Prolog 6.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 79

Predicate if must be module import
consult/1 true false all
ensure loaded/1 not loaded false all
use module/1 not loaded true all
use module/2 not loaded true specified
reexport/1 not loaded true all
reexport/2 not loaded true specified

Table 4.1: Properties of the file-loading predicates. The import column specifies what is imported if
the loaded file is a module file.

The directive initialization/1 can be used to run arbitrary Prolog goals. The specified goal is
started after loading the file in which it appears has completed.

SWI-Prolog compiles code as it is read from the file and directives are executed as goals. This
implies that directives may call any predicate that has been defined before the point where the directive
appears. It also accepts ?- 〈term〉. as a synonym.

SWI-Prolog does not have a separate reconsult/1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

Advanced topics are handled in subsequent sections: mutual dependend files (section 4.3.2),
multi-threaded loading (section 4.3.2) and reloading running code (section 4.3.2).

The core of the family of loading predicates is load files/2. The predicates consult/1,
ensure loaded/1, use module/1, use module/2 and reexport/1 pass the file argument
directly to load files/2 and pass additional options as expressed in the table 4.1:

load files(:Files, +Options)
The predicate load files/2 is the parent of all the other loading predicates except for
include/1. It currently supports a subset of the options of Quintus load files/2.
Files is either a single source-file, or a list of source-files. The specification for a source-file
is handed to absolute file name/2. See this predicate for the supported expansions.
Options is a list of options using the format

OptionName(OptionValue)

The following options are currently supported:

autoload(Bool)
If true (default false), indicate this load is a demand load. This implies that, de-
pending on the setting of the Prolog flag verbose autoload the load-action is
printed at level informational or silent. See also print message/2 and
current prolog flag/2.

derived from(File)
Indicate that the loaded file is derived from File. Used by make/0 to time-check and
load the original file rather than the derived file.

encoding(Encoding)
Specify the way characters are encoded in the file. Default is taken from the Prolog flag
encoding. See section 2.18.1 for details.

SWI-Prolog 6.0 Reference Manual

80 CHAPTER 4. BUILT-IN PREDICATES

expand(Bool)
If true, run the filenames through expand file name/2 and load the returned files.
Default is false, except for consult/1 which is intended for interactive use. Flexible
location of files is defined by file search path/2.

format(+Format)
Used to specify the file format if data is loaded from a stream using the stream(Stream)
option. Default is source, loading Prolog source text. If qlf, load QLF data (see
qcompile/1).

if(Condition)
Load the file only if the specified condition is satisfied. The value true loads the file
unconditionally, changed loads the file if it was not loaded before, or has been modified
since it was loaded the last time, not loaded loads the file if it was not loaded before.

imports(Import)
Specify what to import from the loaded module. The default for use module/1 is all.
Import is passed from the second argument of use module/2. Traditionally it is a list
of predicate indicators to import. As part of the SWI-Prolog/YAP integration, we also
support Pred as Name to import a predicate under another name. Finally, Import can be a
term except(Exceptions), where Exceptions is a list of predicate indicators that specify
predicates that are not imported or Pred as Name terms to denote renamed predicates.
See also reexport/2 and use module/2.4

If Import equals all, all operators are imported as well. Otherwise, operators are not
imported. Operators can be imported selectively by adding terms op(Pri,Assoc,Name) to
the Imports list. If such a term is encountered, all exported operators that unify with this
term are imported. Typically, this construct will be used with all arguments unbound to
import all operators or with only Name bound to import a particular operator.

modified(TimeStamp)
Claim that the source was load modified at TimeStamp without checking the source. This
option is intended to be used together with the stream(Input) option, for example after
extracting the time from an HTTP server or database.

must be module(Bool)
If true, raise an error if the file is not a module file. Used by use module/[1,2].

qcompile(Atom)
How to deal with quick-load-file compilation by qcompile/1. Values are

never
Default. Do not use qcompile, unless called explicitely

auto
Use qcompile for all writeable files. See comment below.

large
Use qcompile if the file is ‘large’. Currently, files larger than 100 Kbytes are consid-
ered large.

part
If this load file/2 appears in a directive of a file that is compiled into Quick

4BUG: Name/Arity as NewName is currently implemented using a link clause. This harms efficiency and does not allow
for querying the relation through predicate property/2.

SWI-Prolog 6.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 81

Load Format using qcompile/1, the contents of the argument files are included in
the .qlf file instead of the loading directive.

If this option is not present, it used the value of the prolog flag qcompile as default.

redefine module(+Action)
Defines what to do if a file is loaded that provides a module that is already loaded from
another file. Action is one of false (default), which prints an error and refuses to
load the file, or true, which uses unload file/1 on the old file and then proceeds
loading the new file. Finally, there is ask that starts interaction with the user. Ask is only
provided if user input is associated with a terminal.

reexport(Bool)
If true re-export the imported predicate. Used by reexport/1 and reexport/2.

silent(Bool)
If true, load the file without printing a message. The specified value is the default for
all files loaded as a result of loading the specified files. This option writes the Prolog flag
verbose load with the negation of Bool.

stream(Input)
This SWI-Prolog extension compiles the data from the stream Input. If this option is
used, Files must be a single atom which is used to identify the source-location of the
loaded clauses as well as remove all clauses if the data is re-consulted.
This option is added to allow compiling from non-file locations such as databases, the
web, the user (see consult/1) or other servers. It can be combined with format(qlf)
to load QLF data from a stream.

The load files/2 predicate can be hooked to load other data or data from other objects than
files. See prolog load file/2 for a description and http load for an example.

consult(:Files)
Read File as a Prolog source file. Calls to consult/1 may be abbreviated by just typing a
number of file names in a list. Examples:

?- consult(load). % consult load or load.pl
?- [library(lists)]. % load library lists
?- [user]. % Type program on the terminal

The predicate consult/1 is equivalent to load files(Files, []), except for handling the spe-
cial file user, which reads clauses from the terminal. See also the stream(Input) option of
load files/2.

ensure loaded(:File)
If the file is not already loaded, this is equivalent to consult/1. Otherwise, if the file defines
a module, import all public predicates. Finally, if the file is already loaded, is not a module
file and the context module is not the global user module, ensure loaded/1 will call
consult/1.

With the semantics, we hope to get as close as possible to the clear semantics with-
out the presence of a module system. Applications using modules should consider using
use module/[1,2].

SWI-Prolog 6.0 Reference Manual

82 CHAPTER 4. BUILT-IN PREDICATES

Equivalent to load files(Files, [if(not loaded)]).5

include(+File)
Pretend the terms in File are in the source-file in which :- include(File) appears. The
include construct is only honoured if it appears as a directive in a source-file. Normally File
contains a sequence of directives.

require(+ListOfNameAndArity)
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. This predicate originates from the Prolog portability layer for
XPCE. It is intended to provide a portable mechanism for specifying that this module requires
the specified predicates.

The implementation normally first verifies whether the predicate is already defined. If not, it
will search the libraries and load the required library.

SWI-Prolog, having autoloading, does not load the library. Instead it creates a procedure header
for the predicate if it does not exist. This will flag the predicate as ‘undefined’. See also
check/0 and autoload/0.

encoding(+Encoding)
This directive can appear anywhere in a source file to define how characters are encoded in the
remainder of the file. It can be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section 2.18.1.

make
Consult all source files that have been changed since they were consulted. It checks all loaded
source files: files loaded into a compiled state using pl -c ... and files loaded using
consult or one of its derivatives. The predicate make/0 is called after edit/1, automatically
reloading all modified files. If the user uses an external editor (in a separate window), make/0
is normally used to update the program after editing. In addition, make/0 updates the autoload
indices (see section 2.13) and runs list undefined/0 from the check library to report
on undefined predicates.

library directory(?Atom)
Dynamic predicate used to specify library directories. Default ./lib, ˜/lib/prolog and
the system’s library (in this order) are defined. The user may add library directories using
assertz/1, asserta/1 or remove system defaults using retract/1. Deprecated. New
code should use file search path/2.

file search path(+Alias, ?Path)
Dynamic predicate used to specify ‘path-aliases’. This feature is best described using an exam-
ple. Given the definition

file_search_path(demo, ’/usr/lib/prolog/demo’).

the file specification demo(myfile) will be expanded to /usr/lib/prolog/demo/
myfile. The second argument of file search path/2 may be another alias.

5On older versions the condition used to be if(changed). Poor time management on some machines or due to copying
often caused problems. The make/0 predicate deals with updating the running system after changing the source code.

SWI-Prolog 6.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 83

Below is the initial definition of the file search path. This path implies swi(〈Path〉) refers to
a file in the SWI-Prolog home directory. The alias foreign(〈Path〉) is intended for storing
shared libraries (.so or .DLL files). See also load foreign library/[1,2].

user:file_search_path(library, X) :-
library_directory(X).

user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).

user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat(’lib/’, Arch, ArchLib).

user:file_search_path(foreign, swi(lib)).
user:file_search_path(path, Dir) :-

getenv(’PATH’, Path),
(current_prolog_flag(windows, true)
-> atomic_list_concat(Dirs, (;), Path)
; atomic_list_concat(Dirs, :, Path)
),
member(Dir, Dirs).

The file search path/2 expansion is used by all loading predicates as well as by
absolute file name/[2,3].

The Prolog flag verbose file search can be set to true to help debugging Prolog’s
search for files.

expand file search path(+Spec, -Path)
Unifies Path with all possible expansions of the file name specification Spec. See also
absolute file name/3.

prolog file type(?Extension, ?Type)
This dynamic multifile predicate defined in module user determines the extensions considered
by file search path/2. Extension is the filename extension without the leading dot, Type
denotes the type as used by the file type(Type) option of file search path/2. Here
is the initial definition of prolog file type/2:

user:prolog_file_type(pl, prolog).
user:prolog_file_type(Ext, prolog) :-

current_prolog_flag(associate, Ext),
Ext \== pl.

user:prolog_file_type(qlf, qlf).
user:prolog_file_type(Ext, executable) :-

current_prolog_flag(shared_object_extension, Ext).

Users can add extensions used for Prolog source files to avoid conflicts (for example with perl)
as well as to be compatible with another Prolog implementation. We suggest using .pro for
avoiding conflicts with perl. Overriding the system definitions can stop the system from
finding libraries.

SWI-Prolog 6.0 Reference Manual

84 CHAPTER 4. BUILT-IN PREDICATES

source file(?File)
True if File is a loaded Prolog source file. File is the absolute and canonical path to the source-
file.

source file(?Pred, ?File)
Is true if the predicate specified by Pred was loaded from file File, where File is an absolute path
name (see absolute file name/2). Can be used with any instantiation pattern, but the
database only maintains the source file for each predicate. See also clause property/2.

source file property(?File, ?Property)
Is true when Property is a property of the loaded file File. If File is non-var, it can be a file-
specification that is valid for load files/2. Defined properties are:

derived from(Original, OriginalModified)
File was generated from the file Original, which was last-modified at OriginalModified
at the time it was loaded. This property is available if File was loaded using the
derived from(Original) option to load files/2.

includes(IncludedFile, IncludedFileModified)
File used include/1 to include IncludedFile. The last-modified time of IncludedFile
was IncludedFileModified at the time it was included.

load context(Module, Location)
Module is the module into which the file was loaded. If File is a module, this is the
module into which the exports are imported. Otherwise it is the module into which the
clauses of the non-module file are loaded. Location describes the file-location from which
the file was loaded. It is either a term 〈file〉:〈line〉 or the atom user if the file was loaded
from the terminal or another unknown source.

modified(Stamp)
File-modification time when File was loaded. This is used by make/0 to find files whose
modification time is different from when it was loaded.

module(Module)
File is a module-file that declares the modules Module.

unload file(+File)
Remove all clauses loaded from File. If File loaded a module, clear the module’s export-list
and disassociates it from the file. File is a canonical file-name or a file-indicator that is valid
for load files/2.

This predicare shall be used with care. The multi-threaded nature of SWI-Prolog makes re-
moving static code unsafe. Attempts to do this should be reserved to development or situations
where the application can guarantee that none of the clauses associated to File are active.

prolog load context(?Key, ?Value)
Obtain context information during compilation. This predicate can be used from direc-
tives appearing in a source file to get information about the file being loaded. See also
source location/2 and if/1. The following keys are defined:

SWI-Prolog 6.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 85

Key Description
module Module into which file is loaded
source File loaded. Returns the original Prolog file when loading a .qlf

file. Compatible with SICStus Prolog.
file Currently equivalent to source. In future versions it may report

a different values for files being loaded using include/1.
stream Stream identifier (see current input/1)
directory Directory in which source lives.
dialect Compatibility mode. See expects dialect/1.
term position Position of last term read. Term of the form

’$stream position’(0,〈Line〉,0,0,0). See also
stream position data/3.

script Boolean that indicates whether the file is loaded as a script file (see
-s).

The directory is commonly used add rules to file search path/2, setting up a search-
path for finding files with absolute file name/3. E.g.,

:- dynamic user:file_search_path/2.
:- multifile user:file_search_path/2.

:- prolog_load_context(directory, Dir),
asserta(user:file_search_path(my_program_home, Dir)).

...
absolute_file_name(my_program_home(’README.TXT’), ReadMe,

[access(read)]),
...

source location(-File, -Line)
If the last term has been read from a physical file (i.e., not from the file user or a string),
unify File with an absolute path to the file and Line with the line-number in the file. New code
should use prolog load context/2.

at halt(:Goal)
Register Goal to be run from PL cleanup(), which is called when the system halts. The
hooks are run in the reverse order they were registered (FIFO). Success or failure executing a
hook is ignored. If the hook raises an exception this is printed using print message/2. An
attempt to call halt/[0,1] from a hook is ignored.

:- initialization(:Goal) [ISO]

Call Goal after loading the source-file in which this directive appears has been completed. In
addition, Goal is executed if a saved-state created using qsave program/1 is restored.

The ISO standard only allows for using :- Term if Term is a directive. This means that
arbitrary goals can only be called from a directive by means of the initialization/1
directive. SWI-Prolog does not enforce this rule.

SWI-Prolog 6.0 Reference Manual

86 CHAPTER 4. BUILT-IN PREDICATES

The initialization/1 directive must be used to do program initialization in saved-states
(see qsave program/1). A saved state contains the predicates, Prolog flags and operators
present at the moment the state was created. Other resources (records, foreign resources, etc.)
must be recreated using initialization/1 directives or from the entry-goal of the saved-
state.

Upto SWI-Prolog 5.7.11, Goal was executed immediately rather than after load-
ing the program-text in which the directive appears as dictated by the ISO stan-
dard. In many cases the exact moment of execution is irrelevant, but there are
exceptions. For example, load foreign library/1 must be executed immedi-
ately to make the loaded foreign predicates available for exporting. SWI-Prolog
now provides the directive use foreign library/1 to ensure immediate loading as
well as loading after restoring a saved state. If the system encounters a directive
:- initialization(load foreign library(...)), it will load the foreign li-
brary immediately and issue a warning to update your code. This behaviour can be extended
by providing clauses for the multifile hook predicate prolog:initialize now(Term, Ad-
vice), where Advice is an atom that gives advice how to resolve the compatibility issue.

initialization(:Goal, +When)
Similar to initialization/1, but allows for specifying when Goal is executed while
loading the program-text:

now
Execute Goal immediately.

after load
Execute Goal after loading program-text. This is the same as initialization/1.

restore
Do not execute Goal while loading the program, but only when restoring a state.

compiling
True if the system is compiling source files with the -c option or qcompile/1 into
an intermediate code file. Can be used to perform conditional code optimisations in
term expansion/2 (see also the -O option) or to omit execution of directives during
compilation.

4.3.1 Conditional compilation and program transformation

ISO Prolog defines no way for program transformations such as macro expansion or conditional com-
pilation. Expansion through term expansion/2 and expand term/2 can be seen as part of the
de-facto standard. This mechanism can do arbitrary translation between valid Prolog terms read from
the source file to Prolog terms handed to the compiler. As term expansion/2 can return a list,
the transformation does not need to be term-to-term.

Various Prolog dialects provide the analogous goal expansion/2 and expand goal/2,
that allow for translation of individual body terms, freeing the user of the task to disassemble each
clause.

term expansion(+Term1, -Term2)
Dynamic and multifile predicate, normally not defined. When defined by the user all terms

SWI-Prolog 6.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 87

read during consulting are given to this predicate. If the predicate succeeds Prolog will assert
Term2 in the database rather then the read term (Term1). Term2 may be a term of the form ‘?-
Goal’ or ‘:- Goal’. Goal is then treated as a directive. If Term2 is a list all terms of the list are
stored in the database or called (for directives). If Term2 is of the form below, the system will
assert Clause and record the indicated source-location with it.

’$source location’(〈File〉, 〈Line〉):〈Clause〉

When compiling a module (see chapter 5 and the directive module/2), expand term/2
will first try term expansion/2 in the module being compiled to allow for term-expansion
rules that are local to a module. If there is no local definition, or the local definition fails to
translate the term, expand term/2 will try term expansion/2 in module user. For
compatibility with SICStus and Quintus Prolog, this feature should not be used. See also
expand term/2, goal expansion/2 and expand goal/2.

expand term(+Term1, -Term2)
This predicate is normally called by the compiler on terms read from the input to perform
preprocessing. It consists of three steps, where each step processes the output of the previous
step.

1. Test conditional compilation directives and translate all input to [] if we are in a ‘false-
branch’ of the conditional compilation. See section 4.3.1.

2. Call term expansion/2. This predicate is first tried in the module that is being com-
piled and then in the module user.

3. Call DGC expansion (dcg translate rule/2)

4. Call expand goal/2 on each body-term that appears in the output of the previous steps.

goal expansion(+Goal1, -Goal2)
Like term expansion/2, goal expansion/2 provides for macro-expansion of Prolog
source-code. Between expand term/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handed to expand goal/2, which uses the goal expansion/2
hook to do user-defined expansion.

The predicate goal expansion/2 is first called in the module that is being compiled, and
then on the user module. If Goal is of the form Module:Goal where Module is instantiated,
goal expansion/2 is called on Goal using rules from module Module followed by user.

Only goals appearing in the body of clauses when reading a source-file are expanded using
this mechanism, and only if they appear literally in the clause, or as an argument to a defined
meta-predicate that is annotated using ‘0’ (see meta predicate/1). Other cases need a real
predicate definition.

expand goal(+Goal1, -Goal2)
This predicate is normally called by the compiler to perform preprocessing using
goal expansion/2. The predicate computes a fixed-point by applying transforma-
tions until there are no more changes. If optimisation is enabled (see -O and optimise),
expand goal/2 simplifies the result by removing unneeded calls to true/0 and fail/0
as well as unreachable branches.

SWI-Prolog 6.0 Reference Manual

88 CHAPTER 4. BUILT-IN PREDICATES

compile aux clauses(+Clauses)
Compile clauses on behalf of goal expansion/2. This predicate compiled the argument
clauses into static predicates, associating the predicates with the current file but avoid changing
the notion of current predicate and therefore discontiguous warnings.

dcg translate rule(+In, -Out)
This predicate performs the translation of a term Head-->Body into a normal Prolog clause.
Normally this functionality should be accessed using expand term/2.

preprocessor(-Old, +New)
Read the input file via an external process that acts as preprocessor. A preprocessor is specified
as an atom. The first occurrence of the string ‘%f’ is replaced by the name of the file to be
loaded. The standard output of resulting command is loaded. To use the Unix C preprocessor
one should define:

?- preprocessor(Old, ’/lib/cpp -C -P %f’), consult(...).

Old = none

Using cpp for Prolog preprocessing is not ideal as the tokenization rules for comment and
quoted strings differ between C and Prolog. Another problem is availability and compatibility
with regard to option processing of cpp.

Conditional compilation

Conditional compilation builds on the same principle as term expansion/2,
goal expansion/2 and the expansion of grammar rules to compile sections of the source-
code conditionally. One of the reasons for introducing conditional compilation is to simplify writing
portable code. See section C for more information. Here is a simple example:

:- if(\+source_exports(library(lists), suffix/2)).

suffix(Suffix, List) :-
append(_, Suffix, List).

:- endif.

Note that these directives can only appear as separate terms in the input. Typical usage scenarios
include:

• Load different libraries on different dialects
• Define a predicate if it is missing as a system predicate
• Realise totally different implementations for a particular part of the code due to different capa-

bilities.
• Realise different configuration options for your software.

SWI-Prolog 6.0 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 89

:- if(:Goal)
Compile subsequent code only if Goal succeeds. For enhanced portability, Goal is processed
by expand goal/2 before execution. If an error occurs, the error is printed and processing
proceeds as if Goal has failed.

:- elif(:Goal)
Equivalent to :- else. :-if(Goal) ... :- endif. In a sequence as below, the section below the first
matching elif is processed, If no test succeeds the else branch is processed.

:- if(test1).
section_1.
:- elif(test2).
section_2.
:- elif(test3).
section_3.
:- else.
section_else.
:- endif.

:- else
Start ‘else’ branch.

:- endif
End of conditional compilation.

4.3.2 Loading files, active code and threads

Traditionally, Prolog environments allow for reloading files holding currently active code. In particu-
lar, the following sequence is valid use of the development environment:

• Trace a goal
• Find unexpected behaviour of a predicate
• Enter a break using the b command
• Fix the sources and reload them using make/0
• Exit the break, retry using the r command

Goals running during the reload keep running on the old definition, while new goals use the
reloaded definition, which is why the retry must be used after the reload. This implies that clauses
of predicates that are active during the reload cannot be reclaimed. Normally a small amount of
dead clauses should not be an issue during development. Such clauses can be reclaimed with
garbage collect clauses/0.

garbage collect clauses
Cleanup all dirty predicates, where dirty predicates are defined to be predicates that have both
old and new definitions due to reloading a source file while the predicate was active. Of course,
predicates that are active using garbage collect clauses/0 cannot be reclaimed
and remain dirty. Predicate are -like atoms- shared resources and therefore all threads are
suspended during the execution of this predicate.

SWI-Prolog 6.0 Reference Manual

90 CHAPTER 4. BUILT-IN PREDICATES

Compilation of mutual dependent code

Large programs are generally split into multiple files. If file A accesses predicates from file B which
accesses predicates from file A, we consider this a mutual or circular dependency. If traditional
load predicates (e.g., consult/1) are used to include file B from A and A from B, loading ei-
ther file results in a loop. This is because consult/1 is mapped to load files/2 using the
option if(true)(.) Such programs are typically loaded using a load-file that consults all required
(non-module) files. If modules are used, the dependencies are made explicit using use module/1
statements. The use module/1 predicate however maps to load files/2 with the option
if(not loaded)(.) A use module/1 on an already loaded file merely makes the public predi-
cates of the used module available.

Summarizing, mutual dependency of source-files is fully supported with no precautions when
using modules. Modules can use each other in an arbitrary dependency graph. When using
consult/1, predicate dependencies between loaded files can still be arbitrary, but the consult rela-
tions between files must be a proper tree.

Compilation with multiple threads

This section discusses compiling files for the first time. For re-loading see section 4.3.2.
In older versions, compilation was thread-safe due to a global lock in load files/2 and the

code dealing with autoloading (see section 2.13). Besides unnecessary stalling when multiple threads
trap unrelated undefined predicates, this easily leads to deadlocks, notably if threads are started from
an initialization/1 directive.6

Starting with version 5.11.27, the autoloader is no longer locked and multiple threads can compile
files concurrently. This requires special precautions only if multiple threads wish to load the same
file at the same time. Therefore, load files/2 checks atomically whether some other thread is
already loading the file. If not, it starts loading the file. If another thread is already loading the file, the
thread blocks until the other thread finishes loading the file. After waiting, and if the file is a module
file, it will make the public predicates available.

Note that this schema does not prevent deadlocks under all situations. Consider two mutually
dependent (see section 4.3.2) module files A and B, where thread 1 starts loading A and thread 2
starts loading B at the same time. Both threads will deadlock when trying to load the used module.

The current implementation does not detect such cases and the involved threads will freeze. This
problem can be avoided if a mutually dependend collection of files is always loaded from the same
start-file.

Reloading running code

This section discusses not re-loading of code. Initial loading of code is discussed in section 4.3.2.
As of version 5.5.30, there is basic thread-safety for reloading source files while other threads

are executing code defined in these source files. Reloading a file freezes all threads after mark-
ing the active predicates originating from the file being reloaded. The threads are resumed after
the file has been loaded. In addition, after completing loading the outermost file, the system runs
garbage collect clauses/0.

6Although such goals are started after loading the file in which they appear, the calling thread is still likely to hold the
‘load’ lock because it is compiling the file from which the file holding the directive is loaded.

SWI-Prolog 6.0 Reference Manual

4.4. LISTING AND EDITOR INTERFACE 91

What does that mean? Unfortunately it does not mean we can ‘hot-swap’ modules. Consider the
case where thread A is executing the recursive predicate P . We ‘fix’ P and reload. The already run-
ning goals for P continue to run the old definition, but new recursive calls will use the new definition!
Many similar cases can be constructed with dependent predicates.

It provides some basic security for reloading files in multi-threaded applications during develop-
ment. In the above scenarios the system does not crash uncontrolled, but behaves like any broken
program: it may return the wrong bindings, wrong truth value or raise an exception.

Future versions may have an ‘update now’ facility. Such a facility can be implemented on top
of the logical update view. It would allow threads to do a controlled update between processing
independent jobs.

4.3.3 Quick load files

SWI-Prolog supports compilation of individual or multiple Prolog source files into ‘Quick Load Files’.
A ‘Quick Load Files’ (.qlf file) stores the contents of the file in a precompiled format.

These files load considerably faster than source files and are normally more compact. They are
machine independent and may thus be loaded on any implementation of SWI-Prolog. Note however
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created using qcompile/1. They are loaded using consult/1 or one
of the other file-loading predicates described in section 4.3. If consult is given the explicit .pl file,
it will load the Prolog source. When given the .qlf file, it will load the file. When no extension is
specified, it will load the .qlf file when present and the .pl file otherwise.

qcompile(:File)
Takes a file specification as consult/1, etc. and, in addition to the normal compilation,
creates a Quick Load File from File. The file-extension of this file is .qlf. The base name of
the Quick Load File is the same as the input file.

If the file contains ‘:- consult(+File)’, ‘:- [+File]’ or
:- load files(+File, [qcompile(part), ...]) statements, the referred files are
compiled into the same .qlf file. Other directives will be stored in the .qlf file and executed
in the same fashion as when loading the .pl file.

For term expansion/2, the same rules as described in section 2.10 apply.

Conditional execution or optimisation may test the predicate compiling/0.

Source references (source file/2) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

qcompile(:File, +Options)
As qcompile/1, but processes additional options as defined by load files/2.7

4.4 Listing and Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implemented by edit/1 and consists of three parts:
locating, selecting and starting the editor.

7BUG: Option processing is currently incomplete.

SWI-Prolog 6.0 Reference Manual

92 CHAPTER 4. BUILT-IN PREDICATES

Any of these parts may be extended or redefined by adding clauses to various multi-file (see
multifile/1) predicates defined in the module prolog edit.

The built-in edit specifications for edit/1 (see prolog edit:locate/3) are described below.

Fully specified objects
〈Module〉:〈Name〉/〈Arity〉 Refers a predicate
module(〈Module〉) Refers to a module
file(〈Path〉) Refers to a file
source file(〈Path〉) Refers to a loaded source-file

Ambiguous specifications
〈Name〉/〈Arity〉 Refers this predicate in any module
〈Name〉 Refers to (1) named predicate in any module with any ar-

ity, (2) a (source) file or (3) a module.

edit(+Specification)
First exploits prolog edit:locate/3 to translate Specification into a list of Locations. If there
is more than one ‘hit’, the user is asked to select from the locations found. Finally, pro-
log edit:edit source/1 is used to invoke the user’s preferred editor. Typically, edit/1 can be
handed the name of a predicate, module, basename of a file, XPCE class, XPCE method, etc.

edit
Edit the ‘default’ file using edit/1. The default file is the file loaded with the command-line
option -s or, in windows, the file loaded by double-clicking from the Windows shell.

prolog edit:locate(+Spec, -FullSpec, -Location)
Where Spec is the specification provided through edit/1. This multifile predicate is used
to enumerate locations at with an object satisfying the given Spec can be found. FullSpec is
unified with the complete specification for the object. This distinction is used to allow for
ambiguous specifications. For example, if Spec is an atom, which appears as the base-name
of a loaded file and as the name of a predicate, FullSpec will be bound to file(Path) or
Name/Arity.

Location is a list of attributes of the location. Normally, this list will contain the term
file(File) and —if available— the term line(Line).

prolog edit:locate(+Spec, -Location)
Same as prolog edit:locate/3, but only deals with fully-specified objects.

prolog edit:edit source(+Location)
Start editor on Location. See prolog edit:locate/3 for the format of a location term. This
multi-file predicate is normally not defined. If it succeeds, edit/1 assumes the editor is
started.

If it fails, edit/1 uses its internal defaults, which are defined by the Prolog flag editor
and/or the environment variable EDITOR. The following rules apply. If the Prolog flag
editor is of the format $〈name〉, the editor is determined by the environment variable 〈name〉.
Else, if this flag is pce emacs or built in and XPCE is loaded or can be loaded, the built-in
Emacs clone is used. Else, if the environment EDITOR is set, this editor is used. Finally, vi is
used as default on Unix systems and notepad on Windows.

See the default user preferences file dotfiles/dotplrc for examples.

SWI-Prolog 6.0 Reference Manual

4.5. VERIFY TYPE OF A TERM 93

prolog edit:edit command(+Editor, -Command)
Determines how Editor is to be invoked using shell/1. Editor is the determined editor (see
edit source/1), without the full path specification, and without possible (exe) extension.
Command is an atom describing the command. The pattern %f is replaced by the full file-name
of the location, and %d by the line number. If the editor can deal with starting at a specified
line, two clauses should be provided, one holding only the %f pattern, and one holding both
patterns.

The default contains definitions for vi, emacs, emacsclient, vim and notepad (latter
without line-number version).

Please contribute your specifications to jan@swi.psy.uva.nl.

prolog edit:load
Normally not-defined multifile predicate. This predicate may be defined to provide loading
hooks for user-extensions to the edit module. For example, XPCE provides the code below to
load swi edit, containing definitions to locate classes and methods as well as to bind this
package to the PceEmacs built-in editor.

:- multifile prolog_edit:load/0.

prolog_edit:load :-
ensure_loaded(library(swi_edit)).

listing(+Pred)
List specified predicates (when an atom is given all predicates with this name will be listed).
The listing is produced on the basis of the internal representation, thus losing user’s layout and
variable name information. See also portray clause/1.

listing
List all predicates of the database using listing/1.

portray clause(+Clause)
Pretty print a clause. A clause should be specified as a term ‘〈Head〉 :- 〈Body〉’. Facts are
represented as ‘〈Head〉 :- true’ or simply 〈Head〉. Variables in the clause are written as A,
B, Singleton variables are written as _. See also portray clause/2.

portray clause(+Stream, +Clause)
Pretty print a clause to Stream. See portray clause/1 for details.

4.5 Verify Type of a Term

var(+Term) [ISO]

True if Term currently is a free variable.

nonvar(+Term) [ISO]

True if Term currently is not a free variable.

integer(+Term) [ISO]

True if Term is bound to an integer.

SWI-Prolog 6.0 Reference Manual

94 CHAPTER 4. BUILT-IN PREDICATES

float(+Term) [ISO]

True if Term is bound to a floating point number.

rational(+Term)
True if Term is bound to a rational number. Rational numbers include integers.

rational(+Term, -Numerator, -Denominator)
True if Term is a rational number with given Numerator and Denominator. The Numerator and
Denominator are in canonical form, which means Denominator is a positive integer and there
are no common divisors between Numerator and Denominator.

number(+Term) [ISO]

True if Term is bound to an integer or floating point number.8

atom(+Term) [ISO]

True if Term is bound to an atom.

blob(@Term, ?Type)
True if Term is a blob of type Type. See section 9.4.7.

string(+Term)
True if Term is bound to a string. Note that string here refers to the built-in atomic type string
as described in section 4.22, Text in double quotes such as "hello" creates a list of character
codes. We illustrate the issues in the example queries below.

?- write("hello").
[104, 101, 108, 108, 111]
?- string("hello").
No
?- is_list("hello").
Yes

atomic(+Term) [ISO]

True if Term is bound to an atom, string, integer or floating point number. Note that string
refers to the built-in type. See string/1. Strings in the classical Prolog sense are lists and
therefore compound.

compound(+Term) [ISO]

True if Term is bound to a compound term. See also functor/3 and =../2.

callable(+Term)
True if Term is bound to an atom or a compound term, so it can be handed without type-error
to call/1, functor/3 and =../2.

ground(+Term)
True if Term holds no free variables.

8As rational numbers are not atomic in the current implementation and we do not want to break the rule that number/1
implies atomic/1, number/1 fails on rational numbers. This will change if rational numbers become atomic.

SWI-Prolog 6.0 Reference Manual

4.6. COMPARISON AND UNIFICATION OF TERMS 95

cyclic term(+Term)
True if Term contains cycles, i.e. is an infinite term. See also acyclic term/1 and sec-
tion 2.16.9

acyclic term(+Term)
True if Term does not contain cycles, i.e. can be processed recursively in finite time. See also
cyclic term/1 and section 2.16.

4.6 Comparison and Unification of Terms

Although unification is mostly done implicitly while matching the head of a predicate, it is also pro-
vided by the predicate =/2.

+Term1 = +Term2 [ISO]

Unify Term1 with Term2. True if the unification succeeds. For behaviour on cyclic terms see
the Prolog flag occurs check. It acts as if defined by the following fact.

=(Term, Term).

+Term1 \= +Term2 [ISO]

Equivalent to \+Term1 = Term2. See also dif/2.

4.6.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so called “standard order”.
This order is defined as follows:

1. Variables < Numbers < Atoms < Strings < Compound Terms10

2. Variables are sorted by address. Attaching attributes (see section 6.1) does not affect the order-
ing.

3. Atoms are compared alphabetically.

4. Strings are compared alphabetically.

5. Numbers are compared by value. Mixed integer/float are compared as floats. If the comparison
is equal, the float is considered the smaller value. If the Prolog flag iso is defined, all floating
point numbers precede all integers.

6. Compound terms are first checked on their arity, then on their functor-name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

+Term1 == +Term2 [ISO]

True if Term1 is equivalent to Term2. A variable is only identical to a sharing variable.

9The predicates cyclic term/1 and acyclic term/1 are compatible with SICStus Prolog. Some Prolog systems
supporting cyclic terms use is cyclic/1.

10Strings might be considered atoms in future versions. See also section 4.22

SWI-Prolog 6.0 Reference Manual

96 CHAPTER 4. BUILT-IN PREDICATES

+Term1 \== +Term2 [ISO]

Equivalent to \+Term1 == Term2.

+Term1 @< +Term2 [ISO]

True if Term1 is before Term2 in the standard order of terms.

+Term1 @=< +Term2 [ISO]

True if both terms are equal (==/2) or Term1 is before Term2 in the standard order of terms.

+Term1 @> +Term2 [ISO]

True if Term1 is after Term2 in the standard order of terms.

+Term1 @>= +Term2 [ISO]

True if both terms are equal (==/2) or Term1 is after Term2 in the standard order of terms.

compare(?Order, +Term1, +Term2)
Determine or test the Order between two terms in the standard order of terms. Order is one of
<, > or =, with the obvious meaning.

4.6.2 Special unification and comparison predicates

This section describes special purpose variations on Prolog unification. The predicate
unify with occurs check/2 provides sound unification and is part of the ISO standard. The
predicate subsumes term/2 defines ‘one-sided-unification’ and is part of the ISO proposal estab-
lished in Edinburgh (2010). Finally, unifiable/3 is a ‘what-if’ version of unification that is often
used as a building block in constraint reasoners.

unify with occurs check(+Term1, +Term2) [ISO]

As =/2, but using sound-unification. That is, a variable only unifies to a term if this term does
not contain the variable itself. To illustrate this, consider the two queries below.

1 ?- A = f(A).
A = f(A).
2 ?- unify_with_occurs_check(A, f(A)).
false.

The first creates a cyclic-term, also called a rational tree. The second executes logically sound
unification and thus fails. Note that the behaviour of unification through =/2 as well as implicit
unification in the head can be changed using the Prolog flag occurs check.

The SWI-Prolog implementation of unify with occurs check/2 is cycle-safe and only
guards against creating cycles, not against cycles that may already be present in one of the
arguments. This is illustrated in the following two queries:

?- X = f(X), Y = X, unify_with_occurs_check(X, Y).
X = Y, Y = f(Y).
?- X = f(X), Y = f(Y), unify_with_occurs_check(X, Y).
X = Y, Y = f(Y).

SWI-Prolog 6.0 Reference Manual

4.6. COMPARISON AND UNIFICATION OF TERMS 97

Some other Prolog systems interpret unify with occurs check/2 as if defined by the
clause below, causing failure on the above two queries. Direct use of acyclic term/1 is
portable and more appropriate for such applications.

unify_with_occurs_check(X,X) :- acyclic_term(X).

+Term1 =@= +Term2
True if Term1 is a variant of (or structurally equivalent to) Term2. Testing for a variant is
weaker than equivalence (==/2), but stronger than unification (=/2). Two terms A and B are
variants iff there exists a renaming of the variables in A that makes A equivalent (==) to B and
visa-versa.11 Examples:

1 a =@= A false
2 A =@= B true
3 x(A,A) =@= x(B,C) false
4 x(A,A) =@= x(B,B) true
5 x(A,A) =@= x(A,B) false
6 x(A,B) =@= x(C,D) true
7 x(A,B) =@= x(B,A) true
8 x(A,B) =@= x(C,A) true

A term is always a variant of a copy of itself. Term copying takes place in e.g., copy term/2,
findall/3 or proving a clause added with asserta/1. In the pure Prolog world (i.e.,
without attributed variables), =@=/2 behaves as if defined below. With attributed variables,
variant of the attributes is tested rather than trying to satisfy the constraints.

A =@= B :-
copy_term(A, Ac),
copy_term(B, Bc),
numbervars(Ac, 0, N),
numbervars(Bc, 0, N),
Ac == Bc.

The SWI-Prolog implementation is cycle-safe and can deal with variables that are shared be-
tween the left and right argument. Its performance is comparable to ==/2, both on success and
(early) failure. 12

This predicate is known by the name variant/2 in some other Prolog systems. Be aware
of possible differences in semantics if the arguments contain attributed variables or share vari-
ables.13

11Row 7 and 8 of this table may come as a surprise, but row 8 is satisfied by (left-to-right) A → C, B → A and (right-
to-left) C → A, A → B. If the same variable appears in different locations in the left and right term, the variant-relation
can be broken by consistent binding of both terms. E.g., after binding the first argument in row 8 to a value both terms are
no longer variant.

12The current implementation is contributed by Kuniaki Mukai.
13In many systems variant is implemented using two calls to subsumes term/2.

SWI-Prolog 6.0 Reference Manual

98 CHAPTER 4. BUILT-IN PREDICATES

+Term1 \=@= +Term2
Equivalent to ‘\+Term1 =@= Term2’. See =@=/2 for details.

subsumes term(@Generic, @Specific) [ISO]

True if Generic can be made equivalent to Specific by only binding variables in Generic. The
current implementation performs the unification and ensures that the variable set of Specific is
not changed by the unification. On success, the bindings are undone.14

term subsumer(+Special1, +Special2, -General)
General is the most specific term that is a generalisation of Special1 and Special2. The imple-
mentation can handle cyclic terms.

unifiable(@X, @Y, -Unifier)
If X and Y can unify, unify Unifier with a list of Var = Value, representing the bindings required
to make X and Y equivalent.15 This predicate can handle cyclic terms. Attributed variables are
handles as normal variables. Associated hooks are not executed.

?=(@Term1, @Term2)
Succeeds, if the syntactic equality of Term1 and Term2 can be decided safely, i.e. if the result
of Term1 == Term2 will not change due to further instantiation of either term. It behaves
as if defined by ?=(X,Y) :- \+ unifiable(X,Y,[_|_]).

4.7 Control Predicates

The predicates of this section implement control structures. Normally the constructs in this section,
except for repeat/0, are translated by the compiler. Please note that complex goals passed as ar-
guments to meta-predicates such as findall/3 below cause the goal to be compiled to a temporary
location before execution. It is faster to define a sub-predicate (i.e. one character atom/1 in the
example below) and make a call to this simple predicate.

one_character_atoms(As) :-
findall(A, (current_atom(A), atom_length(A, 1)), As).

fail [ISO]

Always fail. The predicate fail/0 is translated into a single virtual machine instruction.

false
Same as fail, but the name has a more declarative connotation.

true [ISO]

Always succeed. The predicate true/0 is translated into a single virtual machine instruction.

repeat [ISO]

Always succeed, provide an infinite number of choice points.
14This predicate is often named subsumes chk/2 in older Prolog dialects. The current name was established in the ISO

WG17 meeting in Edinburgh (2010). The chk postfix was considered to refer to determinism as in e.g., memberchk/2.
15This predicate was introduced for the implementation of dif/2 and when/2 after discussion with Tom Schrijvers and

Bart Demoen. None of us is really happy with the name and therefore suggestions for a new name are welcome.

SWI-Prolog 6.0 Reference Manual

4.7. CONTROL PREDICATES 99

! [ISO]

Cut. Discard choice points of parent frame and frames created after the parent frame. As of
SWI-Prolog 3.3, the semantics of the cut are compliant with the ISO standard. This implies
that the cut is transparent to ;/2, ->/2 and *->/2. Cuts appearing in the condition part of
->/2 and *->/2 as well as in \+/1 are local to the condition.16

t1 :- (a, !, fail ; b). % cuts a/0 and t1/0
t2 :- (a -> b, ! ; c). % cuts b/0 and t2/0
t3 :- call((a, !, fail ; b)). % cuts a/0
t4 :- \+(a, !, fail ; b). % cuts a/0

:Goal1 , :Goal2 [ISO]

Conjunction. True if both ‘Goal1’ and ‘Goal2’ can be proved. It is defined as (this definition
does not lead to a loop as the second comma is handled by the compiler):

Goal1, Goal2 :- Goal1, Goal2.

:Goal1 ; :Goal2 [ISO]

The ‘or’ predicate is defined as:

Goal1 ; _Goal2 :- Goal1.
_Goal1 ; Goal2 :- Goal2.

:Goal1 | :Goal2
Equivalent to ;/2. Retained for compatibility only. New code should use ;/2.

:Condition -> :Action [ISO]

If-then and If-Then-Else. The ->/2 construct commits to the choices made at its left-hand
side, destroying choice-points created inside the clause (by ;/2), or by goals called by this
clause. Unlike !/0, the choice-point of the predicate as a whole (due to multiple clauses) is
not destroyed. The combination ;/2 and ->/2 acts as if defines by:

If -> Then; _Else :- If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.

Please note that (If -> Then) acts as (If -> Then ; fail), making the construct fail if the condition
fails. This unusual semantics is part of the ISO and all de-facto Prolog standards.

:Condition *-> :Action ; :Else
This construct implements the so-called ‘soft-cut’. The control is defined as follows: If Con-
dition succeeds at least once, the semantics is the same as (Condition, Action). If Condition
does not succeed, the semantics is that of (\+ Condition, Else). In other words, If Condition
succeeds at least once, simply behave as the conjunction of Condition and Action, otherwise
execute Else.

16Up to version 4.0.6, the sequence X=!, X acted as a true cut. This feature has been deleted for ISO compliance.

SWI-Prolog 6.0 Reference Manual

100 CHAPTER 4. BUILT-IN PREDICATES

The construct A *-> B, i.e. without an Else branch, is translated as the normal conjunction A,
B.17

\+ :Goal [ISO]

True if ‘Goal’ cannot be proven (mnemonic: + refers to provable and the backslash (\) is
normally used to indicate negation in Prolog).

4.8 Meta-Call Predicates

Meta-call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

call(:Goal) [ISO]

Invoke Goal as a goal. Note that clauses may have variables as subclauses, which is identical
to call/1.

call(:Goal, +ExtraArg1, . . .)
Append ExtraArg1, ExtraArg2, . . . to the argument list of Goal and call the result. For example,
call(plus(1), 2, X) will call plus(1, 2, X), binding X to 3.

The call/[2..] construct is handled by the compiler, which implies that redefinition as a predicate
has no effect. The predicates call/[2-6] are defined as real predicates, so they can be
handled by interpreted code.

apply(:Goal, +List)
Append the members of List to the arguments of Goal and call the resulting term. For example:
apply(plus(1), [2, X]) will call plus(1, 2, X). apply/2 is incorporated in
the virtual machine of SWI-Prolog. This implies that the overhead can be compared to the
overhead of call/1. New code should use call/[2..] if the length of List is fixed, which is
more widely supported and faster because there is no need to build and examine the argument
list.

not(:Goal)
True if Goal cannot be proven. Retained for compatibility only. New code should use \+/1.

once(:Goal) [ISO]

Defined as:

once(Goal) :-
Goal, !.

once/1 can in many cases be replaced with ->/2. The only difference is how the cut behaves
(see !/0). The following two clauses are identical:

1) a :- once((b, c)), d.
2) a :- b, c -> d.

17BUG: The decompiler implemented by clause/2 returns this construct as a normal conjunction too.

SWI-Prolog 6.0 Reference Manual

4.8. META-CALL PREDICATES 101

ignore(:Goal)
Calls Goal as once/1, but succeeds, regardless of whether Goal succeeded or not. Defined as:

ignore(Goal) :-
Goal, !.

ignore(_).

call with depth limit(:Goal, +Limit, -Result)
If Goal can be proven without recursion deeper than Limit levels,
call with depth limit/3 succeeds, binding Result to the deepest recursion level
used during the proof. Otherwise, Result is unified with depth limit exceeded if the
limit was exceeded during the proof, or the entire predicate fails if Goal fails without exceeding
Limit.

The depth-limit is guarded by the internal machinery. This may differ from the depth computed
based on a theoretical model. For example, true/0 is translated into an inlined virtual machine
instruction. Also, repeat/0 is not implemented as below, but as a non-deterministic foreign
predicate.

repeat.
repeat :-

repeat.

As a result, call with depth limit/3 may still loop infinitely on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem-provers to realise techniques like iterative deepening.
It was implemented after discussion with Steve Moyle smoyle@ermine.ox.ac.uk.

setup call cleanup(:Setup, :Goal, :Cleanup)
Calls (once(Setup), Goal). If Setup succeeds, Cleanup will be called exactly once after
Goal is finished: either on failure, deterministic success, commit, or an exception. The exe-
cution of Setup is protected from asynchronous interrupts like call with time limit/2
(package clib) or thread signal/2. In most uses, Setup will perform temporary
side-effects required by Goal that are finally undone by Cleanup.

Success or failure of Cleanup is ignored and choice-points it created are destroyed (as
once/1). If Cleanup throws an exception, this is executed as normal.18

Typically, this predicate is used to cleanup permanent data storage required to execute Goal,
close file-descriptors, etc. The example below provides a non-deterministic search for a term in
a file, closing the stream as needed.

term_in_file(Term, File) :-
setup_call_cleanup(open(File, read, In),

term_in_stream(Term, In),

18BUG: During the execution of Cleanup, garbage collection and stack-shifts are disabled.

SWI-Prolog 6.0 Reference Manual

102 CHAPTER 4. BUILT-IN PREDICATES

close(In)).

term_in_stream(Term, In) :-
repeat,
read(In, T),
(T == end_of_file
-> !, fail
; T = Term
).

Note that it is impossible to implement this predicate in Prolog. The closest approxima-
tion would be to read all terms into a list, close the file and call member/2. Without
setup call cleanup/3 there is no way to gain control if the choice-point left by repeat is
removed by a cut or an exception.

setup call cleanup/3 can also be used to test determinism of a goal, providing a portable
alternative to deterministic/1:

?- setup_call_cleanup(true,(X=1;X=2), Det=yes).

X = 1 ;

X = 2,
Det = yes ;

This predicate is under consideration for inclusion into the ISO standard. For compatibility with
other Prolog implementations see call cleanup/2.

setup call catcher cleanup(:Setup, :Goal, +Catcher, :Cleanup)
Similar to setup call cleanup(Setup, Goal, Cleanup) with additional information on the
reason of calling Cleanup. Prior to calling Cleanup, Catcher unifies with the termination code
(see below). If this unification fails, Cleanup is not called.

exit
Goal succeeded without leaving any choice-points.

fail
Goal failed.

!
Goal succeeded with choice-points and these are now discarded by the execution of a cut
(or other pruning of the search tree such as if-then-else).

exception(Exception)
Goal raised the given Exception.

external exception(Exception)
Goal succeeded with choice-points and these are now discarded due to an exception. For
example:

SWI-Prolog 6.0 Reference Manual

4.9. ISO COMPLIANT EXCEPTION HANDLING 103

?- setup_call_catcher_cleanup(true, (X=1;X=2),
Catcher, writeln(Catcher)),

throw(ball).
external_exception(ball)
ERROR: Unhandled exception: Unknown message: ball

call cleanup(:Goal, :Cleanup)
Same as setup call cleanup(true, Goal, Cleanup). This is provided for compatibility
with a number of other Prolog implementations only. Do not use call cleanup/2, if
you perform side-effects prior to calling, that will be undone by Cleanup. Instead, use
setup call cleanup/3 with an appropriate first argument to perform those side-effects.

call cleanup(:Goal, +Catcher, :Cleanup)
Same as setup call catcher cleanup(true, Goal, Catcher, Cleanup). The same warn-
ing as for call cleanup/2 applies.

4.9 ISO compliant Exception handling

SWI-Prolog defines the predicates catch/3 and throw/1 for ISO compliant raising and catching of
exceptions. In the current implementation (4.0.6), most of the built-in predicates generate exceptions,
but some obscure predicates merely print a message, start the debugger and fail, which was the normal
behaviour before the introduction of exceptions.

catch(:Goal, +Catcher, :Recover) [ISO]

Behaves as call/1 if no exception is raised when executing Goal. If an exception is raised
using throw/1 while Goal executes, and the Goal is the innermost goal for which Catcher
unifies with the argument of throw/1, all choice-points generated by Goal are cut, the system
backtracks to the start of catch/3 while preserving the thrown exception term and Recover
is called as in call/1.

The overhead of calling a goal through catch/3 is very comparable to call/1. Recovery
from an exception is much slower, especially if the exception-term is large due to the copying
thereof.

throw(+Exception) [ISO]

Raise an exception. The system looks for the innermost catch/3 ancestor for which Excep-
tion unifies with the Catcher argument of the catch/3 call. See catch/3 for details.

ISO demands throw/1 to make a copy of Exception, walk up the stack to a catch/3 call,
backtrack and try to unify the copy of Exception with Catcher. SWI-Prolog delays making a
copy of Exception and backtracking until it actually found a matching catch/3 goal. The
advantage is that we can start the debugger at the first possible location while preserving the
entire exception context if there is no matching catch/3 goal. This approach can lead to
different behaviour if Goal and Catcher of catch/3 call share variables. We assume this to
be highly unlikely and could not think of a scenario where this is useful.19

19I’d like to acknowledge Bart Demoen for his clarifications on these matters.

SWI-Prolog 6.0 Reference Manual

104 CHAPTER 4. BUILT-IN PREDICATES

If an exception is raised in a callback from C (see chapter 9) and not caught in the same
call-back, PL next solution() fails and the exception context can be retrieved using
PL exception().

4.9.1 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an error
message, after which the predicate failed. If the Prolog flag debug on errorwas in effect (default),
the tracer was switched on. The combination of the error message and trace information is generally
sufficient to locate the error.

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user-code, the interactive
top-level will trap it to prevent termination.

If we do not take special precautions, the context information associated with an unexpected
exception (i.e., a programming error) is lost. Therefore, if an exception is raised, which is not caught
using catch/3 and the top-level is running, the error will be printed, and the system will enter trace
mode.

If the system is in an non-interactive callback from foreign code and there is no catch/3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the Prolog flag debug on error:

• current prolog flag(debug on error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed using PL exception(). This is the default.

• current prolog flag(debug on error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analysing the context of the error.

While looking for the context in which an exception takes place, it is advised to switch on debug
mode using the predicate debug/0. The hook prolog exception hook/4 can be used to add
more debugging facilities to exceptions. An example is the library http/http error, generating
a full stack trace on errors in the HTTP server library.

4.9.2 The exception term

Built-in predicates generates exceptions using a term error(Formal, Context). The first argument
is the ‘formal’ description of the error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second part describes some additional
context to help the programmer while debugging. In its most generic form this is a term of the form
context(Name/Arity, Message), where Name/Arity describes the built-in predicate that raised the
error, and Message provides an additional description of the error. Any part of this structure may be a
variable if no information was present.

4.9.3 Printing messages

The predicate print message/2 is used to print a message term in a human readable format.
The other predicates from this section allow the user to refine and extend the message system. A

SWI-Prolog 6.0 Reference Manual

4.9. ISO COMPLIANT EXCEPTION HANDLING 105

common usage of print message/2 is to print error messages from exceptions. The code below
prints errors encountered during the execution of Goal, without further propagating the exception and
without starting the debugger.

...,
catch(Goal, E,

(print_message(error, E),
fail

)),
...

Another common use is to defined message hook/3 for printing messages that are normally silent,
suppressing messages, redirecting messages or make something happen in addition to printing the
message.

print message(+Kind, +Term)
The predicate print message/2 is used to print messages, notably from exceptions, in
a human-readable format. Kind is one of informational, information, banner,
warning, error, help or silent. A human-readable message is printed to the stream
user error.

If the Prolog flag verbose is silent, messages with Kind informational, or banner
are treated as silent. See -q. The Kind information is intended for informational mes-
sages that should also be printed in silent mode, typically because the user requests of the
information. The predicate time/1 is an example.

The predicate print message/2 first translates the Term into a list of ‘message lines’ (see
print message lines/3 for details). Next, it calls the hook message hook/3 to allow
the user intercepting the message. If message hook/3 fails it prints the message unless Kind
is silent.

The print message/2 predicate and its rules are in the file
〈plhome〉/boot/messages.pl, which may be inspected for more information on the
error messages and related error terms. If you need to write messages from your own
predicates, it is recommended to reuse the existing message terms if applicable. If no existing
message term is applicable, invent a fairly unique term that represents the event and define a
rule for the multifile predicate prolog:message//1. See section 4.9.3 for a deeper discussion and
examples.

See also message to string/2.

print message lines(+Stream, +Prefix, +Lines)
Print a message (see print message/2) that has been translated to a list of message ele-
ments. The elements of this list are:

〈Format〉-〈Args〉
Where Format is an atom and Args is a list of format argument. Handed to format/3.

flush
If this appears as the last element, Stream is flushed (see flush output/1) and no
final newline is generated. This is combined with a subsequent message that starts with
at same line to complete the line.

SWI-Prolog 6.0 Reference Manual

106 CHAPTER 4. BUILT-IN PREDICATES

at same line
If this appears as first element, no prefix is printed for the first line and the line-position is
not forced to 0 (see format/1, ˜N).

ansi(+Attributes, +Format, +Args)
This message may be intercepted by means of the hook prolog:message line element/2.
The library ansi term implements this hook to achieve coloured output. If it is not
intercepted it invokes format(Stream, Format, Args).

nl
A new line is started. If the message is not complete, Prefix is printed before the remainder
of the message.

begin(Kind, Var)
end(Var)

The entire message is headed by begin(Kind, Var) and ended by end(Var). This feature
is used by e.g., library ansi term to colour entire messages.

〈Format〉
Handed to format/3 as format(Stream, Format, []). Deprecated because it is am-
biguous of Format collides with one of the atomic commands.

See also print message/2 and message hook/3.

message hook(+Term, +Kind, +Lines)
Hook predicate that may be defined in the module user to intercept messages from
print message/2. Term and Kind are the same as passed to print message/2. Lines
is a list of format statements as described with print message lines/3. See also
message to string/2.

This predicate must be defined dynamic and multifile to allow other modules defining clauses
for it too.

prolog:message line element(+Stream, +Term)
This hook is called to print the individual elements of a message from
print message lines/3. This hook is used by e.g., library ansi term to colour
messages on ANSI capable terminals.

message to string(+Term, -String)
Translates a message-term into a string object (see section 4.22). Primarily intended to write
messages to Windows in XPCE (see section 1.5) or other GUI environments.

Printing from libraries

Libraries should not use format/3 or other output predicates directly. Libraries that print informa-
tional output directory to the console are hard to use from code that depend on your textual output,
such as a CGI script. The predicates in section 4.9.3 define the API for dealing with messages. The
idea behind this is that a library that wants to provide information about its status, progress, events
or problems calls print message/2. The first argument is the level. The supported levels are de-
scribed with print message/2. Libraries typically use informational and warning, while
libraries should use exceptions for errors (see throw/1, type error/2, etc.).

SWI-Prolog 6.0 Reference Manual

4.10. HANDLING SIGNALS 107

The second argument is an arbitrary Prolog term that carries te information of the message, but
not the precise text. The text is defined by the grammar rule prolog:message//1. This distinction is
made to allow for translations and to allow hooks processing the information in a different way (e.g.,
translate progress messages into a progress-bar).

For example, suppose we have a library that must download data from the internet (e.g., based on
http open/3). The library wants to print the progress after each downloaded file. The code below
is a good skeleton:

download_urls(List) :-
length(List, Total),
forall(nth1(I, List, URL),

(download_url(URL),
print_message(informational,

download_url(URL, I, Total)))).

The programmer can now specify the default textual output using the rule below. Note that this rule
may be in the same file or anywhere else. Notably, the application may come with several rule-
sets for different languages. This, and the user-hook example below are the reason to represent the
message as a compound term rather than a string. This is similar to using message-numbers in non-
symbolic languages. The documentation of print message lines/3 describes the elements that
may appear in the output list.

:- multifile
prolog:message//1.

prolog:message(download_url(URL, I, Total)) -->
{ Perc is round(I*100/Total) },
[’Downloaded ˜w; ˜D from ˜D (˜d%)’-[URL, I, Total, Perc]].

A user of the library may define rules for message hook/3. The rule below acts on the message-
content. Other applications can act on the message-level and, for example, popup a message-box for
warnings and errors.

:- multifile user:message_hook/3.

message_hook(download_url(URL, I, Total), _Kind, _Lines) :-
<send this information to a GUI component>

In addition, using the commandline option -q, the user can disable all informational messages.

4.10 Handling signals

As of version 3.1.0, SWI-Prolog is capable to handle software interrupts (signals) in Prolog as well as
in foreign (C) code (see section 9.4.13).

SWI-Prolog 6.0 Reference Manual

108 CHAPTER 4. BUILT-IN PREDICATES

Signals are used to handle internal errors (execution of a non-existing CPU instruction, arithmetic
domain errors, illegal memory access, resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.

Signals are defined by the POSIX standard and part of all Unix machines. The MS-Windows
Win32 provides a subset of the signal handling routines, lacking the vital functionality to raise a
signal in another thread for achieving asynchronous inter-process (or inter-thread) communication
(Unix kill() function).

on signal(+Signal, -Old, :New)
Determines the reaction on Signal. Old is unified with the old behaviour, while the behaviour is
switched to New. As with similar environment-control predicates, the current value is retrieved
using on signal(Signal, Current, Current).

The action description is an atom denoting the name of the predicate that will be called if
Signal arrives. on signal/3 is a meta-predicate, which implies that 〈Module〉:〈Name〉 refers
the 〈Name〉/1 in the module 〈Module〉. The handler is called with a single argument: the name
of the signal as an atom. The Prolog names for signals is explained below.

Two predicate-names have special meaning. throw implies Prolog will map the signal onto a
Prolog exception as described in section 4.9. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.

Signals bound to a foreign function through PL signal() are reported using the term
$foreign function(Address).

After receiving a signal mapped to throw, the exception raised has the structure

error(signal(〈SigName〉, 〈SigNum〉), 〈Context〉)

The signal names are defined by the POSIX standard as symbols of the form SIG〈SIGNAME〉.
The Prolog name for a signal is the lowercase version of 〈SIGNAME〉. The predicate
current signal/3 may be used to map between names and signals.

Initially, some signals are mapped to throw, while all other signals are default. The fol-
lowing signals throw an exception: fpe, alrm, xcpu, xfsz and vtalrm.

current signal(?Name, ?Id, ?Handler)
Enumerate the currently defined signal handling. Name is the signal name, Id is the numerical
identifier and Handler is the currently defined handler (see on signal/3).

4.10.1 Notes on signal handling

Before deciding to deal with signals in your application, please consider the following:

• Portability
On MS-Windows, the signal interface is severely limited. Different Unix brands support differ-
ent sets of signals, and the relation between signal name and number may vary. Currently, the
system only supports signals numbered 1 to 3220. Installing a signal outside the limited set of
supported signals in MS-Windows crashes the application.

20TBD: the system should support the Unix realtime signals

SWI-Prolog 6.0 Reference Manual

4.11. DCG GRAMMAR RULES 109

• Safety
Immediately delivered signals (see below) are unsafe. This implies that foreign functions called
from a handler cannot safely use the SWI-Prolog API and cannot use C longjmp(). Handlers
defined as throw are unsafe. Handlers defined to call a predicate are safe. Note that the
predicate can call throw/1, but the delivery is delayed until Prolog is in a safe state.

The C-interface described in section 9.4.13 provides the option PL SIGSYNC to select either
safe synchronous or unsafe asynchronous delivery.

• Time of delivery
Using throw or a foreign handler, signals are delivered immediately (as defined by the OS).
When using a Prolog predicate, delivery is delayed to a safe moment. Blocking system
calls or foreign loops may cause long delays. Foreign code can improve on that by calling
PL handle signals().

Signals are blocked when the garbage collector is active.

4.11 DCG Grammar rules

Grammar rules form a comfortable interface to difference-lists. They are designed both to support
writing parsers that build a parse-tree from a list as for generating a flat list from a term. Unfortunately,
Definite Clause Grammar (DCG) handling is not part of the Prolog standard. Most Prolog engines
implement DCG, but the details differ slightly.

Grammar rules look like ordinary clauses using -->/2 for separating the head and body rather
than :-/2. Expanding grammar rules is done by expand term/2, which adds two additional
argument to each term for representing the difference list. We will illustrate the behaviour by defining
a rule-set for parsing an integer.

integer(I) -->
digit(D0),
digits(D),
{ number_chars(I, [D0|D])
}.

digits([D|T]) -->
digit(D), !,
digits(T).

digits([]) -->
[].

digit(D) -->
[D],
{ code_type(D, digit)
}.

The body of a grammar rule can contain three types of terms. A compound term interpreted as a
reference to a grammar-rule. Code between {. . .} is interpreted as a reference to ordinary Prolog

SWI-Prolog 6.0 Reference Manual

110 CHAPTER 4. BUILT-IN PREDICATES

code and finally, a list is interpreted as a sequence of literals. The Prolog control-constructs (\+/1,
->/2, ;//2, ,/2 and !/0) can be used in grammar rules.

Grammar rule-sets are called using the built-in predicates phrase/2 and phrase/3:

phrase(+RuleSet, +InputList)
Equivalent to phrase(RuleSet, InputList, []).

phrase(+RuleSet, +InputList, -Rest)
Activate the rule-set with given name. ‘InputList’ is the list of tokens to parse, ‘Rest’ is unified
with the remaining tokens if the sentence is parsed correctly. The example below calls the
rule-set ‘integer’ defined above.

?- phrase(integer(X), "42 times", Rest).

X = 42
Rest = [32, 116, 105, 109, 101, 115]

4.12 Database

SWI-Prolog offers three different database mechanisms. The first one is the common assert/retract
mechanism for manipulating the clause database. As facts and clauses asserted using assert/1 or
one of its derivatives become part of the program these predicates compile the term given to them.
retract/1 and retractall/1 have to unify a term and therefore have to decompile the pro-
gram. For these reasons the assert/retract mechanism is expensive. On the other hand, once compiled,
queries to the database are faster than querying the recorded database discussed below. See also
dynamic/1.

The second way of storing arbitrary terms in the database is using the ‘recorded database’. In this
database terms are associated with a key. A key can be an atom, small integer or term. In the last case
only the functor and arity determine the key. Each key has a chain of terms associated with it. New
terms can be added either at the head or at the tail of this chain.

Following the Edinburgh tradition, SWI-Prolog provides database keys to clauses and records in
the recorded database. As of 5.9.10, these keys are represented by non-textual atoms (‘blobs’, see
section 9.4.7), which makes accessing the database through references safe.

The third mechanism is a special purpose one. It associates an integer or atom with a key, which
is an atom, integer or term. Each key can only have one atom or integer associated with it.

abolish(:PredicateIndicator) [ISO]

Removes all clauses of a predicate with functor Functor and arity Arity from the database. All
predicate attributes (dynamic, multifile, index, etc.) are reset to their defaults. Abolishing an
imported predicate only removes the import link; the predicate will keep its old definition in its
definition module.

According to the ISO standard, abolish/1 can only be applied to dynamic procedures.
This is odd, as for dealing with dynamic procedures there is already retract/1 and
retractall/1. The abolish/1 predicate has been introduced in DEC-10 Prolog pre-
cisely for dealing with static procedures. In SWI-Prolog, abolish/1 works on static proce-
dures, unless the prolog flag iso is set to true.

SWI-Prolog 6.0 Reference Manual

4.12. DATABASE 111

It is advised to use retractall/1 for erasing all clauses of a dynamic predicate.

abolish(+Name, +Arity)
Same as abolish(Name/Arity). The predicate abolish/2 conforms to the Edinburgh
standard, while abolish/1 is ISO compliant.

copy predicate clauses(:From, :To)
Copy all clauses of predicate From to To. The predicate To must be dynamic or undefined. If
To is undefined, it is created as a dynamic predicate holding a copy of the clauses of From. If
To is a dynamic predicate, the clauses of From are added (as in assertz/1) to the clauses of
To. To and From must have the same arity. Acts as if defined by the program below, but at a
much better performance by avoiding decompilation and compilation.

copy_predicate_clauses(From, To) :-
head(From, MF:FromHead),
head(To, MT:ToHead),
FromHead =.. [_|Args],
ToHead =.. [_|Args],
forall(clause(MF:FromHead, Body),

assertz(MT:ToHead, Body)).

head(From, M:Head) :-
strip_module(From, M, Name/Arity),
functor(Head, Name, Arity).

redefine system predicate(+Head)
This directive may be used both in module user and in normal modules to redefine any
system predicate. If the system definition is redefined in module user, the new definition is
the default definition for all sub-modules. Otherwise the redefinition is local to the module.
The system definition remains in the module system.

Redefining system predicate facilitates the definition of compatibility packages. Use in other
context is discouraged.

retract(+Term) [ISO]

When Term is an atom or a term it is unified with the first unifying fact or clause in the database.
The fact or clause is removed from the database.

retractall(+Head)
All facts or clauses in the database for which the head unifies with Head are removed. If Head
refers to a predicate that is not defined, it is implicitly created as a dynamic predicate. See also
dynamic/1.21

asserta(+Term) [ISO]

Assert a fact or clause in the database. Term is asserted as the firsr fact or clause of the corre-
sponding predicate. Equivalent to assert/1, but Term is asserted as first clause or fact of the
predicate.

21The ISO standard only allows using dynamic/1 as a directive.

SWI-Prolog 6.0 Reference Manual

112 CHAPTER 4. BUILT-IN PREDICATES

assertz(+Term) [ISO]

Equivalent to asserta/1, but Term is asserted as the last clause or fact of the predicate.

assert(+Term)
Equivalent to assertz/1. Deprecated: new code should use assertz/1.

asserta(+Term, -Reference)
Asserts a clause as asserta/1 and unifies Reference with a handle to this clause. The handle
can be used to access this specific clause using clause/3 and erase/1.

assertz(+Term, -Reference)
Equivalent to asserta/1, asserting the new clause as the last clause of the predicate.

assert(+Term, -Reference)
Equivalent to assertz/2.

recorda(+Key, +Term, -Reference)
Assert Term in the recorded database under key Key. Key is a small integer (range
min tagged integer . . .max tagged integer, atom or compound term. If the key is
a compound term, only the name and arity define the key. Reference is unified with an opaque
handle to the record (see erase/1).

recorda(+Key, +Term)
Equivalent to recorda(Key, Value,).

recordz(+Key, +Term, -Reference)
Equivalent to recorda/3, but puts the Term at the tail of the terms recorded under Key.

recordz(+Key, +Term)
Equivalent to recordz(Key, Value,).

recorded(?Key, ?Value, ?Reference)
True if Value is recorded under Key and has the given database Reference. If Reference is given,
this predicate is semi-deterministic. Otherwise, it must be considered non-deterministic. If
neither Reference nor Key is given, the triples are generated as in the code snippet below.22 See
also current key/1.

current_key(Key),
recorded(Key, Value, Reference)

recorded(+Key, -Value)
Equivalent to recorded(Key, Value,).

erase(+Reference)
Erase a record or clause from the database. Reference is an db-reference returned by
recorda/3 or recorded/3, clause/3, assert/2, asserta/2 or assertz/2. Fail
silently if the referenced object no longer exists.

22Note that, without a given Key, some implementations return triples in the order defined by recorda/2 and
recordz/2.

SWI-Prolog 6.0 Reference Manual

4.12. DATABASE 113

instance(+Reference, -Term)
Unify Term with the referenced clause or database record. Unit clauses are represented as Head
:- Body.

flag(+Key, -Old, +New)
Key is an atom, integer or term. As with the recorded database, if Key is a term, only the name
and arity are used to locate the flag. Unify Old with the old value associated with Key. If the
key is used for the first time Old is unified with the integer 0. Then store the value of New,
which should be an integer, float, atom or arithmetic expression, under Key. flag/3 is a
fast mechanism for storing simple facts in the database. The flag database is shared between
threads and updates are atomic, making it suitable for generating unique integer counters.23

4.12.1 Update view

Traditionally, Prolog systems used the immediate update view: new clauses became visible to predi-
cates backtracking over dynamic predicates immediately and retracted clauses became invisible im-
mediately.

Starting with SWI-Prolog 3.3.0 we adhere the logical update view, where backtrackable predicates
that enter the definition of a predicate will not see any changes (either caused by assert/1 or
retract/1) to the predicate. This view is the ISO standard, the most commonly used and the
most ‘safe’.24 Logical updates are realised by keeping reference-counts on predicates and generation
information on clauses. Each change to the database causes an increment of the generation of the
database. Each goal is tagged with the generation in which it was started. Each clause is flagged
with the generation it was created as well as the generation it was erased. Only clauses with ‘created’
. . . ‘erased’ interval that encloses the generation of the current goal are considered visible.

4.12.2 Indexing databases

The indexing capabilities of SWI-Prolog are described in section 2.17. Summarizing, SWI-Prolog
creates indexes for any applicable argument, but indexes only on one argument and does not index
on arguments of compound terms. The predicates below provide building blocks to circumvent the
limitations of the current indexing system.

Programs that aim at portability should consider using term hash/2 and term hash/4 to
design their database such that indexing on constant or functor (name/arity reference) on the first
argument is sufficient.

term hash(+Term, -HashKey) [det]

If Term is a ground term (see ground/1), HashKey is unified with a positive integer value that
may be used as a hash-key to the value. If Term is not ground, the predicate leaves HashKey an
unbound variable. Hash keys are in the range 0 . . . 16, 777, 215, the maximal integer that can
be stored efficiently on both 32 and 64 bit platforms.

This predicate may be used to build hash-tables as well as to exploit argument-indexing to find
complex terms more quickly.

23The flag/3 predicate is not portable. Non-backtrackable global variables (nb setval/2) and non-backtrackable
assignment (nb setarg/3) are more widely recognised special-purpose alternatives for non-backtrackable and/or global
state.

24For example, using the immediate update view, no call to a dynamic predicate is deterministic.

SWI-Prolog 6.0 Reference Manual

114 CHAPTER 4. BUILT-IN PREDICATES

The hash-key does not rely on temporary information like addresses of atoms and may be as-
sumed constant over different invocations and versions of SWI-Prolog.25 Hashes differ between
big and little endian machines. The term hash/2 predicate is cycle-safe.26

term hash(+Term, +Depth, +Range, -HashKey) [det]

As term hash/2, but only considers Term to the specified Depth. The toplevel term has
depth 1, its arguments have depth 2, etc. I.e. Depth = 0 hashes nothing; Depth = 1 hashes
atomic values or the functor and arity of a compound term, not its arguments; Depth = 2 also
indexes the immediate arguments, etc.

HashKey is in the range [0 . . .Range− 1]. Range must be in the range [1 . . . 2147483647]

variant sha1(+Term, -SHA1) [det]

Compute an SHA1-hash from Term. The hash is represented as a 40-byte hexadecimal atom.
Unlike term hash/2 and friends, this predicate produces a hash-key for non-ground terms.
The hash is invariant over variable-renaming (see =@=/2) and constants over different
invocations of Prolog.27

This predicate raises an exeption when trying to compute the hash on a cyclic term or attributed
term. Attributed terms are not handled because subsumes chk/2 is not considered well
defined for attributed terms. Cyclic terms are not supported because this would require estab-
lishing a canonical cycle. I.e., given A=[a—A] and B=[a,a—B], A and B should produce the
same hash. This is not (yet) implemented.

This hash was developed for lookup of solutions to a goal stored in a table. By using a cryp-
tographic hash, heuristic algorithms can often ignore the possibility of hash-colisions and thus
avoid storing the goal-term itself as well as testing using =@=/2.

4.13 Declaring predicates properties

This section describes directives which manipulate attributes of predicate definitions. The functors
dynamic/1, multifile/1 and discontiguous/1 are operators of priority 1150 (see op/3),
which implies the list of predicates they involve can just be a comma separated list:

:- dynamic
foo/0,
baz/2.

On SWI-Prolog all these directives are just predicates. This implies they can also be called by a pro-
gram. Do not rely on this feature if you want to maintain portability to other Prolog implementations.

dynamic :PredicateIndicator, . . . [ISO]

Informs the interpreter that the definition of the predicate(s) may change during execution
(using assert/1 and/or retract/1). In the multi-threaded version, the clauses of dynamic
predicates are shared between the threads. The directive thread local/1 provides an
alternative where each threads has its own clause-list for the predicate. Dynamic predicates can
be turned into static ones using compile predicates/1.

25Last change: version 5.10.4
26BUG: All arguments that (indirecly) lead to the a cycle have the same hash-key.
27BUG: The hash depends on word-order (big/little-endian) and the wordsize (32/64 bits).

SWI-Prolog 6.0 Reference Manual

4.14. EXAMINING THE PROGRAM 115

compile predicates(:ListOfNameArity)
Compile a list of specified dynamic predicates (see dynamic/1 and assert/1) into normal
static predicates. This call tells the Prolog environment the definition will not change anymore
and further calls to assert/1 or retract/1 on the named predicates raise a permission
error. This predicate is designed to deal with parts of the program that is generated at runtime
but does not change during the remainder of the program execution.28

multifile :PredicateIndicator, . . . [ISO]

Informs the system that the specified predicate(s) may be defined over more than one file. This
stops consult/1 from redefining a predicate when a new definition is found.

discontiguous :PredicateIndicator, . . . [ISO]

Informs the system that the clauses of the specified predicate(s) might not be together in the
source file. See also style check/1.

public :PredicateIndicator, . . .
Instructs the cross-referencer that the predicate can be called. It has no semantics.29

4.14 Examining the program

current atom(-Atom)
Successively unifies Atom with all atoms known to the system. Note that current atom/1
always succeeds if Atom is instantiated to an atom.

current blob(?Blob, ?Type)
Examine the type or enumerate blobs of the given Type. Typed blobs are supported through the
foreign language interface for storing arbitrary BLOBS (Binary Large Object) or handles to
external entities. See section 9.4.7 for details.

current functor(?Name, ?Arity)
Successively unifies Name with the name and Arity with the arity of functors known to the
system.

current flag(-FlagKey)
Successively unifies FlagKey with all keys used for flags (see flag/3).

current key(-Key)
Successively unifies Key with all keys used for records (see recorda/3, etc.).

current predicate(:PredicateIndicator) [ISO]

True if PredicateIndicator is a currently defined predicate. A predicate is considered defined
if it exists in the specified module, is imported into the module or is defined in one of the
modules from which the predicate will be imported if it is called (see section 5.9). Note that
current predicate/1 does not succeed for predicates that can be autoloaded. See also
current predicate/2 and predicate property/2.

28The specification of this predicate is from Richard O’Keefe. The implementation is allowed to optimise the predicate.
This is not yet implemented. In multi-threaded Prolog however, static code runs faster as it does not require synchronisation.
This is particularly true on SMP hardware.

29This declaration is compatible to SICStus. In YAP, public/1 instructs the compiler to keep the source. As the source
is always available in SWI-Prolog, our current interpretation also enhanced the compatibility to YAP.

SWI-Prolog 6.0 Reference Manual

116 CHAPTER 4. BUILT-IN PREDICATES

If PredicateIndicator is not fully specified, the predicate only generates values that are defined
in or already imported into the target module. Generating all callable predicates therefore re-
quires enumerating modules using current module/1. Generating predicates callable in
a given module requires enumerating the import modules using import module/2 and the
auto-loadable predicates using the predicate property/2 autoload.

current predicate(?Name, :Head)
Classical pre-ISO implementation of current predicate/1, where the predicate is rep-
resented by the head-term. The advantage is that this can be used for checking existence of a
predicate before calling it without the need for functor/3:

call_if_exists(G) :-
current_predicate(_, G),
call(G).

Because of this intended usage, current predicate/2 also succeeds if the predicate can
be autoloaded. Unfortunately, checking the autoloader makes this predicate relatively slow; in
particular because a failed lookup of the autoloader will cause the autoloader to verify that its
index is up-to-date.

predicate property(:Head, ?Property)
True when Head refers to a predicate that has property Property. With sufficiently instan-
tiated Head, predicate property/2 tries to resolve the predicate the same way
as calling it would do: if the predicate is not defined it scans the default modules (see
default module/2) and finally tries the autoloader. Unlike calling, failure to find the
target predicate causes predicate property/2 to fail silently. If Head is not sufficiently
bound, only currently locally defined and already imported predicates are enumerated.
See current predicate/1 for enumerating all predicates. A common issue concerns
generating all built-in predicates. This can be achieved using the code below.

generate_built_in(Name/Arity) :-
predicate_property(system:Head, built_in),
functor(Head, Name, Arity),
\+ sub_atom(Name, 0, _, _, $). % discard reserved names

Property is one of:

autoload(File)
Is true if the predicate can be autoloaded from the file File. Like undefined, this
property is not generated.

built in
Is true if the predicate is locked as a built-in predicate. This implies it cannot be redefined
in its definition module and it can normally not be seen in the tracer.

dynamic
Is true if assert/1 and retract/1 may be used to modify the predicate. This prop-
erty is set using dynamic/1.

SWI-Prolog 6.0 Reference Manual

4.14. EXAMINING THE PROGRAM 117

exported
Is true if the predicate is in the public list of the context module.

imported from(Module)
Is true if the predicate is imported into the context module from module Module.

file(FileName)
Unify FileName with the name of the source file in which the predicate is defined. See
also source file/2 and the propery line count. Note that this reports the
file of the first clause of a predicate. A more robust interface can be achieved using
nth clause/3 and clause property/2.

foreign
Is true if the predicate is defined in the C language.

indexed(Indexes)
Indexes30 is a list of additional (hash) indexes on the predicate. Each element of the list
is a term ArgSpec-Index. Currently ArgSpec is an integer denoting the argument position
and Index is a term hash(Buckets, Speedup, IsList). Here Buckets is the number of
buckets in the hash and Speedup is the expected speedup relative to trying all clauses
linearly. IsList indicates that a list is created for all clauses with the same key. This is
currently not used.

interpreted
Is true if the predicate is defined in Prolog. We return true on this because, although the
code is actually compiled, it is completely transparent, just like interpreted code.

iso
Is true if the predicate is covered by the ISO standard (ISO/IEC 13211-1).

line count(LineNumber)
Unify LineNumber with the line number of the first clause of the predicate. Fails if the
predicate is not associated with a file. See also source file/2. See also the file
property above, notably the reference to clause property/2.

multifile
Is true there may be multiple (or no) files providing clauses for the predicate. This property
is set using multifile/1.

meta predicate(Head)
If the predicate is declared as a meta-predicate using meta predicate/1, Unify Head
with the head-pattern. The head-pattern is a compound term with the same name and
arity as the predicate where each argument of the term is a meta predicate specifier. See
meta predicate/1 for details.

nodebug
Details of the predicate are not shown by the debugger. This is the default for built-
in predicates. User predicates can be compiled this way using the Prolog flag
generate debug info.

notrace
Do not show ports of this predicate in the debugger.

30This predicate property should be used for analysis and statistics only. The exact representation of Indexes may change
between versions.

SWI-Prolog 6.0 Reference Manual

118 CHAPTER 4. BUILT-IN PREDICATES

number of clauses(ClauseCount)
Unify ClauseCount to the number of clauses associated with the predicate. Fails for
foreign predicates.

public
Predicate is declared public using public/1. Note that without further definition,
public predicates are considered undefined and this property is not reported.

thread local
If true (only possible on the multi-threaded version) each thread has its own clauses for
the predicate. This property is set using thread local/1.

transparent
Is true if the predicate is declared transparent using the module transparent/1
or meta predicate/1 declaration. In the latter case the property
meta predicate(Head) is also provided. See chapter 5 for details.

undefined
Is true if a procedure definition block for the predicate exists, but there are no clauses for
it and it is not declared dynamic or multifile. This is true if the predicate occurs in the
body of a loaded predicate, an attempt to call it has been made via one of the meta-call
predicates or the predicate had a definition in the past. See the library package check
for example usage.

visible
True when predicate can be called without raising a predicate existence error. This means
that the predicate is (1) defined, (2) can be inherited from one of the default modules (see
default module/2) or (3) can be autoloaded. The behaviour is logically consistent
iff the propery visible is provided explicitly. If the property is left unbound, only
defined predicates are enumerated.

volatile
If true, the clauses are not saved into a saved-state by qsave program/[1,2]. This
property is set using volatile/1.

dwim predicate(+Term, -Dwim)
‘Do What I Mean’ (‘dwim’) support predicate. Term is a term, which name and arity are used
as a predicate specification. Dwim is instantiated with the most general term built from Name
and the arity of a defined predicate that matches the predicate specified by Term in the ‘Do
What I Mean’ sense. See dwim match/2 for ‘Do What I Mean’ string matching. Internal
system predicates are not generated, unless the access level is system (see access level).
Backtracking provides all alternative matches.

clause(:Head, ?Body) [ISO]

True if Head can be unified with a clause head and Body with the corresponding clause body.
Gives alternative clauses on backtracking. For facts Body is unified with the atom true.

clause(:Head, ?Body, ?Reference)
Equivalent to clause/2, but unifies Reference with a unique reference to the clause (see also
assert/2, erase/1). If Reference is instantiated to a reference the clause’s head and body
will be unified with Head and Body.

SWI-Prolog 6.0 Reference Manual

4.15. INPUT AND OUTPUT 119

nth clause(?Pred, ?Index, ?Reference)
Provides access to the clauses of a predicate using their index number. Counting starts at 1.
If Reference is specified it unifies Pred with the most general term with the same name/arity
as the predicate and Index with the index-number of the clause. Otherwise the name and arity
of Pred are used to determine the predicate. If Index is provided Reference will be unified
with the clause reference. If Index is unbound, backtracking will yield both the indices and
the references of all clauses of the predicate. The following example finds the 2nd clause of
append/3:

?- use_module(library(lists)).
...
?- nth_clause(append(_,_,_), 2, Ref), clause(Head, Body, Ref).
Ref = <clause>(0x994290),
Head = lists:append([_G23|_G24], _G21, [_G23|_G27]),
Body = append(_G24, _G21, _G27).

clause property(+ClauseRef, -Property)
Queries properties of a clause. ClauseRef is a reference to a clause as produced by clause/3,
nth clause/3 or prolog frame attribute/3. Property is one of the following:

file(FileName)
Unify FileName with the name of the source file in which the clause is defined. Fails if
the clause is not associated to a file.

line count(LineNumber)
Unify LineNumber with the line number of the clause. Fails if the clause is not associated
to a file.

fact
True if the clause has no body.

erased
True if the clause has been erased, but not yet reclaimed because it is referenced.

4.15 Input and output

SWI-Prolog provides two different packages for input and output. The native I/O system is based
on the ISO standard predicates open/3, close/1 and friends.31 Being more widely portable and
equipped with a clearer and more robust specification, new code is encouraged to use these predicates
for manipulation of I/O streams.

Section 4.15.2 describes tell/1, see/1 and friends, providing I/O in the spirit of the traditional
Edinburgh standard. These predicates are layered on top of the ISO predicates. Both packages are
fully integrated; the user may switch freely between them.

31Actually based on Quintus Prolog, providing this interface before the ISO standard existed.

SWI-Prolog 6.0 Reference Manual

120 CHAPTER 4. BUILT-IN PREDICATES

4.15.1 ISO Input and Output Streams

The predicates described in this section provide ISO compliant I/O, where streams are explicitly cre-
ated using the predicate open/3. The resulting stream identifier is then passed as a parameter to the
reading and writing predicates to specify the source or destination of the data.

This schema is not vulnerable to filename and stream ambiguities as well as changes to the work-
ing directory. On the other hand, using the notion of current-I/O simplifies reusability of code without
the need to pass arguments around. E.g., see with output to/2.

SWI-Prolog streams are, compatible to the ISO standard, either input or output streams. To
accomodate portability to other systems, a pair of streams can be packed into a stream-pair. See
stream pair/3 for details.

SWI-Prolog stream-handles are unique symbols that have no syntactical representation. They are
written as \bnfmeta{stream}(hex-number), which is not valid input for read/1. They are
realised using a blob of type stream (see blob/2 and section 9.4.7).

open(+SrcDest, +Mode, -Stream, +Options) [ISO]

ISO compliant predicate to open a stream. SrcDest is either an atom, specifying a file, or a
term ‘pipe(Command)’, like see/1 and tell/1. Mode is one of read, write, append
or update. Mode append opens the file for writing, positioning the file-pointer at the end.
Mode update opens the file for writing, positioning the file-pointer at the beginning of the file
without truncating the file. Stream is either a variable, in which case it is bound to an integer
identifying the stream, or an atom, in which case this atom will be the stream identifier.32 The
Options list can contain the following options:

type(Type)
Using type text (default), Prolog will write a text-file in an operating-system compatible
way. Using type binary the bytes will be read or written without any translation. See
also the option encoding.

alias(Atom)
Gives the stream a name. Below is an example. Be careful with this option as stream-
names are global. See also set stream/2.

?- open(data, read, Fd, [alias(input)]).

...,
read(input, Term),
...

encoding(Encoding)
Define the encoding used for reading and writing text to this stream. The default encoding
for type text is derived from the Prolog flag encoding. For binary streams the
default encoding is octet. For details on encoding issues, see section 2.18.1.

bom(Bool)
Check for a BOM (Byte Order Marker) or write one. If omitted, the default is true
for mode read and false for mode write. See also stream property/2 and
especially section 2.18.1 for a discussion on this feature.

32New code should use the alias(Alias) option for compatibility with the ISO standard

SWI-Prolog 6.0 Reference Manual

4.15. INPUT AND OUTPUT 121

eof action(Action)
Defines what happens if the end of the input stream is reached. Action eof code makes
get0/1 and friends return -1 and read/1 and friends return the atom end of file.
Repetitive reading keeps yielding the same result. Action error is like eof code, but
repetitive reading will raise an error. With action reset, Prolog will examine the file
again and return more data if the file has grown.

buffer(Buffering)
Defines output buffering. The atom full (default) defines full buffering, line buffering
by line, and false implies the stream is fully unbuffered. Smaller buffering is useful
if another process or the user is waiting for the output as it is being produced. See also
flush output/[0,1]. This option is not an ISO option.

close on abort(Bool)
If true (default), the stream is closed on an abort (see abort/0). If false, the stream
is not closed. If it is an output stream, it will be flushed however. Useful for logfiles and
if the stream is associated to a process (using the pipe/1 construct).

lock(LockingMode)
Try to obtain a lock on the open file. Default is none, which does not lock the file. The
value read or shared means other processes may read the file, but not write it. The
value write or exclusive means no other process may read or write the file.
Locks are acquired through the POSIX function fcntl() using the command F SETLKW,
which makes a blocked call wait for the lock to be released. Please note that fcntl() locks
are advisory and therefore only other applications using the same advisory locks honour
your lock. As there are many issues around locking in Unix, especially related to NFS
(network file system), please study the fcntl() manual page before trusting your locks!
The lock option is a SWI-Prolog extension.

wait(Bool)
This option can be combined with the lock option. If false (default true), the open
call returns immediately with an exception if the file is locked. The exception has the
format permission error(lock, source sink, SrcDest).

The option reposition is not supported in SWI-Prolog. All streams connected to a file may
be repositioned.

open(+SrcDest, +Mode, ?Stream) [ISO]

Equivalent to open/4 with an empty option-list.

open null stream(?Stream)
Open an output stream that produces no output. All counting functions are enabled on such
a stream. It can be used to discard output (like Unix /dev/null) or exploit the counting
properties. The initial encoding of Stream is utf8, enabling arbitrary Unicode output. The
encoding can be changed to determine byte-counts of the output in a particular encoding or
validate output is possible in a particular encoding. For example, the code below determines
the number of characters emitted when writing Term.

write_length(Term, Len) :-
open_null_stream(Out),

SWI-Prolog 6.0 Reference Manual

122 CHAPTER 4. BUILT-IN PREDICATES

write(Out, Term),
character_count(Out, Len0),
close(Out),
Len = Len0.

close(+Stream) [ISO]

Close the specified stream. If Stream is not open, an existence error is raised. However, closing
a stream multiple times may crash Prolog. This is particularly true for multi-threaded
applications.

If the closed stream is the current input or output stream, the terminal is made the current input
or output.

close(+Stream, +Options) [ISO]

Provides close(Stream, [force(true)]) as the only option. Called this way, any resource error
(such as write-errors while flushing the output buffer) are ignored.

stream property(?Stream, ?StreamProperty) [ISO]

ISO compatible predicate for querying status of open I/O streams. StreamProperty is one of:

alias(Atom)
If Atom is bound, test of the stream has the specified alias. Otherwise unify Atom with the
first alias of the stream.33

buffer(Buffering)
SWI-Prolog extension to query the buffering mode of this stream. Buffering is one of
full, line or false. See also open/4.

buffer size(Integer)
SWI-Prolog extension to query the size of the I/O buffer associated to a stream in bytes.
Fails of the stream is not buffered.

bom(Bool)
If present and true, a BOM (Byte Order Mark) was detected while opening the file for
reading or a BOM was written while opening the stream. See section 2.18.1 for details.

close on abort(Bool)
Determine whether or not the stream is closed by abort/0. By default streams are
closed.

close on exec(Bool)
Determine whether or not the stream is closed when executing a new process (exec() in
Unix, CreateProcess() in Windows). Default is to close streams. This maps to fcntl()
F SETFD using the flag FD CLOEXEC on Unix and (negated) HANDLE FLAG INHERIT
on Windows.

encoding(Encoding)
Query the encoding used for text. See section 2.18.1 for an overview of wide character
and encoding issues in SWI-Prolog.

33BUG: Backtracking does not give other aliases.

SWI-Prolog 6.0 Reference Manual

4.15. INPUT AND OUTPUT 123

end of stream(E)
If Stream is an input stream, unify E with one of the atoms not, at or past. See also
at end of stream/[0,1].

eof action(A)
Unify A with one of eof code, reset or error. See open/4 for details.

file name(Atom)
If Stream is associated to a file, unify Atom to the name of this file.

file no(Integer)
If the stream is associated with a POSIX file-descriptor, unify Integer with the descriptor
number. SWI-Prolog extension used primarily for integration with foreign code. See also
Sfileno() from SWI-Stream.h.

input
True if Stream has mode read.

mode(IOMode)
Unify IOMode to the mode given to open/4 for opening the stream. Values are: read,
write, append and the SWI-Prolog extension update.

newline(NewlineMode)
One of posix or dos. If dos, text-streams will emit \r\n for \n and discard \r from
input streams. Default depends on the operating system.

nlink(-Count)
Number of hard links to the file. This expresses the number of ‘names’ the file has. Not
supported on all operating systems and the value might be bogus. See the documentation
of fstat() for your OS and the value st nlink.

output
True if Stream has mode write, append or update.

position(Term)
Unify Term with the current stream-position. A stream-position is an opaque
term whose fields can be extracted using stream position data/3. See also
set stream position/2.

reposition(Bool)
Unify Bool with true if the position of the stream can be set (see seek/4). It is assumed
the position can be set if the stream has a seek-function and is not based on a POSIX
file-descriptor that is not associated to a regular file.

representation errors(Mode)
Determines behaviour of character output if the stream cannot represent a character. For
example, an ISO Latin-1 stream cannot represent Cyrillic characters. The behaviour is
one of error (throw and I/O error exception), prolog (write \...\ escape code or
xml (write &#...; XML character entity). The initial mode is prolog for the user
streams and error for all other streams. See also section 2.18.1 and set stream/2.

timeout(-Time)
Time is the timeout currently associated with the stream. See set stream/2 with the
same option. If no timeout is specified, Time is unified to the atom infinite.

type(T)
Unify Bool with text or binary.

SWI-Prolog 6.0 Reference Manual

124 CHAPTER 4. BUILT-IN PREDICATES

tty(Bool)
This property is reported with Bool equals true if the stream is associated with a termi-
nal. See also set stream/2.

current stream(?Object, ?Mode, ?Stream)
The predicate current stream/3 is used to access the status of a stream as well as to
generate all open streams. Object is the name of the file opened if the stream refers to an open
file, an integer file-descriptor if the stream encapsulates an operating-system stream or the atom
[] if the stream refers to some other object. Mode is one of read or write.

is stream(+Term)
True if Term is a stream name or valid stream handle. This predicate realises a safe test for the
existence of a stream alias or handle.

stream pair(?StreamPair, ?Read, ?Write)
This predicate can be used in mode (-,+,+) to create a stream-pair from an input stream and an
output stream. Stream-pairs can be used by all I/O operations on streams, where the operation
selects the appropriate member of the pair. The predicate close/1 closes both streams of the
pair. Mode (+,-,-) can be used to get access to the underlying streams.

set stream position(+Stream, +Pos) [ISO]

Set the current position of Stream to Pos. Pos is a term as returned by stream property/2
using the position(Pos) property. See also seek/4.

stream position data(?Field, +Position, -Data)
Extracts information from the opaque stream position term as returned by
stream property/2 requesting the position(Position) property. Field is one
of line count, line position, char count or byte count. See also
line count/2, line position/2, character count/2 and byte count/2.34

seek(+Stream, +Offset, +Method, -NewLocation)
Reposition the current point of the given Stream. Method is one of bof, current or eof,
indicating positioning relative to the start, current point or end of the underlying object.
NewLocation is unified with the new offset, relative to the start of the stream.

Positions are counted in ‘units’. A unit is 1 byte, except for text-files using 2-byte Uni-
code encoding (2 bytes) or wchar encoding (sizeof(wchar t)). The latter guarantees com-
fortable interaction with wide-character text-objects. Otherwise, the use of seek/4 on
non-binary files (see open/4) is of limited use, especially when using multi-byte text-
encodings (e.g. UTF-8) or multi-byte newline files (e.g. DOS/Windows). On text-files,
SWI-Prolog offers reliable backup to an old position using stream property/2 and
set stream position/2. Skipping N character codes is achieved calling get code/2
N times or using copy stream data/3, directing the output to a null-stream (see
open null stream/1). If the seek modifies the current location, the line number and char-
acter position in the line are set to 0.

If the stream cannot be repositioned, a permission error is raised. If applying the offset
would result in a file-position less then zero, a domain error is raised. Behaviour when

34Introduced in version 5.6.4 after extending the position term with a byte-count. Compatible with SICStus Prolog.

SWI-Prolog 6.0 Reference Manual

4.15. INPUT AND OUTPUT 125

seeking to positions beyond the size of the underlying object depend on the object and possi-
bly the operating system. The predicate seek/4 is compatible with Quintus Prolog, though
the error conditions and signalling is ISO compliant. See also stream property/2 and
set stream position/2.

set stream(+Stream, +Attribute)
Modify an attribute of an existing stream. Attribute specifies the stream property to set. See
also stream property/2 and open/4.

alias(AliasName)
Set the alias of an already created stream. If AliasName is the name of one of the standard
streams is used, this stream is rebound. Thus, set stream(S, current input) is
the same as set input/1 and by setting the alias of a stream to user input, etc. all
user terminal input is read from this stream. See also interactor/0.

buffer(Buffering)
Set the buffering mode of an already created stream. Buffering is one of full, line or
false.

buffer size(+Size)
Set the size of the I/O buffer of the underlying stream to Size bytes.

close on abort(Bool)
Determine whether or not the stream is closed by abort/0. By default streams are
closed.

close on exec(Bool)
Set the close on exec property. See stream property/2.

encoding(Atom)
Defines the mapping between bytes and character codes used for the stream. See sec-
tion 2.18.1 for supported encodings.

eof action(Action)
Set end-of-file handling to one of eof code, reset or error.

file name(FileName)
Set the file name associated to this stream. This call can be used to set the file for error-
locations if Stream corresponds to FileName and is not obtained by opening the file
directly but, for example, through a network service.

line position(LinePos)
Set the line-position attribute of the stream. This feature is intended to correct position
management of the stream after sending a terminal escape sequence (e.g., setting ANSI
character attributes). Setting this attribute raises a permission error if the stream does
not record positions. See line position/2 and stream property/2 (property
position).

newline(NewlineMode)
Set input or output translation for newlines. See corresponding stream property/2
for details. In addition to the detected modes, an input stream can be set in mode
detect. It will be set to dos if a \r character was removed.

timeout(Seconds)
This option can be used to make streams generate an exception if it takes longer than

SWI-Prolog 6.0 Reference Manual

126 CHAPTER 4. BUILT-IN PREDICATES

Seconds before any new data arrives at the stream. The value infinite (default) makes the
stream block indefinitely. Like wait for input/3, this call only applies to streams
that support the select() system call. For further information about timeout handling, see
wait for input/3. The exception is of the form

error(timeout error(read, Stream),)

type(Type)
Set the type of the stream to one of text or binary. See also open/4 and the
encoding property of streams.

record position(Bool)
Do/do not record the line-count and line-position (see line count/2 and
line position/2).

representation errors(Mode)
Change the behaviour when writing characters to the stream that cannot be represented
by the encoding. See also stream property/2 and section 2.18.1.

tty(Bool)
Modify whether Prolog thinks there is a terminal (i.e. human interaction) connected
to this stream. On Unix systems the initial value comes from isatty(). On Win-
dows, the initial user streams are supposed to be associated to a terminal. See also
stream property/2.

set prolog IO(+In, +Out, +Error)
Prepare the given streams for interactive behaviour normally associated to the terminal. In
becomes the user input and current input of the calling thread. Out becomes
user output and current output. If Error equals Out an unbuffered stream is
associated to the same destination and linked to user error. Otherwise Error is used
for user error. Output buffering for Out is set to line and buffering on Error is
disabled. See also prolog/0 and set stream/2. The clib package provides the library
prolog server creating a TCP/IP server for creating an interactive session to Prolog.

4.15.2 Edinburgh-style I/O

The package for implicit input and output destination is (almost) compatible with Edinburgh DEC-10
and C-Prolog. The reading and writing predicates refer to resp. the current input- and output stream.
Initially these streams are connected to the terminal. The current output stream is changed using
tell/1 or append/1. The current input stream is changed using see/1. The streams current
value can be obtained using telling/1 for output- and seeing/1 for input streams.

Source and destination are either a file, user, or a term ‘pipe(Command)’. The reserved
stream name user refers to the terminal.35 In the predicate descriptions below we will call the
source/destination argument ‘SrcDest’. Below are some examples of source/destination specifica-
tions.

?- see(data). % Start reading from file ‘data’.
?- tell(user). % Start writing to the terminal.
?- tell(pipe(lpr)). % Start writing to the printer.

35The ISO I/O layer uses user input, user output and user error.

SWI-Prolog 6.0 Reference Manual

4.15. INPUT AND OUTPUT 127

Another example of using the pipe/1 construct is shown below.36 Note that the pipe/1 con-
struct is not part of Prolog’s standard I/O repertoire.

getwd(Wd) :-
seeing(Old), see(pipe(pwd)),
collect_wd(String),
seen, see(Old),
atom_codes(Wd, String).

collect_wd([C|R]) :-
get0(C), C \== -1, !,
collect_wd(R).

collect_wd([]).

The effect of tell/1 is not undone on backtracking, and since the stream handle is not specified
explicitly in further I/O operations when using Edinburgh-style I/O, you may write to unintended
streams more easily than when using ISO compliant I/O. For example, the following query writes
both ”a” and ”b” into the file ‘out’ :

?- (tell(out), write(a), false ; write(b)), told.

Compatibility notes

Unlike Edinburgh Prolog systems, telling/1 and seeing/1 do not return the filename of the
current input/output, but the stream-identifier, to ensure the design pattern below works under all
circumstances.37

...,
telling(Old), tell(x),
...,
told, tell(Old),
...,

The predicates tell/1 and see/1 first check for user, the pipe(command) and a stream-handle.
Otherwise, if the argument is an atom it is first compared to open streams associated to a file with
exactly the same name. If such a stream, created using tell/1 or see/1 exists, output (input) is
switch to the open stream. Otherwise a file with the specified name is opened.

The behaviour is compatible with Edinburgh Prolog. This is not without problems. Changing
directory, non-file streams, multiple names referring to the same file easily lead to unexpected be-
haviour. New code, especially when managing multiple I/O channels should consider using the ISO
I/O predicates defined in section 4.15.1.

36As of version 5.3.15, the pipe construct is supported in the MS-Windows version, both for swipl.exe and
swipl-win.exe. The implementation uses code from the LUA programming language (http://www.lua.org).

37Filenames can be ambiguous and SWI-Prolog streams can refer to much more than just files.

SWI-Prolog 6.0 Reference Manual

128 CHAPTER 4. BUILT-IN PREDICATES

see(+SrcDest)
Open SrcDest for reading and make it the current input (see set input/1). If SrcDest is a
stream-handle, just makes this stream the current input. See the introduction of section 4.15.2
for details.

tell(+SrcDest)
Open SrcDest for writing and make it the current output (see set output/1). If SrcDest is a
stream-handle, just makes this stream the current output. See the introduction of section 4.15.2
for details.

append(+File)
Similar to tell/1, but positions the file pointer at the end of File rather than truncating an
existing file. The pipe construct is not accepted by this predicate.

seeing(?SrcDest)
Same as current input/1, except that user is returned if the current input is the stream
user input to improve compatibility with traditional Edinburgh I/O. See the introduction of
section 4.15.2 for details.

telling(?SrcDest)
Same as current output/1, except that user is returned if the current output is the stream
user output to improve compatibility with traditional Edinburgh I/O. See the introduction
of section 4.15.2 for details.

seen
Close the current input stream. The new input stream becomes user input.

told
Close the current output stream. The new output stream becomes user output.

4.15.3 Switching Between Edinburgh and ISO I/O

The predicates below can be used for switching between the implicit- and the explicit stream based
I/O predicates.

set input(+Stream) [ISO]

Set the current input stream to become Stream. Thus, open(file, read, Stream), set input(Stream)
is equivalent to see(file).

set output(+Stream) [ISO]

Set the current output stream to become Stream. See also with output to/2.

current input(-Stream) [ISO]

Get the current input stream. Useful to get access to the status predicates associated with
streams.

current output(-Stream) [ISO]

Get the current output stream.

SWI-Prolog 6.0 Reference Manual

4.16. STATUS OF STREAMS 129

4.15.4 Write onto atoms, code-lists, etc.

with output to(+Output, :Goal)
Run Goal as once/1, while characters written to the current output is sent to Output. The
predicate is SWI-Prolog specific, inspired by various posts to the mailinglist. It provides a
flexible replacement for predicates such as sformat/3, swritef/3, term to atom/2,
atom number/2 converting numbers to atoms, etc. The predicate format/3 accepts the
same terms as output argument.

Applications should generally avoid creating atoms by breaking and concatenating other atoms
as the creation of large numbers of intermediate atoms generally leads to poor performance,
even more so in multi-threaded applications. This predicate supports creating difference-lists
from character data efficiently. The example below defines the DCG rule term//1 to insert a
term in the output:

term(Term, In, Tail) :-
with_output_to(codes(In, Tail), write(Term)).

?- phrase(term(hello), X).

X = [104, 101, 108, 108, 111]

A Stream handle or alias
Temporary switch current output to the given stream. Redirection using
with output to/2 guarantees the original output is restored, also if Goal fails
or raises an exception. See also call cleanup/2.

atom(-Atom)
Create an atom from the emitted characters. Please note the remark above.

string(-String)
Create a string-object as defined in section 4.22.

codes(-Codes)
Create a list of character codes from the emitted characters, similar to atom codes/2.

codes(-Codes, -Tail)
Create a list of character codes as a difference-list.

chars(-Chars)
Create a list of one-character-atoms codes from the emitted characters, similar to
atom chars/2.

chars(-Chars, -Tail)
Create a list of one-character-atoms as a difference-list.

4.16 Status of streams

wait for input(+ListOfStreams, -ReadyList, +TimeOut)
Wait for input on one of the streams in ListOfStreams and return a list of streams on which
input is available in ReadyList. wait for input/3 waits for at most TimeOut seconds.

SWI-Prolog 6.0 Reference Manual

130 CHAPTER 4. BUILT-IN PREDICATES

Timeout may be specified as a floating point number to specify fractions of a second. If Timeout
equals infinite, wait for input/3 waits indefinitely.38

This predicate can be used to implement timeout while reading and to handle input from multi-
ple sources. The following example will wait for input from the user and an explicitly opened
second terminal. On return, Inputs may hold user input or P4 or both.

?- open(’/dev/ttyp4’, read, P4),
wait_for_input([user_input, P4], Inputs, 0).

This predicate relies on the select() call on most operating systems. On Unix this call is imple-
mented for any stream referring to a file-handle, which implies all OS-based streams: sockets,
terminals, pipes, etc. On non-Unix systems select() is generally only implemented for socket-
based streams. See also socket from the clib package.

Note that wait for input/3 returns streams that have data waiting. This does not mean
you can, for example, call read/2 on the stream without blocking as the stream might hold
an incomplete term. The predicate set stream/2 using the option timeout(Seconds) can
be used to make the stream generate an exception if no new data arrives for within the timeout.
Suppose two processes communicate by exchanging Prolog terms. The following code makes
the server immune for clients that write an incomplete term:

...,
tcp_accept(Server, Socket, _Peer),
tcp_open(Socket, In, Out),
set_stream(In, timeout(10)),
catch(read(In, Term), _, (close(Out), close(In), fail)),
...,

byte count(+Stream, -Count)
Byte-position in Stream. For binary streams this is the same as character count/2.
For text files the number may be different due to multi-byte encodings or additional record
separators (such as Control-M in Windows).

character count(+Stream, -Count)
Unify Count with the current character index. For input streams this is the number of characters
read since the open, for output streams this is the number of characters written. Counting starts
at 0.

line count(+Stream, -Count)
Unify Count with the number of lines read or written. Counting starts at 1.

line position(+Stream, -Count)
Unify Count with the position on the current line. Note that this assumes the position is 0 after
the open. Tabs are assumed to be defined on each 8-th character and backspaces are assumed
to reduce the count by one, provided it is positive.

38For compatibility reasons, a Timeout value of 0 (integer) also waits indefinitely. To call select() without giving up the
CPU pass the float 0.0. If compatibility with versions older than 5.1.3 is desired pass the float value 1.0e-7.

SWI-Prolog 6.0 Reference Manual

4.17. PRIMITIVE CHARACTER I/O 131

4.17 Primitive character I/O

See section 4.2 for an overview of supported character representations.

nl [ISO]

Write a newline character to the current output stream. On Unix systems nl/0 is equivalent to
put(10).

nl(+Stream) [ISO]

Write a newline to Stream.

put(+Char)
Write Char to the current output stream, Char is either an integer-expression evaluating to a
character code or an atom of one character. Deprecated. New code should use put char/1
or put code/1.

put(+Stream, +Char)
Write Char to Stream. See put/1 for details.

put byte(+Byte) [ISO]

Write a single byte to the output. Byte must be an integer between 0 and 255.

put byte(+Stream, +Byte) [ISO]

Write a single byte to a stream. Byte must be an integer between 0 and 255.

put char(+Char) [ISO]

Write a character to the current output, obeying the encoding defined for the current output
stream. Note that this may raise an exception if the encoding of Stream cannot represent Char.

put char(+Stream, +Char) [ISO]

Write a character to Stream, obeying the encoding defined for Stream. Note that this may raise
an exception if the encoding of Stream cannot represent Char.

put code(+Code) [ISO]

Similar to put char/1, but using a character code. Code is a non-negative integer. Note that
this may raise an exception if the encoding of Stream cannot represent Code.

put code(+Stream, +Code) [ISO]

Same as put code/1 but directing Code to Stream.

tab(+Amount)
Writes Amount spaces on the current output stream. Amount should be an expression that
evaluates to a positive integer (see section 4.25).

tab(+Stream, +Amount)
Writes Amount spaces to Stream.

flush output [ISO]

Flush pending output on current output stream. flush output/0 is automatically generated
by read/1 and derivatives if the current input stream is user and the cursor is not at the left
margin.

SWI-Prolog 6.0 Reference Manual

132 CHAPTER 4. BUILT-IN PREDICATES

flush output(+Stream) [ISO]

Flush output on the specified stream. The stream must be open for writing.

ttyflush
Flush pending output on stream user. See also flush output/[0,1].

get byte(-Byte) [ISO]

Read the current input stream and unify the next byte with Byte (an integer between 0 and 255.
Byte is unified with -1 on end of file.

get byte(+Stream, -Byte) [ISO]

Read the next byte from Stream, returning an integer between 0 and 255.

get code(-Code) [ISO]

Read the current input stream and unify Code with the character code of the next character.
Code is unified with -1 on end of file. See also get char/1.

get code(+Stream, -Code) [ISO]

Read the next character-code from Stream.

get char(-Char) [ISO]

Read the current input stream and unify Char with the next character as a one-character-atom.
See also atom chars/2. On end-of-file, Char is unified to the atom end of file.

get char(+Stream, -Char) [ISO]

Unify Char with the next character from Stream as a one-character-atom. See also
get char/2, get byte/2 and get code/2.

get0(-Char) [deprecated]

Edinburgh version of the ISO get code/1 predicate. Note that Edinburgh prolog didn’t
support wide characters and therefore technically speaking get0/1 should have been mapped
to get byte/1. The intention of get0/1 however is to read character codes.

get0(+Stream, -Char) [deprecated]

Edinburgh version of the ISO get code/2 predicate. See also get0/1.

get(-Char) [deprecated]

Read the current input stream and unify the next non-blank character with Char. Char is
unified with -1 on end of file. The predicate get/1 operates on character codes. See also
get0/1.

get(+Stream, -Char) [deprecated]

Read the next non-blank character from Stream. See also get/1, get0/1 and get0/2.

peek byte(-Byte) [ISO]

peek byte(+Stream, -Byte) [ISO]

peek code(-Code) [ISO]

peek code(+Stream, -Code) [ISO]

peek char(-Char) [ISO]

peek char(+Stream, -Char) [ISO]

Read the next byte/code/char from the input without removing it. These predicates do not

SWI-Prolog 6.0 Reference Manual

4.17. PRIMITIVE CHARACTER I/O 133

modify the stream’s position or end-of-file status. These predicates require a buffered stream
(see set stream/2) and raise a permission error if the stream is unbuffered or the buffer is
too small to hold the longest multibyte sequence that might need to be buffered.

skip(+Code)
Read the input until Char or the end of the file is encountered. A subsequent call to
get code/1 will read the first character after Code.

skip(+Stream, +Code)
Skip input (as skip/1) on Stream.

get single char(-Code)
Get a single character from input stream ‘user’ (regardless of the current input stream). Unlike
get code/1 this predicate does not wait for a return. The character is not echoed to the user’s
terminal. This predicate is meant for keyboard menu selection etc. If SWI-Prolog was started
with the -tty option this predicate reads an entire line of input and returns the first non-blank
character on this line, or the character code of the newline (10) if the entire line consisted of
blank characters.

at end of stream [ISO]

Succeeds after the last character of the current input stream has been read. Also succeeds if
there is no valid current input stream.

at end of stream(+Stream) [ISO]

Succeeds after the last character of the named stream is read, or Stream is not a valid input
stream. The end-of-stream test is only available on buffered input stream (unbuffered input
streams are rarely used, see open/4).

set end of stream(+Stream)
Sets the size of the file opened as Stream to the current file-position. This is typically used in
combination with the open-mode update.

copy stream data(+StreamIn, +StreamOut, +Len)
Copy Len codes from stream StreamIn to StreamOut. Note that the copy is done using the
semantics of get code/2 and put code/2, taking care of possibly recoding that needs
take place between two text files. See section 2.18.1.

copy stream data(+StreamIn, +StreamOut)
Copy data all (remaining) data from stream StreamIn to StreamOut.

read pending input(+StreamIn, -Codes, ?Tail)
Read input pending in the input buffer of StreamIn and return it in the difference list Codes-Tail.
I.e. the available characters codes are used to create the list Codes ending in the tail Tail.
This predicate is intended for efficient unbuffered copying and filtering of input coming from
network connections or devices.

The following code fragment realises efficient non-blocking copy of data from an input- to
an output stream. The at end of stream/1 call checks for end-of-stream and fills the
input buffer. Note that the use of a get code/2 and put code/2 based loop requires a
flush output/1 call after each put code/2. The copy stream data/2 does not al-
low for inspection of the copied data and suffers from the same buffering issues.

SWI-Prolog 6.0 Reference Manual

134 CHAPTER 4. BUILT-IN PREDICATES

copy(In, Out) :-
repeat,

(at_end_of_stream(In)
-> !
; read_pending_input(In, Chars, []),

format(Out, ’˜s’, [Chars]),
flush_output(Out),
fail

).

4.18 Term reading and writing

This section describes the basic term reading and writing predicates. The predicates format/[1,2]
and writef/2 provide formatted output. Writing to Prolog datastructures such as atoms or code-
lists is supported by with output to/2 and format/3.

Reading is sensitive to the Prolog flag character escapes, which controls the interpretation
of the \ character in quoted atoms and strings.

write term(+Term, +Options) [ISO]

The predicate write term/2 is the generic form of all Prolog term-write predicates. Valid
options are:

attributes(Atom)
Define how attributed variables (see section 6.1) are written. The default is determined by
the Prolog flag write attributes. Defined values are ignore (ignore the attribute),
dots (write the attributes as {...}), write (simply hand the attributes recursively to
write term/2) and portray (hand the attributes to attr portray hook/2).

backquoted string(Bool)
If true, write a string object (see section 4.22) as ‘. . .‘. The default depends on the
Prolog flag backquoted string.

blobs(Atom)
Define how non-text blobs are handled. By default, this is left to the write-handler spec-
ified with the blob-type. Using portray, portray/1 is called for each blob
encountered. See section 9.4.7.

character escapes(Bool)
If true, and quoted(true) is active, special characters in quoted atoms and strings
are emitted as ISO escape-sequences. Default is taken from the reference module (see
below).

cycles(Bool)
If true (default), cyclic terms are written as @(Template, Subsitutions), where Subsi-
tutions is a list Var = Value. If cycles is false, max depth is not given and Term
is cyclic, write term/2 raises a domain error.39 See also the cycles option in

39The cycles option and the cyclic term representation using the @-term are copied from SICStus Prolog. However, the
default in SICStus is set to false and SICStus writes an infinite term if not protected by e.g., the depth limit option.

SWI-Prolog 6.0 Reference Manual

4.18. TERM READING AND WRITING 135

read term/2.

ignore ops(Bool)
If true, the generic term-representation (〈functor〉(〈args〉 . . .)) will be used for all
terms, Otherwise (default), operators, list-notation and {}/1 will be written using their
special syntax.

max depth(Integer)
If the term is nested deeper than Integer, print the remainder as ellipses (. . .). A 0 (zero)
value (default) imposes no depth limit. This option also delimits the number of printed
for a list. Example:

?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), [max_depth(3)]).
a(s(s(...)), [a, b|...])

Yes

Used by the top-level and debugger to limit screen output. See also the Prolog flags
toplevel print options and debugger print options.

module(Module)
Define the reference module (default user). This defines the default value for the
character escapes option as well as the operator definitions to use. See also op/3.

numbervars(Bool)
If true, terms of the format $VAR(N), where 〈N〉 is a positive integer, will be written
as a variable name. If N is an atom it is written without quotes. This extension allows
for writing variables with user-provided names. The default is false. See also
numbervars/3.

partial(Bool)
If true (default false), do not reset the logic that inserts extra spaces that separate
tokens where needed. This is intended to solve the problems with the code below. Calling
write value(.) writes .., which cannot be read. By adding partial(true) to the
option, it correctly emits . .. Similar problems appear when emitting operators using
multiple calls to write term/3.

write_value(Value) :-
write_term(Value, [quoted(true)]),
write(’.’), nl.

portray(Bool)
If true, the hook portray/1 is called before printing a term that is not a variable. If
portray/1 succeeds, the term is considered printed. See also print/1. The default
is false. This option is an extension to the ISO write term options.

portray goal(:Goal)
Implies portray(true), but calls Goal rather than the predefined hook portray/1.
Goal is called through call/3, where the first argument is Goal, the second is the term
to be printed and the 3th argument is the current write-option list. The write option list is
copied from the write term call, but the list is guaranteed to hold an option proprity
that reflects the current priority.

SWI-Prolog 6.0 Reference Manual

136 CHAPTER 4. BUILT-IN PREDICATES

priority(Integer)
An integer between 0 and 1200 representing the ‘context priority’. Default is 1200. Can
be used to write partial terms appearing as the argument to an operator. For example:

format(’˜w = ’, [VarName]),
write_term(Value, [quoted(true), priority(699)])

quoted(Bool)
If true, atoms and functors that needs quotes will be quoted. The default is false.

spacing(+Spacing)
Determines whether and where extra white-space is added to enhance readability. The
default is standard, adding only space where needed for proper tokenization by
read term/3. Currently, the only other value is next argument, adding a space
after a comma used to separate arguments in a term or list.

write term(+Stream, +Term, +Options) [ISO]

As write term/2, but output is sent to Stream rather than the current output.

write length(+Term, -Length, +Options) [semidet]

True when Length is the number of characters emited for write termTerm, Options. In addition
to valid options for write term/2, it processes the option

max length(+MaxLength)
If provided, fail if Length would be larger than MaxLength. The implementation ensures
that the runtime is limited when computing the length of a huge term with a bounded
maximum.

write canonical(+Term) [ISO]

Write Term on the current output stream using standard parenthesised prefix notation (i.e.,
ignoring operator declarations). Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator declarations. Equivalent
to write term/2 using the options ignore ops, quoted and numbervars after
numbervars/4 using the singletons option.

Note that due to the use of numbervars/4, non-ground terms must be written using a single
write canonical/1 call. This used to be the case anyhow, as garbage collection between
multiple calls to one of the write predicates can change the _G〈NNN〉 identity of the variables.

write canonical(+Stream, +Term) [ISO]

Write Term in canonical form on Stream.

write(+Term) [ISO]

Write Term to the current output, using brackets and operators where appropriate.

write(+Stream, +Term) [ISO]

Write Term to Stream.

writeq(+Term) [ISO]

Write Term to the current output, using brackets and operators where appropriate. Atoms that
need quotes are quoted. Terms written with this predicate can be read back with read/1
provided the currently active operator declarations are identical.

SWI-Prolog 6.0 Reference Manual

4.18. TERM READING AND WRITING 137

writeq(+Stream, +Term) [ISO]

Write Term to Stream, inserting quotes.

print(+Term)
Prints Term on the current output stream similar to write/1, but for each (sub)term of Term
first the dynamic predicate portray/1 is called. If this predicate succeeds print as-
sumes the (sub)term has been written. This allows for user defined term writing. See also
portray text.

print(+Stream, +Term)
Print Term to Stream.

portray(+Term)
A dynamic predicate, which can be defined by the user to change the behaviour of print/1
on (sub)terms. For each subterm encountered that is not a variable print/1 first calls
portray/1 using the term as argument. For lists only the list as a whole is given to
portray/1. If portray succeeds print/1 assumes the term has been written.

read(-Term) [ISO]

Read the next Prolog term from the current input stream and unify it with Term. On a syntax
error read/1 displays an error message, attempts to skip the erroneous term and fails. On
reaching end-of-file Term is unified with the atom end of file.

read(+Stream, -Term) [ISO]

Read Term from Stream.

read clause(-Term)
Equivalent to read/1, but warns the user for variables only occurring once in a
term (singleton variables, see section 2.15.1) which do not start with an underscore
if style check(singleton) is active (default). Used to read Prolog source
files (see consult/1). New code should use read term/2 with the option
singletons(warning).

read clause(+Stream, -Term)
Read a clause from Stream. See read clause/1.

read term(-Term, +Options) [ISO]

Read a term from the current input stream and unify the term with Term. The reading is con-
trolled by options from the list of Options. If this list is empty, the behaviour is the same as
for read/1. The options are upward compatible with Quintus Prolog. The argument order
is according to the ISO standard. Syntax-errors are always reported using exception-handling
(see catch/3). Options:

backquoted string(Bool)
If true, read ‘. . .‘ to a string object (see section 4.22). The default depends on the
Prolog flag backquoted string.

character escapes(Bool)
Defines how to read \ escape-sequences in quoted atoms. See the Prolog flags
character escapes, current prolog flag/2. (SWI-Prolog).

SWI-Prolog 6.0 Reference Manual

138 CHAPTER 4. BUILT-IN PREDICATES

comments(-Comments)
Unify Comments with a list of Position-Comment, where Position is a stream-position
object (see stream position data/3) indicating the start of a comment and
Comment is a string-object containing the text including delimiters of a comment. It
returns all comments from where the read term/2 call started up to the end of the
term read.

cycles(Bool)
If true (default false), re-instantiate templates as produced by the corresponding
write term/2 option. Note that the default is false to avoid mis-interpretation
of @(Template, Substutions), while the default of write term/2 is true because
emitting cyclic terms without using the template construct produces an infinitely large
term (read: it will generate an error after producing a huge amount of output).

double quotes(Atom)
Defines how to read ”. . . ” strings. See the Prolog flag double quotes. (SWI-Prolog).

module(Module)
Specify Module for operators, character escapes flag and double quotes flag.
The value of the latter two is overruled if the corresponding read term/3 option is
provided. If no module is specified, the current ‘source-module’ is used. (SWI-Prolog).

singletons(Vars)
As variable names, but only reports the variables occurring only once in the Term
read. Variables starting with an underscore (‘ ’) are not included in this list. (ISO). If Vars
is the constant warning, singleton variables are reported using print message/2.

syntax errors(Atom)
If error (default), throw and exception on a syntax error. Other values are fail, which
causes a message to be printed using print message/2, after which the predicate
fails, quiet which causes the predicate to fail silently and dec10 which causes syntax
errors to be printed, after which read term/[2,3] continues reading the next term.
Using dec10, read term/[2,3] never fails. (Quintus, SICStus).

subterm positions(TermPos)
Describes the detailed layout of the term. The formats for the various types of terms is
given below. All positions are character positions. If the input is related to a normal
stream, these positions are relative to the start of the input, when reading from the
terminal, they are relative to the start of the term.

From-To
Used for primitive types (atoms, numbers, variables).

string position(From, To)
Used to indicate the position of a string enclosed in double quotes (").

brace term position(From, To, Arg)
Term of the form {...}, as used in DCG rules. Arg describes the argument.

list position(From, To, Elms, Tail)
A list. Elms describes the positions of the elements. If the list specifies the tail as
|〈TailTerm〉, Tail is unified with the term-position of the tail, otherwise with the
atom none.

term position(From, To, FFrom, FTo, SubPos)
Used for a compound term not matching one of the above. FFrom and FTo describe

SWI-Prolog 6.0 Reference Manual

4.19. ANALYSING AND CONSTRUCTING TERMS 139

the position of the functor. SubPos is a list, each element of which describes the
term-position of the corresponding subterm.

term position(Pos)
Unifies Pos with the starting position of the term read. Pos if of the same format as use by
stream property/2.

variables(Vars)
Unify Vars with a list of variables in the term. The variables appear in the order they have
been read. See also term variables/2. (ISO).

variable names(Vars)
Unify Vars with a list of ‘Name = Var’, where Name is an atom describing the variable
name and Var is a variable that shares with the corresponding variable in Term. (ISO).

read term(+Stream, -Term, +Options) [ISO]

Read term with options from Stream. See read term/2.

read history(+Show, +Help, +Special, +Prompt, -Term, -Bindings)
Similar to read term/2 using the option variable names, but allows for history sub-
stitutions. read history/6 is used by the top level to read the user’s actions. Show is
the command the user should type to show the saved events. Help is the command to get an
overview of the capabilities. Special is a list of commands that are not saved in the history.
Prompt is the first prompt given. Continuation prompts for more lines are determined by
prompt/2. A %w in the prompt is substituted by the event number. See section 2.7 for
available substitutions.

SWI-Prolog calls read history/6 as follows:

read_history(h, ’!h’, [trace], ’%w ?- ’, Goal, Bindings)

prompt(-Old, +New)
Set prompt associated with read/1 and its derivatives. Old is first unified with the current
prompt. On success the prompt will be set to New if this is an atom. Otherwise an error
message is displayed. A prompt is printed if one of the read predicates is called and the cursor
is at the left margin. It is also printed whenever a newline is given and the term has not been
terminated. Prompts are only printed when the current input stream is user.

prompt1(+Prompt)
Sets the prompt for the next line to be read. Continuation lines will be read using the prompt
defined by prompt/2.

4.19 Analysing and Constructing Terms

functor(?Term, ?Name, ?Arity) [ISO]

True when Term is a term with functor Name/Arity. If Term is a variable it is unified with a
new term whose arguments are all different variables (such a term is called a skeleton). If Term
is atomic, Arity will be unified with the integer 0, and Name will be unified with Term. Raises
instantiation error if term is unbound and Name/Arity is insufficiently instantiated.

SWI-Prolog 6.0 Reference Manual

140 CHAPTER 4. BUILT-IN PREDICATES

arg(?Arg, +Term, ?Value) [ISO]

Term should be instantiated to a term, Arg to an integer between 1 and the arity of Term.
Value is unified with the Arg-th argument of Term. Arg may also be unbound. In this case
Value will be unified with the successive arguments of the term. On successful unifica-
tion, Arg is unified with the argument number. Backtracking yields alternative solutions.40

The predicate arg/3 fails silently if Arg = 0 or Arg > arity and raises the exception
domain error(not less then zero, Arg) if Arg < 0.

?Term =.. ?List [ISO]

List is a list which head is the functor of Term and the remaining arguments are the arguments
of the term. Each of the arguments may be a variable, but not both. This predicate is called
‘Univ’. Examples:

?- foo(hello, X) =.. List.

List = [foo, hello, X]

?- Term =.. [baz, foo(1)]

Term = baz(foo(1))

numbervars(+Term, +Start, -End)
Unify the free variables of Term with a term $VAR(N), where N is the number of the variable.
Counting starts at Start. End is unified with the number that should be given to the next
variable. Example:

?- numbervars(foo(A, B, A), 0, End).
A = ’$VAR’(0),
B = ’$VAR’(1),
End = 2.

See also the numbervars option to write term/3 and numbervars/4.

numbervars(+Term, +Start, -End, +Options)
As numbervars/3, but providing the following options:

functor name(+Atom)
Name of the functor to use instead of $VAR.

attvar(+Action)
What to do if an attributed variable is encountered. Options are skip, which causes
numbervars/3 to ignore the attributed variable, bind which causes it to thread it as
a normal variable and assign the next ’$VAR’(N) term to it or (default) error which
raises the a type error exception.41

40The instantiation pattern (-, +, ?) is an extension to ‘standard’ Prolog. Some systems provide genarg/3 that covers
this pattern.

41This behaviour was decided after a long discussion between David Reitter, Richard O’Keefe, Bart Demoen and Tom
Schrijvers.

SWI-Prolog 6.0 Reference Manual

4.19. ANALYSING AND CONSTRUCTING TERMS 141

singletons(+Bool)
If true (default false), numbervars/4 does singleton detection. Singleton variables
are unified with ’$VAR’(’_’), causing them to be printed as _ by write term/2
using the numbervars option. This option is exploited by portray clause/2 and
write canonical/2.42

var number(@Term, -VarNumber)
True if Term is numbered by numbervars/3 and VarNumber is the number given to this
variable. This predicate avoids the need for unification with ’$VAR’(X) and opens the path
for replacing this valid Prolog term by an internal representation that has no textual equivalent.

term variables(+Term, -List)
Unify List with a list of variables, each sharing with a unique variable of Term.43 The variables
in List are ordered in order of appearance traversing Term depth-first and left-to-right. See also
term variables/3. For example:

?- term_variables(a(X, b(Y, X), Z), L).

L = [G367, G366, G371]
X = G367
Y = G366
Z = G371

term variables(+Term, -List, ?Tail)
Difference list version of term variables/2. I.e. Tail is the tail of the variable-list List.

copy term(+In, -Out) [ISO]

Create a version if In with renamed (fresh) variables and unify it to Out. Attributed variables
(see section 6.1) have their attributed copied. The implementation of copy term/2 can deal
with infinite trees (cyclic terms). As pure Prolog cannot distinguish a ground term from another
ground term with exactly the same structure, ground sub-terms are shared between In and Out.
Sharing ground terms does affect setarg/3. SWI-Prolog provides duplicate term/2 to
create a true copy of a term.

4.19.1 Non-logical operations on terms

Prolog is not capable to modify instantiated parts of a term. Lacking that capability makes that lan-
guage much safer, but unfortunately there are problems that suffer severely in terms of time and/or
memory usage. Always try hard to avoid the use of these primitives, but they can be a good alternative
to using dynamic predicates. See also section 6.3, discussing the use of global variables.

setarg(+Arg, +Term, +Value)
Extra-logical predicate. Assigns the Arg-th argument of the compound term Term with the

42BUG: Currently this option is ignored for cyclic terms.
43This predicate used to be called free variables/2. The name term variables/2 is more widely used. The

old predicate is still available from the library backcomp.

SWI-Prolog 6.0 Reference Manual

142 CHAPTER 4. BUILT-IN PREDICATES

given Value. The assignment is undone if backtracking brings the state back into a position
before the setarg/3 call. See also nb setarg/3.

This predicate may be used for destructive assignment to terms, using them as an extra-logical
storage bin. Always try hard to avoid the use of setarg/3 as it is not supported by many
Prolog systems and one has to be very careful about unexpected copying as well as unexpected
not copying of terms. A good practice to improve somewhat on this situation is to make sure that
terms whose arguments are subject to setarg/3 have one unused and unshared variable in
addition to the used arguments. This variable avoids unwanted sharing in e.g., copy term/2
and causes the term to be considered as non-ground.

nb setarg(+Arg, +Term, +Value)
Assigns the Arg-th argument of the compound term Term with the given Value as setarg/3,
but on backtracking the assignment is not reversed. If Value is not atomic, it is duplicated
using duplicate term/2. This predicate uses the same technique as nb setval/2.
We therefore refer to the description of nb setval/2 for details on non-backtrackable
assignment of terms. This predicate is compatible with GNU-Prolog setarg(A,T,V,false),
removing the type-restriction on Value. See also nb linkarg/3. Below is an example for
counting the number of solutions of a goal. Note that this implementation is thread-safe,
reentrant and capable of handling exceptions. Realising these features with a traditional
implementation based on assert/retract or flag/3 is much more complicated.

:- meta_predicate
succeeds_n_times(0, -).

succeeds_n_times(Goal, Times) :-
Counter = counter(0),
(Goal,

arg(1, Counter, N0),
N is N0 + 1,
nb_setarg(1, Counter, N),
fail

; arg(1, Counter, Times)
).

nb linkarg(+Arg, +Term, +Value)
As nb setarg/3, but like nb linkval/2 it does not duplicate Value. Use with extreme
care and consult the documentation of nb linkval/2 before use.

duplicate term(+In, -Out)
Version of copy term/2 that also copies ground terms and therefore ensures destruc-
tive modification using setarg/3 does not affect the copy. See also nb setval/2,
nb linkval/2, nb setarg/3 and nb linkarg/3.

same term(@T1, @T2) [semidet]

True if T1 and T2 are the equivalent and will remain the equivalent, even if setarg/3 is used
on either of them. This means T1 and T2 are the same variable, equivalent atomic data or a
compound term allocated at the same address.

SWI-Prolog 6.0 Reference Manual

4.20. ANALYSING AND CONSTRUCTING ATOMS 143

4.20 Analysing and Constructing Atoms

These predicates convert between Prolog constants and lists of character codes. The predicates
atom codes/2, number codes/2 and name/2 behave the same when converting from a con-
stant to a list of character codes. When converting the other way around, atom codes/2 will
generate an atom, number codes/2 will generate a number or exception and name/2 will return
a number if possible and an atom otherwise.

The ISO standard defines atom chars/2 to describe the ‘broken-up’ atom as a list of one-
character atoms instead of a list of codes. Up-to version 3.2.x, SWI-Prolog’s atom chars/2
behaved, compatible with Quintus and SICStus Prolog, like atom codes. As of 3.3.x SWI-Prolog
atom codes/2 and atom chars/2 are compliant to the ISO standard.

To ease the pain of all variations in the Prolog community, all SWI-Prolog predicates behave as
flexible as possible. This implies the ‘list-side’ accepts either a code-list or a char-list and the ‘atom-
side’ accept all atomic types (atom, number and string).

atom codes(?Atom, ?String) [ISO]

Convert between an atom and a list of character codes. If Atom is instantiated, if will be
translated into a list of character codes and the result is unified with String. If Atom is unbound
and String is a list of character codes, it will Atom will be unified with an atom constructed
from this list.

atom chars(?Atom, ?CharList) [ISO]

As atom codes/2, but CharList is a list of one-character atoms rather than a list of character
codes44.

?- atom_chars(hello, X).

X = [h, e, l, l, o]

char code(?Atom, ?Code) [ISO]

Convert between character and character code for a single character.45

number chars(?Number, ?CharList) [ISO]

Similar to atom chars/2, but converts between a number and its representation as a list of
one-character atoms. Fails with a syntax error if Number is unbound and CharList does
not describe a number. Following the ISO standard, it allows for leading white space (including
newlines) and does not allow for trailing white space.46

number codes(?Number, ?CodeList) [ISO]

As number chars/2, but converts to a list of character codes rather than one-character
atoms. In the mode -, +, both predicates behave identically to improve handling of non-ISO
source.

44Up-to version 3.2.x, atom chars/2 behaved as the current atom codes/2. The current definition is compliant
with the ISO standard

45This is also called atom char/2 in older versions of SWI-Prolog as well as some other Prolog implementations. The
atom char/2 predicate is available from the library backcomp.pl

46ISO also allows for Prolog comments in leading white space. We -and most other implementations- believe this is
incorrect. We also beleive it would have been better not to allow for white space, or to allow for both leading and trailing
white space. Prolog-syntax based conversion can be achieved using format/3 and read from chars/2.

SWI-Prolog 6.0 Reference Manual

144 CHAPTER 4. BUILT-IN PREDICATES

atom number(?Atom, ?Number)
Realises the popular combination of atom codes/2 and number codes/2 to convert
between atom and number (integer or float) in one predicate, avoiding the intermediate list.
Calling in mode +,- to convert numbers represented as atoms is often good style. Converting
numbers to atoms, which in turn are assembled into larger units before communication them to
the outside world is bad style. Consider using streams or with output to/2 to reduce the
number of expensive intermediate atoms.

name(?AtomOrInt, ?String)
String is a list of character codes representing the same text as Atom. Each of the arguments
may be a variable, but not both. When String is bound to an character code list describing an
integer and Atom is a variable Atom will be unified with the integer value described by String
(e.g., ‘name(N, "300"), 400 is N + 100’ succeeds). New code should consider
using the ISO predicates atom codes/2 or number codes/2.47

term to atom(?Term, ?Atom)
True if Atom describes a term that unifies with Term. When Atom is instantiated Atom is
converted and then unified with Term. If Atom has no valid syntax, a syntax error
exception is raised. Otherwise Term is “written” on Atom using write term/2 with the
option quoted(true). See also format/3 and with output to/2.

atom to term(+Atom, -Term, -Bindings)
Use Atom as input to read term/2 using the option variable names and return the read
term in Term and the variable bindings in Bindings. Bindings is a list of Name = Var couples,
thus providing access to the actual variable names. See also read term/2. If Atom has no
valid syntax, a syntax error exception is raised.

atom concat(?Atom1, ?Atom2, ?Atom3) [ISO]

Atom3 forms the concatenation of Atom1 and Atom2. At least two of the arguments must be
instantiated to atoms. This predicate also allows for the mode (-,-,+), non-deterministically
splitting the 3-th argument into two parts (as append/3 does for lists). SWI-Prolog allows
for atomic arguments. Portable code must use atomic concat/3 if non-atom arguments
are involved.

atomic concat(+Atomic1, +Atomic2, -Atom)
Atom represents the text after converting Atomic1 and Atomic2 to text and concatenating the
result:

?- atomic_concat(name, 42, X).
X = name42.

atomic list concat(+List, -Atom) [commons]

List is a list of atoms, integers or floating point numbers. Succeeds if Atom can be unified with
the concatenated elements of List.

47Unfortunately, the ISO predicates provide no neat way to check that a string can be interpreted as a number. The
most sensible way is to use catch/3 to catch the exception from number codes/2, however this is both slow and
cumbersome.

SWI-Prolog 6.0 Reference Manual

4.21. CHARACTER PROPERTIES 145

atomic list concat(+List, +Separator, ?Atom) [commons]

Creates an atom just like atomic list concat/2, but inserts Separator between each pair
of atoms. For example:

?- atomic_list_concat([gnu, gnat], ’, ’, A).

A = ’gnu, gnat’

The SWI-Prolog version of this predicate can also be used to split atoms by instantiating Sepa-
rator and Atom as shown below. We kept this functionality to simplify porting old SWI-Prolog
code where this predicate was called concat atom/3.

?- atomic_list_concat(L, -, ’gnu-gnat’).

L = [gnu, gnat]

atom length(+Atom, -Length) [ISO]

True if Atom is an atom of Length characters long. The SWI-Prolog version accepts all atomic
types, as well as code-lists and character-lists. New code should avoid this feature and use
write length/3 to get the number of characters that would be written if the argument was
handed to write term/3.

atom prefix(+Atom, +Prefix) [deprecated]

True if Atom starts with the characters from Prefix. Its behaviour is equivalent to
?- sub atom(Atom, 0, , , Prefix). Deprecated.

sub atom(+Atom, ?Before, ?Len, ?After, ?Sub) [ISO]

ISO predicate for breaking atoms. It maintains the following relation: Sub is a sub-atom of
Atom that starts at Before, has Len characters and Atom contains After characters after the
match.

?- sub_atom(abc, 1, 1, A, S).

A = 1, S = b

The implementation minimises non-determinism and creation of atoms. This is a very flexible
predicate that can do search, prefix- and suffix-matching, etc.

4.21 Character properties

SWI-Prolog offers two comprehensive predicates for classifying characters and character-codes.
These predicates are defined as built-in predicates to exploit the C-character classification’s handling
of locale (handling of local character-sets). These predicates are fast, logical and deterministic if
applicable.

In addition, there is the library ctype providing compatibility with some other Prolog systems.
The predicates of this library are defined in terms of code type/2.

SWI-Prolog 6.0 Reference Manual

146 CHAPTER 4. BUILT-IN PREDICATES

char type(?Char, ?Type)
Tests or generates alternative Types or Chars. The character-types are inspired by the standard
C <ctype.h> primitives.

alnum
Char is a letter (upper- or lowercase) or digit.

alpha
Char is a letter (upper- or lowercase).

csym
Char is a letter (upper- or lowercase), digit or the underscore (_). These are valid C- and
Prolog symbol characters.

csymf
Char is a letter (upper- or lowercase) or the underscore (_). These are valid first characters
for C- and Prolog symbols

ascii
Char is a 7-bits ASCII character (0..127).

white
Char is a space or tab. E.i. white space inside a line.

cntrl
Char is an ASCII control-character (0..31).

digit
Char is a digit.

digit(Weigth)
Char is a digit with value Weigth. I.e. char type(X, digit(6) yields X = ’6’.
Useful for parsing numbers.

xdigit(Weigth)
Char is a hexa-decimal digit with value Weigth. I.e. char type(a, xdigit(X)
yields X = ’10’. Useful for parsing numbers.

graph
Char produces a visible mark on a page when printed. Note that the space is not included!

lower
Char is a lower-case letter.

lower(Upper)
Char is a lower-case version of Upper. Only true if Char is lowercase and Upper upper-
case.

to lower(Upper)
Char is a lower-case version of Upper. For non-letters, or letter without case, Char and
Lower are the same. See also upcase atom/2 and downcase atom/2.

upper
Char is an upper-case letter.

upper(Lower)
Char is an upper-case version of Lower. Only true if Char is uppercase and Lower lower-
case.

SWI-Prolog 6.0 Reference Manual

4.21. CHARACTER PROPERTIES 147

to upper(Lower)
Char is an upper-case version of Lower. For non-letters, or letter without case, Char and
Lower are the same. See also upcase atom/2 and downcase atom/2.

punct
Char is a punctuation character. This is a graph character that is not a letter or digit.

space
Char is some form of layout character (tab, vertical-tab, newline, etc.).

end of file
Char is -1.

end of line
Char ends a line (ASCII: 10..13).

newline
Char is a the newline character (10).

period
Char counts as the end of a sentence (.,!,?).

quote
Char is a quote-character (", ’, ‘).

paren(Close)
Char is an open-parenthesis and Close is the corresponding close-parenthesis.

code type(?Code, ?Type)
As char type/2, but uses character-codes rather than one-character atoms. Please note
that both predicates are as flexible as possible. They handle either representation if the
argument is instantiated and only will instantiate with an integer code or one-character atom
depending of the version used. See also the Prolog flag double quotes, atom chars/2
and atom codes/2.

4.21.1 Case conversion

There is nothing in the Prolog standard for converting case in textual data. The SWI-Prolog predicates
code type/2 and char type/2 can be used to test and convert individual characters. We have
started some additional support:

downcase atom(+AnyCase, -LowerCase)
Converts the characters of AnyCase into lowercase as char type/2 does (i.e. based on
the defined locale if Prolog provides locale support on the hosting platform) and unifies the
lowercase atom with LowerCase.

upcase atom(+AnyCase, -UpperCase)
Converts, similar to downcase atom/2, an atom to upper-case.

4.21.2 White space normalization

normalize space(-Out, +In)
Normalize white space in In. All leading and trailing white space is removed. All non-empty
sequences for Unicode white space characters are replaces by a single space (\u0020)
character. Out uses the same conventions as with output to/2 and format/3.

SWI-Prolog 6.0 Reference Manual

148 CHAPTER 4. BUILT-IN PREDICATES

4.21.3 Language specific comparison

This section deals with predicates for language specific string comparison operations.

collation key(+Atom, -Key)
Create a Key from Atom for locale specific comparison. The key is defined such that if the
key of atom A precedes the key of atom B in the standard order of terms, A is alphabetically
smaller than B using the sort order of the current locale.

The predicate collation key/2 is used by locale sort/2 from library(sort). Please
examine the implementation of locale sort/2 as an example of using this call.

The Key is an implementation defined and generally unreadable string. On systems that do not
support locale-handling, Key is simply unified with Atom.

locale sort(+List, -Sorted)
Sort a list of atoms using the current locale. List is a list of atoms or string objects (see sec-
tion 4.22). Sorted is unified with a list containing all atoms of List, sorted to the rules of the
current locale. See also collation key/2 and setlocale/3.

4.22 Representing text in strings

SWI-Prolog supports the data type string. Strings are a time and space efficient mechanism to handle
text in Prolog. Strings are stored as a byte array on the global (term) stack and thus destroyed on
backtracking and reclaimed by the garbage collector.

Strings were added to SWI-Prolog based on an early draft of the ISO standard, offering a mech-
anism to represent temporary character data efficiently. As SWI-Prolog strings can handle 0-bytes,
they are frequently used through the foreign language interface (section 9) for storing arbitrary byte-
sequences.

Starting with version 3.3, SWI-Prolog offers garbage collection on the atom-space as well as
representing 0-bytes in atoms. Although strings and atoms still have different features, new code
should consider using atoms to avoid too many representations for text as well as for compatibility
with other Prolog implementations. Below are some of the differences:

• creation
Creating strings is fast, as the data is simply copied to the global stack. Atoms are unique and
therefore more expensive in terms of memory and time to create. On the other hand, if the same
text has to be represented multiple times, atoms are more efficient.

• destruction
Backtracking destroys strings at no cost. They are cheap to handle by the garbage collector,
but it should be noted that extensive use of strings will cause many garbage collections. Atom
garbage collection is generally faster.

String objects by default have no lexical representation and thus can only be created using the
predicates below or through the foreign language interface (See chapter 9. There are two ways to
make read/1 read text into strings, both controlled through Prolog flags. One is by setting the
double quotes flag to string and the other is by setting the backquoted string flag to
true. In latter case, ‘Hello world‘ is read into a string and write term/2 prints strings

SWI-Prolog 6.0 Reference Manual

4.23. OPERATORS 149

between back-quotes if quoted is true. This flag provides compatibility with LPA Prolog string
handling.

string to atom(?String, ?Atom)
Logical conversion between a string and an atom. At least one of the two arguments must be
instantiated. Atom can also be an integer or floating point number.

string to list(?String, ?List)
Logical conversion between a string and a list of character codes characters. At least one of the
two arguments must be instantiated.

string length(+String, -Length)
Unify Length with the number of characters in String. This predicate is functionally equivalent
to atom length/2 and also accepts atoms, integers and floats as its first argument.

string concat(?String1, ?String2, ?String3)
Similar to atom concat/3, but the unbound argument will be unified with a string object
rather than an atom. Also, if both String1 and String2 are unbound and String3 is bound to text,
it breaks String3, unifying the start with String1 and the end with String2 as append does with
lists. Note that this is not particularly fast on long strings as for each redo the system has to
create two entirely new strings, while the list equivalent only creates a single new list-cell and
moves some pointers around.

sub string(+String, ?Start, ?Length, ?After, ?Sub)
Sub is a substring of String starting at Start, with length Length and String has After characters
left after the match. See also sub atom/5.

4.23 Operators

Operators are defined to improve the readability of source-code. For example, without operators, to
write 2*3+4*5 one would have to write +(*(2,3),*(4,5)). In Prolog, a number of operators
have been predefined. All operators, except for the comma (,) can be redefined by the user.

Some care has to be taken before defining new operators. Defining too many operators might
make your source ‘natural’ looking, but at the same time lead to hard to understand the limits of
your syntax. To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the module in which
they are defined. Operators can be exported from modules using a term op(Precedence, Type, Name)
in the export list as specified by module/2. This is an extension specific to SWI-Prolog and the
recommended mechanism if portability is not an important concern.

The module-table of the module user acts as default table for all modules and can be modified
explicitly from inside a module to achieve compatibility with other Prolog systems:

:- module(prove,
[prove/1
]).

:- op(900, xfx, user:(=>)).

SWI-Prolog 6.0 Reference Manual

150 CHAPTER 4. BUILT-IN PREDICATES

Unlike what many users think, operators and quoted atoms have no relation: defining an atom as an
operator does not influence parsing characters into atoms and quoting an atom does not stop it from
acting as an operator. To stop an atom acting as an operator, enclose it in braces like this: (myop).

op(+Precedence, +Type, :Name) [ISO]

Declare Name to be an operator of type Type with precedence Precedence. Name can also be
a list of names, in which case all elements of the list are declared to be identical operators.
Precedence is an integer between 0 and 1200. Precedence 0 removes the declaration. Type is
one of: xf, yf, xfx, xfy, yfx, fy or fx. The ‘f’ indicates the position of the functor, while
x and y indicate the position of the arguments. ‘y’ should be interpreted as “on this position a
term with precedence lower or equal to the precedence of the functor should occur”. For ‘x’
the precedence of the argument must be strictly lower. The precedence of a term is 0, unless its
principal functor is an operator, in which case the precedence is the precedence of this operator.
A term enclosed in brackets (...) has precedence 0.

The predefined operators are shown in table 4.2. Operators can be redefined, unless prohibited
by one of the limitations below. Applications must be careful with (re-)defining operators be-
cause changing operators may cause (other) files to be interpreted differently. Often this will
lead to a syntax error. In other cases, text is read silently into a different term which may lead
to subtle and difficult to track errors.

• It is not allowed to redefine the comma (’,’).

• The bar (|) can only be (re-)defined as infix operator with priority not less than 1001.

• It is not allowed to define the empty list ([]) or the curly-bracket-pair ({}) as operators.

In SWI-Prolog, operators are local to a module (see also section 5.8). Keeping operators in
modules and using controlled import/export of operators as described with the module/2 di-
rective keep the issues manageable. The module system provides the operators from table 4.2
and these operators cannot be modified. Files that are loaded from the SWI-Prolog directories
resolve operators and predicates from this system module rather than user which makes the
semantics of the library and development system modules independent from operator changes
to the user module.

current op(?Precedence, ?Type, ?:Name) [ISO]

True if Name is currently defined as an operator of type Type with precedence Precedence. See
also op/3.

4.24 Character Conversion

Although I wouldn’t really know for what you would like to use these features, they are provided for
ISO compliance.

char conversion(+CharIn, +CharOut) [ISO]

Define that term-input (see read term/3) maps each character read as CharIn to the charac-
ter CharOut. Character conversion is only executed if the Prolog flag char conversion is
set to true and not inside quoted atoms or strings. The initial table maps each character onto
itself. See also current char conversion/2.

SWI-Prolog 6.0 Reference Manual

4.25. ARITHMETIC 151

1200 xfx -->, :-
1200 fx :-, ?-
1150 fx dynamic, discontiguous, initialization,

meta predicate, module transparent, multifile,
thread local, volatile

1100 xfy ;, |
1050 xfy ->, op*->
1000 xfy ,

900 fy \+
900 fx ˜
700 xfx <, =, =.., =@=, =:=, =<, ==, =\=, >, >=, @<, @=<, @>, @>=,

\=, \==, is
600 xfy :
500 yfx +, -, /\, \/, xor
500 fx ?
400 yfx *, /, //, rdiv, <<, >>, mod, rem
200 xfx **
200 xfy ˆ
200 fy +, -, \

Table 4.2: System operators

current char conversion(?CharIn, ?CharOut) [ISO]

Queries the current character conversion-table. See char conversion/2 for details.

4.25 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general pred-
icates for integer, floating point and rational arithmetic as appropriate. The general arithmetic predi-
cates all handle expressions. An expression is either a simple number or a function. The arguments of
a function are expressions. The functions are described in section 4.25.2.

4.25.1 Special purpose integer arithmetic

The predicates in this section provide more logical operations between integers. They are not covered
by the ISO standard, although they are ‘part of the community’ and found as either library or built-in
in many other Prolog systems.

between(+Low, +High, ?Value)
Low and High are integers, High ≥ Low. If Value is an integer, Low ≤ Value ≤ High. When
Value is a variable it is successively bound to all integers between Low and High. If High
is inf or infinite48 between/3 is true iff Value ≥ Low, a feature that is particularly
interesting for generating integers from a certain value.

48We prefer infinite, but some other Prolog systems already use inf for infinity we accept both for the time being.

SWI-Prolog 6.0 Reference Manual

152 CHAPTER 4. BUILT-IN PREDICATES

succ(?Int1, ?Int2)
True if Int2 = Int1 + 1 and Int1 ≥ 0. At least one of the arguments must be instantiated to a
natural number. This predicate raises the domain-error not less than zero if called with
a negative integer. E.g. succ(X, 0) fails silently and succ(X, -1) raises a domain-error.49

plus(?Int1, ?Int2, ?Int3)
True if Int3 = Int1 + Int2. At least two of the three arguments must be instantiated to integers.

4.25.2 General purpose arithmetic

The general arithmetic predicates are optionally compiled (see set prolog flag/2 and the -O
command line option). Compiled arithmetic reduces global stack requirements and improves perfor-
mance. Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

+Expr1 > +Expr2 [ISO]

True if expression Expr1 evaluates to a larger number than Expr2.

+Expr1 < +Expr2 [ISO]

True if expression Expr1 evaluates to a smaller number than Expr2.

+Expr1 =< +Expr2 [ISO]

True if expression Expr1 evaluates to a smaller or equal number to Expr2.

+Expr1 >= +Expr2 [ISO]

True if expression Expr1 evaluates to a larger or equal number to Expr2.

+Expr1 =\= +Expr2 [ISO]

True if expression Expr1 evaluates to a number non-equal to Expr2.

+Expr1 =:= +Expr2 [ISO]

True if expression Expr1 evaluates to a number equal to Expr2.

-Number is +Expr [ISO]

True when Number is the value to which Expr evaluates. Typically, is/2 should be used with
unbound left operand. If equality is to be tested, =:=/2 should be used. For example:

?- 1 is sin(pi/2). Fails!. sin(pi/2) evaluates to the float 1.0,
which does not unify with the integer 1.

?- 1 =:= sin(pi/2). Succeeds as expected.

Arithmetic types

SWI-Prolog defines the following numeric types:

• integer
If SWI-Prolog is built using the GNU multiple precision arithmetic library (GMP), integer
arithmetic is unbounded, which means that the size of integers is limited by available memory
only. Without GMP, SWI-Prolog integers are 64-bits, regardless of the native integer size of

49The behaviour to deal with natural numbers only was defined by Richard O’Keefe to support the common count-down-
to-zero in a natural way. Up-to 5.1.8 succ/2 also accepted negative integers.

SWI-Prolog 6.0 Reference Manual

4.25. ARITHMETIC 153

the platform. The type of integer support can be detected using the Prolog flags bounded,
min integer and max integer. As the use of GMP is default, most of the following
descriptions assume unbounded integer arithmetic.

Internally, SWI-Prolog has three integer representations. Small integers (defined by the Prolog
flag max tagged integer) are encoded directly. Larger integers are represented as 64-bit
value on the global stack. Integers that do not fit in 64-bit are represented as serialised GNU
MPZ structures on the global stack.

• rational number
Rational numbers (Q) are quotients of two integers. Rational arithmetic is only provided if
GMP is used (see above). Rational numbers are currently not supported by a Prolog type. They
are represented by the compound term rdiv(N,M). Rational numbers that are returned from
is/2 are canonical, which means M is positive and N and M have no common divisors. Ra-
tional numbers are introduced in the computation using the rational/1, rationalize/1
or the rdiv/2 (rational division) function. Using the same functor for rational division and
representing rational numbers allow for passing rational numbers between computations as well
as to format/3 for printing.

On the long term it is likely that rational numbers will become atomic as well as subtype of
number. User code that creates or inspects the rdiv(M,N) terms will not be portable to future
versions. Rationals are created using one of the functions mentioned above and inspected using
rational/3.

• float
Floating point numbers are represented using the C-type double. On most today platforms
these are 64-bit IEEE floating point numbers.

Arithmetic functions that require integer arguments accept, in addition to integers, rational num-
bers with (canonical) denominator ‘1’. If the required argument is a float the argument is converted to
float. Note that conversion of integers to floating point numbers may raise an overflow exception. In
all other cases, arguments are converted to the same type using the order below.

integer→ rational number→ floating point number

Rational number examples

The use of rational numbers with unbounded integers allows for exact integer or fixed point arith-
metic under the addition, subtraction, multiplication and division. To exploit rational arithmetic
rdiv/2 should be used instead of ‘/’ and floating point numbers must be converted to rational using
rational/1. Omitting the rational/1 on floats will convert a rational operand to float and
continue the arithmetic using floating point numbers. Here are some examples.

A is 2 rdiv 6 A = 1 rdiv 3
A is 4 rdiv 3 + 1 A = 7 rdiv 3
A is 4 rdiv 3 + 1.5 A = 2.83333
A is 4 rdiv 3 + rational(1.5) A = 17 rdiv 6

Note that floats cannot represent all decimal numbers exactly. The function rational/1 creates
an exact equivalent of the float, while rationalize/1 creates a rational number that is within the

SWI-Prolog 6.0 Reference Manual

154 CHAPTER 4. BUILT-IN PREDICATES

float rounding error from the original float. Please check the documentation of these functions for
details and examples.

Rational numbers can be printed as decimal numbers with arbitrary precision using the
format/3 floating point conversion:

?- A is 4 rdiv 3 + rational(1.5),
format(’˜50f˜n’, [A]).

2.8333

A = 17 rdiv 6

Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described in sec-
tion 4.25.2. There are four types of arguments to functions:

Expr Arbitrary expression, returning either a floating point value or an
integer.

IntExpr Arbitrary expression that must evaluate into an integer.
RatExpr Arbitrary expression that must evaluate into a rational number.
FloatExpr Arbitrary expression that must evaluate into a floating point.

For systems using bounded integer arithmetic (default is unbounded, see section 4.25.2 for de-
tails), integer operations that would cause overflow automatically convert to floating point arithmetic.

- +Expr [ISO]

Result = −Expr

+ +Expr
Result = Expr. Note that if + is followed by a number the parser discards the +. I.e.
?- integer(+1) succeeds.

+Expr1 + +Expr2 [ISO]

Result = Expr1 + Expr2

+Expr1 - +Expr2 [ISO]

Result = Expr1− Expr2

+Expr1 * +Expr2 [ISO]

Result = Expr1× Expr2

+Expr1 / +Expr2 [ISO]

Result =
Expr1
Expr2 The the flag iso is true, both arguments are converted to float and the

return value is a float. Otherwise (default), if both arguments are integers the operation returns
an integer if the division is exact. If at least one of the arguments is rational and the other
argument is integer, the operation returns a rational number. In all other cases the return value
is a float. See also ///2 and rdiv/2.

SWI-Prolog 6.0 Reference Manual

4.25. ARITHMETIC 155

+IntExpr1 mod +IntExpr2 [ISO]

Modulo, defined as Result = IntExpr1 - (IntExpr1 div IntExpr2) × IntExpr2, where div is
floored division.

+IntExpr1 rem +IntExpr2 [ISO]

Remainder of integer division. Behaves as if defined by
Result is IntExpr1 - (IntExpr1 // IntExpr2) × IntExpr2

+IntExpr1 // +IntExpr2 [ISO]

Integer division, defined as Result is rndI (Expr1/Expr2). The function rndI is
the default rounding used by the C-compiler and available through the Prolog flag
integer rounding function. In the C99 standard, C-rounding is defined as
towards zero.50

div(+IntExpr1, +IntExpr2) [ISO]

Integer division, defined as Result is (IntExpr1− IntExpr1modIntExpr2)//IntExpr2.
In other words, this is integer division that rounds towards -infinity. This function guarantees
behaviour that is consistent with mod/2, i.e., the following holds for every pair of integers
X,Y where Y =\= 0.

Q is div(X, Y),
M is mod(X, Y),
X =:= Y*Q+M.

+RatExpr rdiv +RatExpr
Rational number division. This function is only available if SWI-Prolog has been compiled
with rational number support. See section 4.25.2 for details.

+IntExpr1 gcd +IntExpr2
Result is the greatest common divisor of IntExpr1, IntExpr2.

abs(+Expr) [ISO]

Evaluate Expr and return the absolute value of it.

sign(+Expr) [ISO]

Evaluate to -1 if Expr < 0, 1 if Expr > 0 and 0 if Expr = 0.

max(+Expr1, +Expr2)
Evaluates to the largest of both Expr1 and Expr2. Both arguments are compared after con-
verting to the same type, but the return value is in the original type. For example, max(2.5, 3)
compares the two values after converting to float, but returns the integer 3.

min(+Expr1, +Expr2)
Evaluates to the smallest of both Expr1 and Expr2. See max/2 for a description of type-
handling.

50Future versions might guarantee rounding towards zero.

SWI-Prolog 6.0 Reference Manual

156 CHAPTER 4. BUILT-IN PREDICATES

.(+Int, [])
A list of one element evaluates to the element. This implies "a" evaluates to the character
code of the letter ‘a’ (97). This option is available for compatibility only. It will not work if
‘style check(+string)’ is active as "a" will then be transformed into a string object.
The recommended way to specify the character code of the letter ‘a’ is 0’a.

random(+IntExpr)
Evaluates to a random integer i for which 0 ≤ i < IntExpr. The system has two implementa-
tions. If it is compiled with support for unbounded arithmetic (default) it uses the GMP-library
random functions. In this case, each thread keeps its own random state. The default algorithm
is the Mersenne Twister algorithm. The seed is set when the first random number in a thread
is generated. If available, it is set from /dev/random. Otherwise it is set from the system
clock. If unbounded arithmetic is not supported, random numbers are shared between threads
and the seed is initialised from the clock when SWI-Prolog was started. The predicate
set random/1 can be used to control the random number generator.

random float
Evaluates to a random float I for which 0.0 ≤ i < 1.0. This function shares the ran-
dom state with random/1. All remarks with the function random/1 also apply for
random float/0.

round(+Expr) [ISO]

Evaluates Expr and rounds the result to the nearest integer.

integer(+Expr)
Same as round/1 (backward compatibility).

float(+Expr) [ISO]

Translate the result to a floating point number. Normally, Prolog will use integers whenever
possible. When used around the 2nd argument of is/2, the result will be returned as a floating
point number. In other contexts, the operation has no effect.

rational(+Expr)
Convert the Expr to a rational number or integer. The function returns the input on integers
and rational numbers. For floating point numbers, the returned rational number exactly
represents the float. As floats cannot exactly represent all decimal numbers the results may be
surprising. In the examples below, doubles can represent 0.25 and the result is as expected, in
contrast to the result of rational(0.1). The function rationalize/1 remedies this. See
section 4.25.2 for more information on rational number support.

?- A is rational(0.25).

A is 1 rdiv 4
?- A is rational(0.1).
A = 3602879701896397 rdiv 36028797018963968

rationalize(+Expr)
Convert the Expr to a rational number or integer. The function is similar to rational/1,

SWI-Prolog 6.0 Reference Manual

4.25. ARITHMETIC 157

but the result is only accurate within the rounding error of floating point numbers, generally
producing a much smaller denominator.51

?- A is rationalize(0.25).

A = 1 rdiv 4
?- A is rationalize(0.1).

A = 1 rdiv 10

float fractional part(+Expr) [ISO]

Fractional part of a floating-point number. Negative if Expr is negative, rational
if Expr is rational and 0 if Expr is integer. The following relation is always true:
Xisfloatfractionalpart(X) + floatintegerpart(X).

float integer part(+Expr) [ISO]

Integer part of floating-point number. Negative if Expr is negative, Expr if Expr is integer.

truncate(+Expr) [ISO]

Truncate Expr to an integer. If Expr ≥ 0 this is the same as floor(Expr). For Expr < 0 this is
the same as ceil(Expr). E.i. truncate rounds towards zero.

floor(+Expr) [ISO]

Evaluates Expr and returns the largest integer smaller or equal to the result of the evaluation.

ceiling(+Expr) [ISO]

Evaluates Expr and returns the smallest integer larger or equal to the result of the evaluation.

ceil(+Expr)
Same as ceiling/1 (backward compatibility).

+IntExpr >> +IntExpr [ISO]

Bitwise shift IntExpr1 by IntExpr2 bits to the right. The operation performs arithmetic shift,
which implies that the inserted most significant bits are copies of the original most significant
bit.

+IntExpr << +IntExpr [ISO]

Bitwise shift IntExpr1 by IntExpr2 bits to the left.

+IntExpr \/ +IntExpr [ISO]

Bitwise ‘or’ IntExpr1 and IntExpr2.

+IntExpr /\ +IntExpr [ISO]

Bitwise ‘and’ IntExpr1 and IntExpr2.

+IntExpr xor +IntExpr [ISO]

Bitwise ‘exclusive or’ IntExpr1 and IntExpr2.

51The names rational/1 and rationalize/1 as well as their semantics are inspired by Common Lisp.

SWI-Prolog 6.0 Reference Manual

158 CHAPTER 4. BUILT-IN PREDICATES

\ +IntExpr [ISO]

Bitwise negation. The returned value is the one’s complement of IntExpr.

sqrt(+Expr) [ISO]

Result =
√

Expr

sin(+Expr) [ISO]

Result = sinExpr. Expr is the angle in radians.

cos(+Expr) [ISO]

Result = cosExpr. Expr is the angle in radians.

tan(+Expr)
Result = tanExpr. Expr is the angle in radians.

asin(+Expr)
Result = arcsinExpr. Result is the angle in radians.

acos(+Expr)
Result = arccosExpr. Result is the angle in radians.

atan(+Expr) [ISO]

Result = arctanExpr. Result is the angle in radians.

atan2(+YExpr, +XExpr) [ISO]

Result = arctan
YExpr
XExpr . Result is the angle in radians. The return value is in the range

[−π . . . π]. Used to convert between rectangular and polar coordinate system.

atan(+YExpr, +XExpr)
Same as atan2/2 (backward compatibility).

log(+Expr) [ISO]

Natural logarithm. Result = lnExpr

log10(+Expr)
Base-10 logarithm. Result = lgExpr

exp(+Expr) [ISO]

Result = eExpr

+Expr1 ** +Expr2 [ISO]

Result = Expr1Expr2. With unbounded integers and integer values for Expr1 and a non-
negative integer Expr2, the result is always integer. The integer expressions 0I , 1I and −1I are
guaranteed to work for any integer I . Other integer base values generate a resource error if
the result does not fit in memory.

powm(+IntExprBase, +IntExprExp, +IntExprMod)
Result = (IntExprBaseIntExprExp) modulo IntExprMod. Only available when compiled with
unbounded integer support. This formula is required for Diffie-Hellman key-exchange, a
technique where two parties can establish a secret key over a public network.

SWI-Prolog 6.0 Reference Manual

4.26. MISC ARITHMETIC SUPPORT PREDICATES 159

+Expr1 ˆ +Expr2
Same as **/2 (backward compatibility).

pi
Evaluates to the mathematical constant π (3.14159. . .).

e
Evaluates to the mathematical constant e (2.71828. . .).

epsilon
Evaluates to the the difference between the float 1.0 and the first larger floating point number.

cputime
Evaluates to a floating point number expressing the CPU time (in seconds) used by Prolog up
till now. See also statistics/2 and time/1.

eval(+Expr)
Evaluate Expr. Although ISO standard dictates that A=1+2, B is A works and unifies B to 3,
it is widely felt that source-level variables in arithmetic expressions should have been limited
to numbers. In this view the eval function can be used to evaluate arbitrary expressions.52

Bitvector functions The functions below are not covered by the standard. The msb/1 function is
compatible with hProlog. The others are private extensions that improve handling of —unbounded—
integers as bit-vectors.

msb(+IntExpr)
Return the largest integer N such that (IntExpr >> N) /\ 1 =:= 1. This is the (zero-
origin) index of the most significant 1 bit in the value of IntExpr, which must evaluate to a
positive integer. Errors for 0, negative integers, and non-integers.

lsb(+IntExpr)
Return the smallest integer N such that (IntExpr >> N) /\ 1 =:= 1. This is the
(zero-origin) index of the least significant 1 bit in the value of IntExpr, which must evaluate to
a positive integer. Errors for 0, negative integers, and non-integers.

popcount(+IntExpr)
Return the number of 1s in the binary representation of the non-negative integer IntExpr.

4.26 Misc arithmetic support predicates

set random(+Option)
Controls the random number generator that accessible through the function random/1. Note
that the library random provides distinct support for random numbers that is not affected by
set random/1.

seed(+Seed)
Set the seed of the random generator for this thread. Seed is an integer or the atom
random. If random, repeat the initialization procedure described with the function
random/1. Here is an example:

52The eval/1 function was first introduced by ECLiPSe and is under consideration for YAP.

SWI-Prolog 6.0 Reference Manual

160 CHAPTER 4. BUILT-IN PREDICATES

?- set_random(seed(111)), A is random(6).
A = 5.
?- set_random(seed(111)), A is random(6).
A = 5.

state(+State)
Set the generator to a state fetched using the state property of random property/1.
Using other values may lead to undefined behaviour.53

random property(?Option)
True when Option is a current property of the random generator. Currently, this predicate
provides access to the state. This predicate is not present on systems where the state is
inaccessible.

state(-State)
Describes the current state of the random generator. State is a normal Prolog term that can
be asserted or written to a file. Applications should make no other assumptions about its
representation. The only meaningful operation is to use as argument to set random/1
using the state(State) option.54

current arithmetic function(Head)
True if Head is an evaluable function. For example:

?- current_arithmetic_function(sin(_)).
true.

4.27 Built-in list operations

Most list operations are defined in the library lists described in section A.12. Some that are imple-
mented with more low-level primitives are built-in and described here.

is list(+Term)
True if Term is bound to the empty list ([]) or a term with functor ‘.’ and arity 2 and the
second argument is a list.55 This predicate acts as if defined by the definition below on acyclic
terms. The implementation fails safely if Term represents a cyclic list.

is_list(X) :-
var(X), !,

53The limitations of the underlying (GMP) library are unknown, which makes it impossible to validate the State.
54BUG: GMP provides no portable mechanism to fetch and restore the state. The current implementation works, but the

state depends on the platform. I.e., it is generally not possible to reuse the state with another version of GMP or on a CPU
with different datasizes or endian-ness.

55In versions before 5.0.1, is list/1 just checked for [] or [|] and proper list/1 had the role of the current
is list/1. The current definition conforms to the de-facto standard. Assuming proper coding standards, there should
only be very few cases where a quick-and-dirty is list/1 is a good choice. Richard O’Keefe pointed at this issue.

SWI-Prolog 6.0 Reference Manual

4.28. FINDING ALL SOLUTIONS TO A GOAL 161

fail.
is_list([]).
is_list([_|T]) :-

is_list(T).

memberchk(?Elem, +List)
Same as once(member(Elem, List)). See member/2.

length(?List, ?Int)
True if Int represents the number of elements of list List. This predicate is a true relation and
can be used to find the length of a list or produce a list (holding variables) of length Int. The
predicate is non-deterministic, producing lists of increasing length if List is a partial list and Int
is unbound. It raises errors if List is not a list or partial list or Int is not an integer or unbound.

sort(+List, -Sorted)
True if Sorted can be unified with a list holding the elements of List, sorted to the standard
order of terms (see section 4.6). Duplicates are removed. The implementation is in C, using
natural merge sort.56 The sort/2 predicate can sort a cyclic list, returning a non-cyclic
version with the same elements.

msort(+List, -Sorted)
Equivalent to sort/2, but does not remove duplicates. Raises a type error if List is a
cyclic list or not a list.

keysort(+List, -Sorted)
List is a proper list whose elements are Key-Value, that is, terms whose principal functor is
(-)/2, whose first argument is the sorting key, and whose second argument is the satellite data
to be carried along with the key. keysort/2 sorts List like msort/2, but only compares the
keys. It is used to sort terms not on standard order, but on any criterion that can be expressed on
a multi-dimensional scale. Sorting on more than one criterion can be done using terms as keys,
putting the first criterion as argument 1, the second as argument 2, etc. The order of multiple
elements that have the same Key is not changed. The implementation is in C, using natural
merge sort. Fails with a type error if List is a cyclic list or not a list or one of the elements
of List is not a pair.

predsort(+Pred, +List, -Sorted)
Sorts similar to sort/2, but determines the order of two terms by calling
Pred(-Delta, +E1, +E2). This call must unify Delta with one of <, > or =. If built-in
predicate compare/3 is used, the result is the same as sort/2. See also keysort/2.57

4.28 Finding all Solutions to a Goal

findall(+Template, :Goal, -Bag) [ISO]

Creates a list of the instantiations Template gets successively on backtracking over Goal and
unifies the result with Bag. Succeeds with an empty list if Goal has no solutions. findall/3

56Contributed by Richard O’Keefe.
57Please note that the semantics have changed between 3.1.1 and 3.1.2

SWI-Prolog 6.0 Reference Manual

162 CHAPTER 4. BUILT-IN PREDICATES

is equivalent to bagof/3 with all free variables bound with the existential operator (ˆ), except
that bagof/3 fails when goal has no solutions.

findall(+Template, :Goal, -Bag, +Tail)
As findall/3, but returns the result as the difference-list Bag-Tail. The 3-argument version
is defined as

findall(Templ, Goal, Bag) :-
findall(Templ, Goal, Bag, [])

bagof(+Template, :Goal, -Bag) [ISO]

Unify Bag with the alternatives of Template, if Goal has free variables besides the one sharing
with Template bagof will backtrack over the alternatives of these free variables, unifying Bag
with the corresponding alternatives of Template. The construct +VarˆGoal tells bagof not to
bind Var in Goal. bagof/3 fails if Goal has no solutions.

The example below illustrates bagof/3 and the ˆ operator. The variable bindings are printed
together on one line to save paper.

2 ?- listing(foo).

foo(a, b, c).
foo(a, b, d).
foo(b, c, e).
foo(b, c, f).
foo(c, c, g).

Yes
3 ?- bagof(C, foo(A, B, C), Cs).

A = a, B = b, C = G308, Cs = [c, d] ;
A = b, B = c, C = G308, Cs = [e, f] ;
A = c, B = c, C = G308, Cs = [g] ;

No
4 ?- bagof(C, Aˆfoo(A, B, C), Cs).

A = G324, B = b, C = G326, Cs = [c, d] ;
A = G324, B = c, C = G326, Cs = [e, f, g] ;

No
5 ?-

setof(+Template, +Goal, -Set) [ISO]

Equivalent to bagof/3, but sorts the result using sort/2 to get a sorted list of alternatives
without duplicates.

SWI-Prolog 6.0 Reference Manual

4.29. FORALL 163

4.29 Forall

forall(:Cond, :Action) [semidet]

For all alternative bindings of Cond Action can be proven. The example verifies that all arith-
metic statements in the list L are correct. It does not say which is wrong if one proves
wrong.

?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]),
Result =:= Formula).

4.30 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The first is
writef/[1,2], which is compatible with Edinburgh C-Prolog. The second is format/[1,2],
which is compatible with Quintus Prolog. We hope the Prolog community will once define a standard
formatted write predicate. If you want performance use format/[1,2] as this predicate is defined
in C. Otherwise compatibility reasons might tell you which predicate to use.

4.30.1 Writef

writeln(+Term)
Equivalent to write(Term), nl.

writef(+Atom)
Equivalent to writef(Atom, []).

writef(+Format, +Arguments)
Formatted write. Format is an atom whose characters will be printed. Format may contain
certain special character sequences which specify certain formatting and substitution actions.
Arguments then provides all the terms required to be output.

Escape sequences to generate a single special character:

\n Output a newline character (see also nl/[0,1])
\l Output a line separator (same as \n)
\r Output a carriage-return character (ASCII 13)
\t Output the ASCII character TAB (9)
\\ The character \ is output
\% The character % is output
\nnn where 〈nnn〉 is an integer (1-3 digits) the character with

character code 〈nnn〉 is output (NB : 〈nnn〉 is read as dec-
imal)

Note that \l, \nnn and \\ are interpreted differently when character-escapes are in effect. See
section 2.15.1.

Escape sequences to include arguments from Arguments. Each time a % escape sequence is
found in Format the next argument from Arguments is formatted according to the specification.

SWI-Prolog 6.0 Reference Manual

164 CHAPTER 4. BUILT-IN PREDICATES

%t
print/1 the next item (mnemonic: term)

%w
write/1 the next item

%q
writeq/1 the next item

%d Write the term, ignoring operators. See also
write term/2. Mnemonic: old Edinburgh
display/1.

%p
print/1 the next item (identical to %t)

%n Put the next item as a character (i.e., it is a character code)
%r Write the next item N times where N is the second item

(an integer)
%s Write the next item as a String (so it must be a list of char-

acters)
%f Perform a ttyflush/0 (no items used)
%Nc Write the next item Centered in N columns.
%Nl Write the next item Left justified in N columns.
%Nr Write the next item Right justified in N columns. N is a

decimal number with at least one digit. The item must be
an atom, integer, float or string.

swritef(-String, +Format, +Arguments)
Equivalent to writef/2, but “writes” the result on String instead of the current output stream.
Example:

?- swritef(S, ’%15L%w’, [’Hello’, ’World’]).

S = "Hello World"

swritef(-String, +Format)
Equivalent to swritef(String, Format, []).

4.30.2 Format

The format-family of predicates is the most versatile and portable58 way to produce textual output.

format(+Format)
Defined as ‘format(Format) :- format(Format, []).’

format(+Format, :Arguments)
Format is an atom, list of character codes, or a Prolog string. Arguments provides the arguments
required by the format specification. If only one argument is required and this single argument
is not a list the argument need not be put in a list. Otherwise the arguments are put in a list.

Special sequences start with the tilde (˜), followed by an optional numeric argument, followed
by a character describing the action to be undertaken. A numeric argument is either a sequence

58Unfortunately not coverted by any standard.

SWI-Prolog 6.0 Reference Manual

4.30. FORMATTED WRITE 165

of digits, representing a positive decimal number, a sequence ‘〈character〉, representing the
character code value of the character (only useful for ˜t) or a asterisk (*), in which case the
numeric argument is taken from the next argument of the argument list, which should be a
positive integer. E.g., the following three examples all pass 46 (.) to ˜t:

?- format(’˜w ˜46t ˜w˜72|˜n’, [’Title’, ’Page’]).
?- format(’˜w ˜‘.t ˜w˜72|˜n’, [’Title’, ’Page’]).
?- format(’˜w ˜*t ˜w˜72|˜n’, [’Title’, 46, ’Page’]).

Numeric conversion (d, D, e, E, f, g and G) accept an arithmetic expression as argument. This
is introduced to handle rational numbers transparently (see section 4.25.2. The floating point
conversions allow for unlimited precision for printing rational numbers in decimal form. E.g.,
the following will write as many 3-s as you want by changing the ‘70’.

?- format(’˜70f’, [10 rdiv 3]).
3.33

˜ Output the tilde itself.

a Output the next argument, which must be an atom. This option is equivalent to w, except
for that it requires the argument to be an atom.

c Interpret the next argument as an character code and add it to the output. This argument
should be an integer in the range [0, . . . , 255] (including 0 and 255).

d Output next argument as a decimal number. It should be an integer. If a numeric argument
is specified a dot is inserted argument positions from the right (useful for doing fixed point
arithmetic with integers, such as handling amounts of money).

D Same as d, but makes large values easier to read by inserting a comma every three digits
left to the dot or right.

e Output next argument as a floating point number in exponential notation. The numeric
argument specifies the precision. Default is 6 digits. Exact representation depends on the
C library function printf(). This function is invoked with the format %.〈precision〉e.

E Equivalent to e, but outputs a capital E to indicate the exponent.

f Floating point in non-exponential notation. See C library function printf().

g Floating point in e or f notation, whichever is shorter.

G Floating point in E or f notation, whichever is shorter.

i Ignore next argument of the argument list. Produces no output.

k Give the next argument to (write canonical/1).

n Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not
properly implemented yet.

p Give the next argument to print/1.

q Give the next argument to writeq/1.

SWI-Prolog 6.0 Reference Manual

166 CHAPTER 4. BUILT-IN PREDICATES

r Print integer in radix the numeric argument notation. Thus ˜16r prints its argument
hexadecimal. The argument should be in the range [2, . . . , 36]. Lower case letters are
used for digits above 9.

R Same as r, but uses upper case letters for digits above 9.
s Output text from a list of character codes or a string (see string/1 and section 4.22)

from the next argument.59

@ Interpret the next argument as a goal and execute it. Output written to the
current output stream is inserted at this place. Goal is called in the module calling
format/3. This option is not present in the original definition by Quintus, but supported
by some other Prolog systems.

t All remaining space between 2 tab stops is distributed equally over ˜t statements between
the tab stops. This space is padded with spaces by default. If an argument is supplied this
is taken to be the character code of the character used for padding. This can be used to do
left or right alignment, centering, distributing, etc. See also ˜| and ˜+ to set tab stops. A
tab stop is assumed at the start of each line.

| Set a tab stop on the current position. If an argument is supplied set a tab stop on the
position of that argument. This will cause all ˜t’s to be distributed between the previous
and this tab stop.

+ Set a tab stop relative to the current position. Further the same as ˜|.
w Give the next argument to write/1.
W Give the next two argument to write term/2. E.g.
format(’ W’, [Term, [numbervars(true)]]). This option is SWI-Prolog
specific.

Example:

simple_statistics :-
<obtain statistics> % left to the user
format(’˜tStatistics˜t˜72|˜n˜n’),
format(’Runtime: ˜‘.t ˜2f˜34| Inferences: ˜‘.t ˜D˜72|˜n’,

[RunT, Inf]),
....

Will output

Statistics

Runtime: 3.45 Inferences: 60,345

format(+Output, +Format, :Arguments)
As format/2, but write the output on the given Output. The de-facto standard only allows
Output to be a stream. The SWI-Prolog implementation allows all valid arguments for
with output to/2.60 For example:

59The s modifier also accept an atom for compatibility. This is deprecated due to the ambiguity of [].
60Earlier versions defined sformat/3. These predicates have been moved to the library backcomp.

SWI-Prolog 6.0 Reference Manual

4.31. TERMINAL CONTROL 167

?- format(atom(A), ’˜D’, [1000000]).
A = ’1,000,000’

4.30.3 Programming Format

format predicate(+Char, +Head)
If a sequence ˜c (tilde, followed by some character) is found, the format derivatives will
first check whether the user has defined a predicate to handle the format. If not, the built in
formatting rules described above are used. Char is either an ASCII value, or a one character
atom, specifying the letter to be (re)defined. Head is a term, whose name and arity are used
to determine the predicate to call for the redefined formatting character. The first argument to
the predicate is the numeric argument of the format command, or the atom default if no
argument is specified. The remaining arguments are filled from the argument list. The example
below redefines ˜n to produce Arg times return followed by linefeed (so a (Grr.) DOS machine
is happy with the output).

:- format_predicate(n, dos_newline(_Arg)).

dos_newline(default) :- !,
dos_newline(1).

dos_newline(N) :-
(N > 0
-> write(’\r\n’),

N2 is N - 1,
dos_newline(N2)

; true
).

current format predicate(?Code, ?:Head)
Enumerates all user-defined format predicates. Code is the character code of the format charac-
ter. Head is unified with a term with the same name and arity as the predicate. If the predicate
does not reside in module user, Head is qualified with the definition module of the predicate.

4.31 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide
terminal independent I/O for screen terminals. These predicates are only available on Unix machines.
The SWI-Prolog Windows consoles accepts the ANSI escape sequences.

tty get capability(+Name, +Type, -Result)
Get the capability named Name from the termcap library. See termcap(5) for the capability
names. Type specifies the type of the expected result, and is one of string, number or
bool. String results are returned as an atom, number result as an integer and bool results as
the atom on or off. If an option cannot be found this predicate fails silently. The results are
only computed once. Successive queries on the same capability are fast.

SWI-Prolog 6.0 Reference Manual

168 CHAPTER 4. BUILT-IN PREDICATES

tty goto(+X, +Y)
Goto position (X, Y) on the screen. Note that the predicates line count/2 and
line position/2 will not have a well defined behaviour while using this predicate.

tty put(+Atom, +Lines)
Put an atom via the termcap library function tputs(). This function decodes padding information
in the strings returned by tty get capability/3 and should be used to output these
strings. Lines is the number of lines affected by the operation, or 1 if not applicable (as in
almost all cases).

set tty(-OldStream, +NewStream)
Set the output stream, used by tty put/2 and tty goto/2 to a specific stream. Default is
user output.

tty size(-Rows, -Columns)
Determine the size of the terminal. Platforms:

Unix If the system provides ioctl calls for this, these are used and tty size/2 properly re-
flects the actual size after a user resize of the window. As a fallback, the system uses
tty get capability/3 using li and co capabilities. In this case the reported size
reflects the size at the first call and is not updated after a user-initiated resize of the termi-
nal.

Windows Getting the size of the terminal is provided for swipl-win.exe. The requested
value reflects the current size. For the multi-threaded version the console that is associated
with the user input stream is used.

4.32 Operating System Interaction

shell(+Command, -Status)
Execute Command on the operating system. Command is given to the Bourne shell (/bin/sh).
Status is unified with the exit status of the command.

On Win32 systems, shell/[1,2] executes the command using the CreateProcess() API and
waits for the command to terminate. If the command ends with a & sign, the command is handed
to the WinExec() API, which does not wait for the new task to terminate. See also win exec/2
and win shell/2. Please note that the CreateProcess() API does not imply the Windows
command interpreter (command.exe on Windows 95/98 and cmd.exe on Windows-NT) and
therefore commands built-in to the command-interpreter can only be activated using the com-
mand interpreter. For example: ’command.exe /C copy file1.txt file2.txt’

shell(+Command)
Equivalent to ‘shell(Command, 0)’.

shell
Start an interactive Unix shell. Default is /bin/sh, the environment variable SHELL overrides
this default. Not available for Win32 platforms.

win exec(+Command, +Show)
Win32 systems only. Spawns a Windows task without waiting for its completion. Show is

SWI-Prolog 6.0 Reference Manual

4.32. OPERATING SYSTEM INTERACTION 169

one of the Win32 SW * constants written in lowercase without the SW *: hide maximize
minimize restore show showdefault showmaximized showminimized
showminnoactive showna shownoactive shownormal. In addition, iconic is a
synonym for minimize and normal for shownormal

win shell(+Operation, +File, +Show)
Win32 systems only. Opens the document File using the windows shell-rules for doing so.
Operation is one of open, print or explore or another operation registered with the
shell for the given document-type. On modern systems it is also possible to pass a URL as
File, opening the URL in Windows default browser. This call interfaces to the Win32 API
ShellExecute(). The Show argument determines the initial state of the opened window (if any).
See win exec/2 for defined values.

win shell(+Operation, +File)
Same as win shell(Operation, File, normal)

win registry get value(+Key, +Name, -Value)
Win32 systems only. Fetches the value of a Win32 registry key. Key is an atom formed as
a path-name describing the desired registry key. Name is the desired attribute name of the
key. Value is unified with the value. If the value is of type DWORD, the value is returned as
an integer. If the value is a string it is returned as a Prolog atom. Other types are currently
not supported. The default ‘root’ is HKEY CURRENT USER. Other roots can be specified
explicitly as HKEY CLASSES ROOT, HKEY CURRENT USER, HKEY LOCAL MACHINE
or HKEY USERS. The example below fetches the extension to use for Prolog files (see
README.TXT on the Windows version):

?- win_registry_get_value(’HKEY_LOCAL_MACHINE/Software/SWI/Prolog’,
fileExtension,
Ext).

Ext = pl

win folder(?Name, -Directory)
Is true if Name is the Windows ‘CSIDL’ of Directory. If Name is unbound all known Windows
special paths are generated. Name is the CSIDL after deleting the leading CSIDL and
mapping the constant to lowercase. Check the Windows documentation for the function
SHGetSpecialFolderPath() for a description of the defined constants. This example extracts the
‘My Documents’ folder:

?- win_folder(personal, MyDocuments).

MyDocuments = ’C:/Documents and Settings/jan/My Documents’

getenv(+Name, -Value)
Get environment variable. Fails silently if the variable does not exist. Please note that environ-
ment variable names are case-sensitive on Unix systems and case-insensitive on Windows.

SWI-Prolog 6.0 Reference Manual

170 CHAPTER 4. BUILT-IN PREDICATES

setenv(+Name, +Value)
Set an environment variable. Name and Value must be instantiated to atoms or integers. The en-
vironment variable will be passed to shell/[0-2] and can be requested using getenv/2.
They also influence expand file name/2. Environment variables are shared between
threads. Depending on the underlying C library, setenv/2 and unsetenv/1 may not be
thread-safe and may cause memory leaks. Only changing the environment once and before
starting threads is safe in all versions of SWI-Prolog.

unsetenv(+Name)
Remove an environment variable from the environment. Some systems lack the underlying
unsetenv() library function. On these systems unsetenv/1 sets the variable to the empty
string.

setlocale(+Category, -Old, +New)
Set/Query the locale setting which tells the C-library how to interpret text-files, write num-
bers, dates, etc. Category is one of all, collate, ctype, messages, monetary,
numeric or time. For details, please consult the C-library locale documentation. See also
section 2.18.1. Please note that the locale is shared between all threads and thread-safe usage
of setlocale/3 is in general not possible. Do locale operations before starting threads or
thoroughly study threading aspects of locale support in your environment before use in multi-
threaded environments. Locale settings are used by format time/3, collation key/2
and locale sort/2.

unix(+Command)
This predicate comes from the Quintus compatibility library and provides a partial imple-
mentation thereof. It provides access to some operating system features and unlike the name
suggests, is not operating system specific. Defined Command’s are below.

system(+Command)
Equivalent to calling shell/1. Use for compatibility only.

shell(+Command)
Equivalent to calling shell/1. Use for compatibility only.

shell
Equivalent to calling shell/0. Use for compatibility only.

cd
Equivalent to calling working directory/2 to the expansion (see
expand file name/2) of ˜. For compatibility only.

cd(+Directory)
Equivalent to calling working directory/2. Use for compatibility only.

argv(-Argv)
Unify Argv with the list of command-line arguments provides to this Prolog run. Please
note that Prolog system-arguments and application arguments are separated by --.
Integer arguments are passed as Prolog integers, float arguments and Prolog floating
point numbers and all other arguments as Prolog atoms. New applications should use the
Prolog flag argv. See also prolog Prolog flag argv.
A stand-alone program could use the following skeleton to handle command-line argu-
ments. See also section 2.10.2.

SWI-Prolog 6.0 Reference Manual

4.32. OPERATING SYSTEM INTERACTION 171

main :-
current_prolog_flag(argv, Argv),
append(_PrologArgs, [--|AppArgs], Argv), !,
main(AppArgs).

4.32.1 Dealing with time and date

Representing time in a computer system is surprisingly complicated. There are a large number of
time representations in use and the correct choice depends on factors such as compactness, resolution
and desired operations. Humans tend to think about time in hours, days, months, years or centuries.
Physicists think about time in seconds. But, a month does not have a defined number of seconds.
Even a day does not have a defined number of seconds as sometimes a leap-second is introduced
to synchronise properly with our earth’s rotation. At the same time, resolution demands range from
better then pico-seconds to millions of years. Finally, civilizations have a wide range of calendars.
Although there exist libraries dealing with most if this complexity, our desire to keep Prolog clean and
lean stops us from fully supporting these.

For human-oriented tasks, time can be broken into years, months, days, hours, minutes, seconds
and a timezone. Physicists prefer to have time in an arithmetic type representing seconds or fraction
thereof, so basic arithmetic deal with comparison and durations. An additional advantage of the physi-
cists approach is that it requires much less space. For these reasons, SWI-Prolog uses an arithmetic
type as its prime time representation.

Many C libraries deal with time using fixed-point arithmetic, dealing with a large but finite time
interval at constant resolution. In our opinion using a floating point number is a more natural choice
as we can use a natural unit and the interface does not need to be changed if a higher resolution is
required in the future. Our unit of choice is the second as it is the scientific unit.61 We have placed
our origin at 1970-1-1T0:0:0Z for compatibility with the POSIX notion of time as well as with older
time support provided by SWI-Prolog.

Where older versions of SWI-Prolog relied on the POSIX conversion functions, the current im-
plementation uses libtai to realise conversion between time-stamps and calendar dates for a period of
10 million years.

Time and date data-structures

We use the following time representations

TimeStamp
A TimeStamp is a floating point number expression the time in seconds since the Epoch at
1970-1-1.

date(Y,M,D,H,Mn,S,Off,TZ,DST)
We call this term a date-time structure. The first 5 fields are integers expressing the year,
month (1..12), day (1..31), hour (0..23), Minute (0..59). The S field holds the seconds as a
floating point number between 0.0 and 60.0. Off is an integer representing the offset relative
to UTC in seconds where positive values are west of Greenwich. If converted from local time

61Using Julian days is a choice made by the Eclipse team. As conversion to dates is needed for a human readable notation
of time and Julian days cannot deal naturally with leap seconds, we decided for second as our unit.

SWI-Prolog 6.0 Reference Manual

172 CHAPTER 4. BUILT-IN PREDICATES

(see stamp date time/3, TZ holds the name of the local timezone. If the timezone is not
known TZ is the atom -. DST is true if daylight saving time applies to the current time,
false if daylight saving time is relevant but not effective and - if unknown or the timezone
has no daylight saving time.

date(Y,M.D)
Date using the same values as described above. Extracted using date time value/3.

time(H,Mn,S)
Time using the same values as described above. Extracted using date time value/3.

Time and date predicates

get time(-TimeStamp)
Return the current time as a TimeStamp. The granularity is system dependent. See sec-
tion 4.32.1.

stamp date time(+TimeStamp, -DateTime, +TimeZone)
Convert a TimeStamp to a DateTime in the given time zone. See section 4.32.1 for details on
the data-types. TimeZone describes the timezone for the conversion. It is one of local to
extract the local time, ’UTC’ to extract at UTC time or an integer describing the seconds west
of Greenwich.

date time stamp(+DateTime, -TimeStamp)
Compute the timestamp from a date/9 term. Values for month, day, hour, minute or second
need not be normalized. This flexibility allows for easy computation of the time at any given
number of these units from a given timestamp. Normalization can be achieved following this
call with stamp date time/3. This example computes the date 200 days after 2006-7-14:

?- date_time_stamp(date(2006,7,214,0,0,0,0,-,-), Stamp),
stamp_date_time(Stamp, D, 0),
date_time_value(date, D, Date).

Date = date(2007, 1, 30)

date time value(?Key, +DateTime, ?Value)
Extract values from a date/9 term. Provided keys are:

key value
year Calendar year as an integer
month Calendar month as an integer 1..12
day Calendar day as an integer 1..31
hour Clock hour as an integer 0..23
minute Clock minute as an integer 0..59
second Clock second as a float 0.0..60.0
utc offset Offset to UTC in seconds (positive is west)
time zone Name of timezone; fails if unknown
daylight saving Bool (true) if dst is effective
date Term date(Y,M,D)
time Term time(H,M,S)

SWI-Prolog 6.0 Reference Manual

4.32. OPERATING SYSTEM INTERACTION 173

format time(+Out, +Format, +StampOrDateTime)
Modelled after POSIX strftime(), using GNU extensions. Out is a destination as specified with
with output to/2. Format is an atom or string with the following conversions. Conver-
sions start with a tilde (%) character.62 StampOrDateTime is either a (numeric time-stamp, a
term date(Y,M,D,H,M,S,O,TZ,DST) or a term date(Y,M,D).

a The abbreviated weekday name according to the current locale. Use format time/4
for POSIX locale.

A The full weekday name according to the current locale. Use format time/4 for POSIX
locale.

b The abbreviated month name according to the current locale. Use format time/4 for
POSIX locale.

B The full month name according to the current locale. Use format time/4 for POSIX
locale.

c The preferred date and time representation for the current locale.

C The century number (year/100) as a 2-digit integer.

d The day of the month as a decimal number (range 01 to 31).

D Equivalent to %m/%d/%y. (Yecch for Americans only. Americans should note that in
other countries %d/%m/%y is rather common. This means that in international context
this format is ambiguous and should not be used.)

e Like %d, the day of the month as a decimal number, but a leading zero is replaced by a
space.

E Modifier. Not implemented.

f Number of microseconds. The f can be prefixed by an integer to print the desired number
of digits. E.g., %3f prints milliseconds. This format is not covered by any standard, but
available with different format-specifiers in various incarnations of the strftime() function.

F Equivalent to %Y-%m-%d (the ISO 8601 date format).

g Like %G, but without century, i.e., with a 2-digit year (00-99).

G The ISO 8601 year with century as a decimal number. The 4-digit year corresponding to
the ISO week number (see %V). This has the same format and value as %y, except that if
the ISO week number belongs to the previous or next year, that year is used instead.

V The ISO 8601:1988 week number of the current year as a decimal number, range 01 to
53, where week 1 is the first week that has at least 4 days in the current year, and with
Monday as the first day of the week. See also %U and %W.

h Equivalent to %b.

H The hour as a decimal number using a 24-hour clock (range 00 to 23).

I The hour as a decimal number using a 12-hour clock (range 01 to 12).

j The day of the year as a decimal number (range 001 to 366).

k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are preceded
by a blank. (See also %H.)

62Descriptions taken from Linux Programmer’s Manual

SWI-Prolog 6.0 Reference Manual

174 CHAPTER 4. BUILT-IN PREDICATES

l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are preceded
by a blank. (See also %I.)

m The month as a decimal number (range 01 to 12).

M The minute as a decimal number (range 00 to 59).

n A newline character.

O Modifier to select locale-specific output. Not implemented.

p Either ‘AM’ or ‘PM’ according to the given time value, or the corresponding strings for
the current locale. Noon is treated as ‘pm’ and midnight as ‘am’.

P Like %p but in lowercase: ‘am’ or ‘pm’ or a corresponding string for the current locale.

r The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to ‘%I:%M:%S
%p’.

R The time in 24-hour notation (%H:%M). For a version including the seconds, see %T
below.

s The number of seconds since the Epoch, i.e., since 1970-01-01 00:00:00 UTC.

S The second as a decimal number (range 00 to 60). (The range is up to 60 to allow for
occasional leap seconds.)

t A tab character.

T The time in 24-hour notation (%H:%M:%S).

u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w.

U The week number of the current year as a decimal number, range 00 to 53, starting with
the first Sunday as the first day of week 01. See also %V and %W.

w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.

W The week number of the current year as a decimal number, range 00 to 53, starting with
the first Monday as the first day of week 01.

x The preferred date representation for the current locale without the time.

X The preferred time representation for the current locale without the date.

y The year as a decimal number without a century (range 00 to 99).

Y The year as a decimal number including the century.

z The time-zone as hour offset from GMT using the format HHmm. Required to emit
RFC822-conforming dates (using ’%a, %d %b %Y %T %z’). Our implementation
supports %:z, which modifies the output to HH:mm as required by XML-Schema. Note
that both notations are valid in ISO8601. The sequence %:z is compatible to the GNU
date(1) command.

Z The time zone or name or abbreviation.

+ The date and time in date(1) format.

% A literal ‘%’ character.

The table below, gives some format strings for popular time representations. RFC1123
is used by HTTP. The full implementation of http timestamp/2 as available from
http/http header is here.

SWI-Prolog 6.0 Reference Manual

4.32. OPERATING SYSTEM INTERACTION 175

http_timestamp(Time, Atom) :-
stamp_date_time(Time, Date, ’UTC’),
format_time(atom(Atom),

’%a, %d %b %Y %T GMT’,
Date, posix).

Standard Format string
xsd ’%FT%T%:z’
ISO8601 ’%FT%T%z’
RFC822 ’%a, %d %b %Y %T %z’
RFC1123 ’%a, %d %b %Y %T GMT’

format time(+Out, +Format, +StampOrDateTime, +Locale)
Format time given a specified Locale. This predicate is a work-around for lacking proper
portable and thread-safe time and locale handling in current C libraries. In its current
implementation the only value allowed for Locale is posix, which currently only modifies
the behaviour or the a, A, b and B format specifiers. The predicate is used to be able to emit
POSIX locale week and month names for emitting standardised time-stamps such as RFC1123.

parse time(+Text, -Stamp)
Same as parse time(Text, Format, Stamp). See parse time/3.

parse time(+Text, ?Format, -Stamp)
Parse a textual time representation, producing a time-stamp. Supported formats for Text are
in the table below. If the format is known, it may be given to reduce parse-time and avoid
ambiguities. Otherwise, Format is unified with the format encountered.

Name Example
rfc 1123 Fri, 08 Dec 2006 15:29:44 GMT
iso 8601 2006-12-08T17:29:44+02:00

20061208T172944+0200
2006-12-08T15:29Z
2006-12-08
20061208
2006-12
2006-W49-5
2006-342

day of the week(+Date,-DayOfTheWeek)
Computes the day of the week for a given date. Date = date(Year,Month,Day), Days of
the week are numbered from one to seven: monday = 1, tuesday = 2, . . . , sunday = 7.

4.32.2 Controlling the swipl-win.exe console window

The Windows executable swipl-win.exe console has a number of predicates to control the appear-
ance of the console. Being totally non-portable, we do not advice using it for your own application,
but use XPCE or another portable GUI platform instead. We give the predicates for reference here.

SWI-Prolog 6.0 Reference Manual

176 CHAPTER 4. BUILT-IN PREDICATES

window title(-Old, +New)
Unify Old with the title displayed in the console and change the title to New.63

win window pos(+ListOfOptions)
Interface to the MS-Windows SetWindowPos() function, controlling size, position and stacking
order of the window. ListOfOptions is a list that may hold any number of the terms below.

size(W, H)
Change the size of the window. W and H are expressed in character-units.

position(X, Y)
Change the top-left corner of the window. The values are expressed in pixel units.

zorder(ZOrder)
Change the location in the window stacking order. Values are bottom, top, topmost
and notopmost. Topmost windows are displayed above all other windows.

show(Bool)
If true, show the window, if false hide the window.

activate
If present, activate the window.

win has menu
True if win insert menu/2 and win insert menu item/4 are present.

win insert menu(+Label, +Before)
Insert a new entry (pulldown) in the menu. If the menu already contains this entry, nothing is
done. The Label is the label and using the Windows conventions, a letter prefixed with & is
underlined and defines the associated accelerator key. Before is the label before which this one
must be inserted. Using - adds the new entry at the end (right). For example, the call below
adds a Application entry just before the Help menu.

win_insert_menu(’&Application’, ’&Help’)

win insert menu item(+Pulldown, +Label, +Before, :Goal)
Add an item to the named Pulldown menu. Label and Before are handled as in
win insert menu/2, but the label - inserts a separator. Goal is called if the user
selects the item.

4.33 File System Interaction

access file(+File, +Mode)
True if File exists and can be accessed by this prolog process under mode Mode. Mode is one
of the atoms read, write, append, exist, none or execute. File may also be the name
of a directory. Fails silently otherwise. access file(File, none) simply succeeds
without testing anything.

If ‘Mode’ is write or append, this predicate also succeeds if the file does not exist and the
user has write-access to the directory of the specified location.

63BUG: This predicate should have been called win window title for consistent naming.

SWI-Prolog 6.0 Reference Manual

4.33. FILE SYSTEM INTERACTION 177

exists file(+File)
True if File exists and is a regular file. This does not imply the user has read and/or write
permission for the file.

file directory name(+File, -Directory)
Extracts the directory-part of File. The returned Directory name does not end in /. There are
two special cases. The directory-name of / is / itself and the directory-name if File does not
contain any / characters is ..

file base name(+File, -BaseName)
Extracts the filename part from a path specification. If File does not contain any directory
separators, File is returned.

same file(+File1, +File2)
True if both filenames refer to the same physical file. That is, if File1 and File2 are the same
string or both names exist and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths).

exists directory(+Directory)
True if Directory exists and is a directory. This does not imply the user has read, search and or
write permission for the directory.

delete file(+File)
Remove File from the file system.

rename file(+File1, +File2)
Rename File1 into File2. The semantics is compatible to the POSIX semantics of the rename()
system call as far as the operating system allows. if File2 exists, the operation succeeds (except
for possible permission errors) and is atomic (meaning there is no window where File2 does
not exist).

size file(+File, -Size)
Unify Size with the size of File in bytes.

time file(+File, -Time)
Unify the last modification time of File with Time. Time is a floating point number expressing
the seconds elapsed since Jan 1, 1970. See also convert time/[2,8] and get time/1.

absolute file name(+File, -Absolute)
Expand a local file-name into an absolute path. The absolute path is canonised: ref-
erences to . and .. are deleted. This predicate ensures that expanding a file-name it
returns the same absolute path regardless of how the file is addressed. SWI-Prolog uses
absolute file names to register source files independent of the current working direc-
tory. See also absolute file name/3. See also absolute file name/3 and
expand file name/2.

absolute file name(+Spec, -Absolute, +Options)
Converts the given file specification into an absolute path. Spec is a term Alias(Relative) (e.g.,
(library(lists)), a relative file-name or an absolute file name. The primary intention of
this predicate is to resolve files specified as Alias(Relative). Option is a list of options to guide
the conversion:

SWI-Prolog 6.0 Reference Manual

178 CHAPTER 4. BUILT-IN PREDICATES

extensions(ListOfExtensions)
List of file-extensions to try. Default is ’’. For each extension,
absolute file name/3 will first add the extension and then verify the condi-
tions imposed by the other options. If the condition fails, the next extension of the list is
tried. Extensions may be specified both as ..ext or plain ext.

relative to(+FileOrDir)
Resolve the path relative to the given directory or directory the holding the given
file. Without this option, paths are resolved relative to the working directory (see
working directory/2) or, if Spec is atomic and absolute file name/[2,3]
is executed in a directive, it uses the current source-file as reference.

access(Mode)
Imposes the condition access file(File, Mode). Mode is on of read, write, append,
execute, exist or none. See also access file/2.

file type(Type)
Defines extensions. Current mapping: txt implies [’’], prolog implies [’.pl’,
’’], executable implies [’.so’, ’’], qlf implies [’.qlf’, ’’] and
directory implies [’’]. The file-type source is an alias for prolog for com-
patibility with SICStus Prolog. See also prolog file type/2. This predicate only
returns non-directories, unless the option file type(directory) is specified.

file errors(fail/error)
If error (default), throw and existence error exception if the file cannot be found.
If fail, stay silent.64

solutions(first/all)
If first (default), the predicates leaves no choice-point. Otherwise a choice-point will
be left and backtracking may yield more solutions.

expand(true/false)
If true (default is false) and Spec is atomic, call expand file name/2 followed
by member/2 on Spec before proceeding. This is a SWI-Prolog extension.

The Prolog flag verbose file search can be set to true to help debugging Prolog’s
search for files.

This predicate is derived from Quintus Prolog. In Quintus Prolog, the argument order was
absolute file name(+Spec, +Options, -Path). The argument order has been changed for
compatibility with ISO and SICStus. The Quintus argument order is still accepted.

is absolute file name(+File)
True if File specifies and absolute path-name. On Unix systems, this implies the path starts
with a ‘/’. For Microsoft based systems this implies the path starts with 〈letter〉:. This
predicate is intended to provide platform-independent checking for absolute paths. See also
absolute file name/2 and prolog to os filename/2.

file name extension(?Base, ?Extension, ?Name)
This predicate is used to add, remove or test filename extensions. The main reason for its
introduction is to deal with different filename properties in a portable manner. If the file system

64Silent operation was the default up to version 3.2.6.

SWI-Prolog 6.0 Reference Manual

4.33. FILE SYSTEM INTERACTION 179

is case-insensitive, testing for an extension will be done case-insensitive too. Extension may
be specified with or without a leading dot (.). If an Extension is generated, it will not have a
leading dot.

directory files(+Directory, -Entries)
Unifies Entries with a list of entries in Directory. Each member of Entries is an atom denoting
an entry relative to Directory. Entries contains all entries, including hidden files and, if
supplied by the OS, the special entries . and ... See also expand file name/2.65

expand file name(+WildCard, -List)
Unify List with a sorted list of files or directories matching WildCard. The normal Unix wild-
card constructs ‘?’, ‘*’, ‘[...]’ and ‘{...}’ are recognised. The interpretation of ‘{...}’
is interpreted slightly different from the C shell (csh(1)). The comma separated argument
can be arbitrary patterns, including ‘{...}’ patterns. The empty pattern is legal as well:
‘\{.pl,\}’ matches either ‘.pl’ or the empty string.

If the pattern contains wildcard characters, only existing files and directories are returned. Ex-
panding a ‘pattern’ without wildcard characters returns the argument, regardless on whether or
not it exists.

Before expanding wildcards, the construct $var is expanded to the value of the environment
variable var and a possible leading ˜ character is expanded to the user’s home directory.66.

prolog to os filename(?PrologPath, ?OsPath)
Converts between the internal Prolog pathname conventions and the operating-system path-
name conventions. The internal conventions are Unix and this predicates is equivalent to =/2
(unify) on Unix systems. On DOS systems it will change the directory-separator, limit the
filename length map dots, except for the last one, onto underscores.

read link(+File, -Link, -Target)
If File points to a symbolic link, unify Link with the value of the link and Target to the file the
link is pointing to. Target points to a file, directory or non-existing entry in the file system, but
never to a link. Fails if File is not a link. Fails always on systems that do not support symbolic
links.

tmp file(+Base, -TmpName) [deprecated]

Create a name for a temporary file. Base is an identifier for the category of file. The TmpName
is guaranteed to be unique. If the system halts, it will automatically remove all created
temporary files. Base is used as part of the final filename. Portable applications should limit
themselves to alphanumerical characters.

Because it is possible to guess the generated filename, attackers may create the filesystem entry
as a link and possibly create a security issue. New code should use tmp file stream/3.

tmp file stream(+Encoding, -FileName, -Stream)
Create a temporary file name FileName and open it for writing in the given Encoding. Encoding

65This predicate should be considered a misnomer because it returns entries rather than files. We stick to this name for
compatibility with e.g., SICStus, Ciao and YAP.

66On Windows, the home directory is determined as follows: if the environment variable HOME exists, this is used. If
the variables HOMEDRIVE and HOMEPATH exist (Windows-NT), these are used. At initialisation, the system will set the
environment variable HOME to point to the SWI-Prolog home directory if neither HOME nor HOMEPATH and HOMEDRIVE
are defined

SWI-Prolog 6.0 Reference Manual

180 CHAPTER 4. BUILT-IN PREDICATES

is a text-encoding name or binary. Stream is the output stream. If the OS supports it, the
created file is only accessible to the current user. If the OS supports it, the file is created using
the open()-flag O EXCL, which guarantees that the file did not exist before this call. This
predicate is a safe replacement of tmp file/2. Note that in those cases where the temporary
file is needed to store output from an external command, the file must be closed first. E.g., the
following downloads a file from a URL to a temporary file and opens the file for reading (On
Unix systems you can delete the file after opening it for reading for cleanup):

open_url(URL, In) :-
tmp_file_stream(text, File, Stream),
close(Stream),
process_create(curl, [’-o’, File, URL], []),
open(File, read, In),
delete_file(File). % Unix-only

Temporary files created using this call are removed if the Prolog process terminates. Calling
delete file/1 using FileName removes the file and removes the entry from the adminis-
tration of files-to-be-deleted.

make directory(+Directory)
Create a new directory (folder) on the filesystem. Raises an exception on failure. On Unix
systems, the directory is created with default permissions (defined by the process umask
setting).

delete directory(+Directory)
Delete directory (folder) from the filesystem. Raises an exception on failure. Please note that
in general it will not be possible to delete a non-empty directory.

working directory(-Old, +New)
Unify Old with an absolute path to the current working directory and change working directory
to New. Use the pattern working directory(CWD, CWD) to get the current directory. See
also absolute file name/2 and chdir/1.67 Note that the working directory is shared
between all threads.

chdir(+Path)
Compatibility predicate. New code should use working directory/2.

4.34 User Top-level Manipulation

break
Recursively start a new Prolog top level. This Prolog top level has its own stacks, but shares
the heap with all break environments and the top level. Debugging is switched off on entering a
break and restored on leaving one. The break environment is terminated by typing the system’s
end-of-file character (control-D). If the -t toplevel command line option is given this goal
is started instead of entering the default interactive top level (prolog/0).

67BUG: Some of the file-I/O predicates use local filenames. Changing directory while file-bound streams are open causes
wrong results on telling/1, seeing/1 and current stream/3

SWI-Prolog 6.0 Reference Manual

4.35. CREATING A PROTOCOL OF THE USER INTERACTION 181

abort
Abort the Prolog execution and restart the top level. If the -t toplevel command line
options is given this goal is started instead of entering the default interactive top level.

Aborting is implemented by throwing the reserved exception $aborted. This exception can
be caught using catch/3, but the recovery goal is wrapped with a predicate that prunes the
choice-points of the recovery goal (i.e., as once/1) and re-throws the exception. This is illus-
trated in the example below, where we press control-C and ‘a’.

?- catch((repeat,fail), E, true).
ˆCAction (h for help) ? abort
% Execution Aborted

halt [ISO]

Terminate Prolog execution. Open files are closed and if the command line option -tty is not
active the terminal status (see Unix stty(1)) is restored. Hooks may be registered both in Prolog
and in foreign code. Prolog hooks are registered using at halt/1. halt/0 is equivalent to
halt(0).68

halt(+Status) [ISO]

Terminate Prolog execution with given status. Status is an integer. See also halt/0.

prolog
This goal starts the default interactive top level. Queries are read from the stream user input.
See also the Prolog flag history. The prolog/0 predicate is terminated (succeeds) by
typing the end-of-file character (typically control-D).

The following two hooks allow for expanding queries and handling the result of a query. These
hooks are used by the top-level variable expansion mechanism described in section 2.8.

expand query(+Query, -Expanded, +Bindings, -ExpandedBindings)
Hook in module user, normally not defined. Query and Bindings represents the query read
from the user and the names of the free variables as obtained using read term/3. If this
predicate succeeds, it should bind Expanded and ExpandedBindings to the query and bindings
to be executed by the top-level. This predicate is used by the top-level (prolog/0). See also
expand answer/2 and term expansion/2.

expand answer(+Bindings, -ExpandedBindings)
Hook in module user, normally not defined. Expand the result of a successfully executed
top-level query. Bindings is the query 〈Name〉 = 〈Value〉 binding list from the query.
ExpandedBindings must be unified with the bindings the top-level should print.

4.35 Creating a Protocol of the User Interaction

SWI-Prolog offers the possibility to log the interaction with the user on a file.69 All Prolog interaction,
including warnings and tracer output, are written on the protocol file.

68BUG: In the multi-threaded version, halt/0 does not work when not called from the main thread. In the current
system a permission error exception is raised. Future versions may enable halt/0 from any thread.

69A similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

SWI-Prolog 6.0 Reference Manual

182 CHAPTER 4. BUILT-IN PREDICATES

protocol(+File)
Start protocolling on file File. If there is already a protocol file open then close it first. If File
exists it is truncated.

protocola(+File)
Equivalent to protocol/1, but does not truncate the File if it exists.

noprotocol
Stop making a protocol of the user interaction. Pending output is flushed on the file.

protocolling(-File)
True if a protocol was started with protocol/1 or protocola/1 and unifies File with the
current protocol output file.

4.36 Debugging and Tracing Programs

This section is a reference to the debugger interaction predicates. A more use-oriented overview of
the debugger is in section 2.9.

If you have installed XPCE, you can use the graphical front-end of the tracer. This front-end is
installed using the predicate guitracer/0.

trace
Start the tracer. trace/0 itself cannot be seen in the tracer. Note that the Prolog top-level
treats trace/0 special; it means ‘trace the next goal’.

tracing
True if the tracer is currently switched on. tracing/0 itself can not be seen in the tracer.

notrace
Stop the tracer. notrace/0 itself cannot be seen in the tracer.

guitracer
Installs hooks (see prolog trace interception/4) into the system that redirects trac-
ing information to a GUI front-end providing structured access to variable-bindings, graphical
overview of the stack and highlighting of relevant source-code.

noguitracer
Reverts back to the textual tracer.

trace(+Pred)
Equivalent to trace(Pred, +all).

trace(+Pred, +Ports)
Put a trace-point on all predicates satisfying the predicate specification Pred. Ports is a list
of port names (call, redo, exit, fail). The atom all refers to all ports. If the port
is preceded by a - sign the trace-point is cleared for the port. If it is preceded by a + the
trace-point is set.

The predicate trace/2 activates debug mode (see debug/0). Each time a port (of the 4-
port model) is passed that has a trace-point set the goal is printed as with trace/0. Unlike

SWI-Prolog 6.0 Reference Manual

4.36. DEBUGGING AND TRACING PROGRAMS 183

trace/0 however, the execution is continued without asking for further information. Exam-
ples:

?- trace(hello). Trace all ports of hello with any arity in any mod-
ule.

?- trace(foo/2, +fail). Trace failures of foo/2 in any module.
?- trace(bar/1, -all). Stop tracing bar/1.

The predicate debugging/0 shows all currently defined trace-points.

notrace(:Goal)
Call Goal, but suspend the debugger while Goal is executing. The current implementation cuts
the choice-points of Goal after successful completion. See once/1. Later implementations
may have the same semantics as call/1.

debug
Start debugger. In debug mode, Prolog stops at spy- and trace-points, disables last-call optimi-
sation and aggressive destruction of choice points to make debugging information accessible.
Implemented by the Prolog flag debug.

Note that the min free parameters of all stacks is enlarged to 8 K-cells if de-
bugging is switched off to avoid excessive GC. GC complicates tracing because it
renames the G〈NNN〉 variables and replaces unreachable variables with the atom
\bnfmeta{garbage_collected}. Calling nodebug/0 does not reset the initial free-
margin because several parts of the toplevel and debugger disable debugging of system code-
regions. See also set prolog stack/2.

nodebug
Stop debugger. Implemented by the Prolog flag debug. See also debug/0.

debugging
Print debug status and spy points on current output stream. See also the Prolog flag debug.

spy(+Pred)
Put a spy point on all predicates meeting the predicate specification Pred. See section 4.4.

nospy(+Pred)
Remove spy point from all predicates meeting the predicate specification Pred.

nospyall
Remove all spy points from the entire program.

leash(?Ports)
Set/query leashing (ports which allow for user interaction). Ports is one of +Name, -Name,
?Name or a list of these. +Name enables leashing on that port, -Name disables it and ?Name
succeeds or fails according to the current setting. Recognised ports are: call, redo, exit,
fail and unify. The special shorthand all refers to all ports, full refers to all ports
except for the unify port (default). half refers to the call, redo and fail port.

SWI-Prolog 6.0 Reference Manual

184 CHAPTER 4. BUILT-IN PREDICATES

visible(+Ports)
Set the ports shown by the debugger. See leash/1 for a description of the port specification.
Default is full.

unknown(-Old, +New)
Edinburgh-prolog compatibility predicate, interfacing to the ISO prolog flag unknown. Val-
ues are trace (meaning error) and fail. If the unknown flag is set to warning,
unknown/2 reports the value as trace.

style check(+Spec)
Set style checking options. Spec is either +〈option〉, -〈option〉, ?(〈option〉)70 or a list of such
options. +〈option〉 sets a style checking option, -〈option〉 clears it and ?(〈option〉) succeeds
or fails according to the current setting. consult/1 and derivatives resets the style checking
options to their value before loading the file. If—for example—a file containing long atoms
should be loaded the user can start the file with:

:- style_check(-atom).

Currently available options are:

Name Default Description
singleton on

read clause/1 (used by consult/1) warns on vari-
ables only appearing once in a term (clause) which have a
name not starting with an underscore. See section 2.15.1
for details on variable handling and warnings.

atom on
read/1 and derivatives will produce an error message on
quoted atoms or strings longer than 5 lines.

discontiguous on Warn if the clauses for a predicate are not together in the
same source file.

string off Backward compatibility. See the Prolog flag
double quotes (current prolog flag/2).

charset off Warn on atoms and variables holding non-ASCII charac-
ters that are not quoted. See also section 2.15.1.

4.37 Obtaining Runtime Statistics

statistics(+Key, -Value)
Unify system statistics determined by Key with Value. The possible keys are given in the
table 4.3. The last part of the table contains keys for compatibility with other Prolog imple-
mentations (Quintus) for improved portability. Note that the ISO standard does not define
methods to collect system statistics. Space unit is bytes71. Times are in seconds, represented as
a floating point number. The Quintus compatibility keys express times in milliseconds.

70In older versions ‘?’ was a prefix operator. Inversions after 5.5.13, explicit brackets are needed.
71This may change to ‘cells’ to enhance compatibility between the 32- and 64-bit versions.

SWI-Prolog 6.0 Reference Manual

4.37. OBTAINING RUNTIME STATISTICS 185

agc Number of atom garbage-collections performed
agc gained Number of atoms removed
agc time Time spent in atom garbage-collections
process cputime (User) CPU time since Prolog was started in seconds
cputime (User) CPU time since thread was started in seconds
inferences Total number of passes via the call and redo ports since Prolog was

started.
heapused Bytes heap in use by Prolog (0 if not maintained).
heap gc Number of heap garbage-collections performed. Only pro-

vided if SWI-Prolog is configured with Boehm-GC. See also
garbage collect heap/0.

c stack System (C-) stack limit. 0 if not known.
stack Total memory in use for stacks in all threads
local Allocated size of the local stack in bytes.
localused Number of bytes in use on the local stack.
locallimit Size to which the local stack is allowed to grow
local shifts Number of local-stack expansions
global Allocated size of the global stack in bytes.
globalused Number of bytes in use on the global stack.
globallimit Size to which the global stack is allowed to grow
global shifts Number of global-stack expansions
trail Allocated size of the trail stack in bytes.
trailused Number of bytes in use on the trail stack.
traillimit Size to which the trail stack is allowed to grow
trail shifts Number of trail-stack expansions
shift time Time spent in stack-shifts
atoms Total number of defined atoms.
functors Total number of defined name/arity pairs.
functors Total number of defined name/arity pairs.
clauses Total number of clauses in the program.
modules Total number of defined modules.
codes Total size of (virtual) executable code in words.
threads MT-version: number of active threads
threads created MT-version: number of created threads
thread cputime MT-version: seconds CPU time used by finished threads. Sup-

ported on Windows-NT and later, Linux and possibly a few more.
Verify it gives plausible results before using.

Compatibility keys (times in milliseconds)
runtime [CPU time, CPU time since last] (milliseconds, excluding time

spent in garbage collection)
system time [System CPU time, System CPU time since last] (milliseconds)
real time [Wall time, Wall time since last] (integer seconds. See

get time/1)
walltime [Wall time since start, Wall time since last] (milliseconds, SICStus

compatibility)
memory [Total unshared data, free memory] (Uses getrusage() if available,

otherwise incomplete own statistics.)
stacks [global use, local use]
program [heap, 0]
global stack [global use, global free]
local stack [local use, local free]
trail [trail use, trail free]
garbage collection [number of GC, bytes gained, time spent, bytes left] The

last column is a SWI-Prolog extension. It contains the sum of
the memory left after each collection, which can be divided by
the count to find the average working set size after GC. Use
[Count, Gained, Time|] for compatiblity.

stack shifts [global shifts, local shifts, time spent]
atoms [number, memory use, 0]
atom garbage collection [number of AGC, bytes gained, time spent]
core Same as memory

Table 4.3: Keys for statistics/2

SWI-Prolog 6.0 Reference Manual

186 CHAPTER 4. BUILT-IN PREDICATES

statistics
Display a table of system statistics on the current output stream.

time(:Goal)
Execute Goal just like call/1 and print used time, number of logical inferences and the
average number of lips (logical inferences per second). Note that SWI-Prolog counts the actual
executed number of inferences rather than the number of passes through the call- and redo ports
of the theoretical 4-port model. If Goal is non-deterministic prints statistics for each solution,
where the reported values are relative to the previous answer.

4.38 Execution profiling

This section describes the hierarchical execution profiler introduced in SWI-Prolog 5.1.10. This pro-
filer is based on ideas from gprof described in [Graham et al., 1982]. The profiler consists of two
parts: the information-gathering is built into the kernel,72 and a presentation component which is de-
fined in the statistics library. The latter can be hooked, which is used by the XPCE module
swi/pce profile to provide an interactive graphical representation of results.

4.38.1 Profiling predicates

Currently, the interface is kept compatible with the old profiler. As experience grows, it is likely that
the old interface is replaced with one that better reflects the new capabilities. Feel free to examine the
internal interfaces and report useful application thereof.

profile(:Goal)
Execute Goal just like time/1, collecting profiling statistics and call show profile(plain,
25). With XPCE installed this opens a graphical interface to the collected profiling data.

profile(:Goal, +Style, +Number)
Execute Goal just like time/1. Collect profiling statistics and show the top Number proce-
dures on the current output stream (see show profile/1) using Style. The results are kept in
the database until reset profiler/0 or profile/3 is called and can be displayed again
with show profile/1. The profile/1 predicate is a backward compatibility interface to
profile/1. The other predicates in this section are low-level predicates for special cases.

show profile(+Style, +Number)
Show the collected results of the profiler. It shows the top Number predicates according the
percentage CPU-time used. If Style is plain the time spent in the predicates itself is displayed.
If Style is cumulative the time spent in its siblings (callees) is added to the predicate.

This predicate first calls prolog:show profile hook/2. If XPCE is loaded this hook is used to
activate a GUI interface to visualise the profile results.

show profile(+Number)
Compatibility. Same as show profile(plain, Number).

72There are two implementations; one based on setitimer() using the SIGPROF signal and one using Windows Multi
Media (MM) timers. On other systems the profiler is not provided.

SWI-Prolog 6.0 Reference Manual

4.38. EXECUTION PROFILING 187

Figure 4.1: Execution profiler showing the activity of the predicate chat:inv map list/5.

profiler(-Old, +New)
Query or change the status of the profiler. The status is a boolean (true or false) stating
whether or not the profiler is collecting data. It can be used to enable or disable profiling certain
parts of the program.

reset profiler
Switches the profiler to false and clears all collected statistics.

noprofile(+Name/+Arity, . . .)
Declares the predicate Name/Arity to be invisible to the profiler. The time spend in the named
predicate is added to the caller and the callees are linked directly to the caller. This is
particularly useful for simple meta-predicates such as call/1, ignore/1, catch/3, etc.

4.38.2 Visualizing profiling data

Browsing the annotated call-tree as described in section 4.38.3 itself is not very attractive. Therefore,
the results are combined per predicate, collecting all callers and and callees as well as the propagation
of time and activations in both directions. Figure 4.1 illustrates this. The central yellowish line is
the ‘current’ predicate with counts for time spent in the predicate (‘Self’), time spent in its children
(‘Siblings’), activations through the call and redo ports. Above that are the callers. Here, the two time
fields indicate how much time is spent serving each of the callers. The columns sum to the time in the
yellowish line. The caller <recursive> are the number of recursive calls. Below the yellowish lines
are the callees, with the time spent in the callee itself for serving the current predicate and the time
spent in the callees of the callee (’Siblings’), so the whole time-block adds up to the ‘Siblings’ field of
the current predicate. The ‘Access’ fields show how many times the current predicate accesses each
of the callees.

The predicates have a menu that allows changing the view of the detail window to the given caller
or callee, showing the documentation (if it is a built-in) and/or jumping to the source.

The statistics shown in the report-field of figure 4.1 show the following information:

• samples
Number of times the call-tree was sampled for collecting time statistics. On most hardware the
resolution of SIGPROF is 1/100 second. This number must be sufficiently large to get reliable
timing figures. The Time menu allows viewing time as samples, relative time or absolute time.

SWI-Prolog 6.0 Reference Manual

188 CHAPTER 4. BUILT-IN PREDICATES

• sec
Total user CPU time with the profiler active.

• predicates
Total count of predicates that have been called at least one time during the profile.

• nodes
Number of nodes in the call-tree.

• distortion
How much of the time is spend building the call-tree as a percentage of the total execution time.
Timing samples while the profiler is building the call-tree are not added to the call-tree.

4.38.3 Information gathering

While the program executes under the profiler, the system builds a dynamic call-tree. It does this using
three hooks from the kernel: one that starts a new goal (profCall), one the tells the system which goal
is resumed after an exit (profExit) and one that tells the system which goal is resumed after a fail (i.e.
which goal is used to retry (profRedo)). The profCall() function finds or creates the subnode for the
argument predicate below the current node, increments the call-count of this link and returns the sub-
node which is recorded in the Prolog stack-frame. Choice-points are marked with the current profiling
node. profExit() and profRedo() pass the profiling node where execution resumes.

Just using the above algorithm would create a much too big tree due to recursion. For this reason
the system performs detection of recursion. In the simplest case, recursive procedures increment the
‘recursive’ count on the current node. Mutual recursion however is not easily detected. For example,
call/1 can call a predicate that uses call/1 itself. This can be viewed as a recursive invocation,
but this is generally not desirable. Recursion is currently assumed if the same predicate with the same
parent appears higher in the call-graph. Early experience with a some arbitrary non-trivial programs
are promising.

The last part of the profiler collects statistics on the CPU-time used in each node. On systems
providing setitimer() with SIGPROF, it ‘ticks’ the current node of the call-tree each time the timer
fires. On Windows a MM-timer in a separate thread checks 100 times per second how much time is
spent in the profiled thread and adds this to the current node. See section 4.38.3 for details.

Profiling in the Windows Implementation

Profiling in the Windows version is similar but as profiling is a statistical process it is good to be aware
of the implementation73 for proper interpretation of the results.

Windows does not provide timers that fire asynchronously, frequent and proportional to the CPU
time used by the process. Windows does provide multi-media timers that can run at high frequency.
Such timers however run in a separate thread of execution and they are fired on the wall-clock rather
than the amount of CPU time used. The profiler installs such a timer running, for saving CPU time,
rather inaccurately at about 100 Hz. Each time it is fired, it determines the milliseconds CPU time used
by Prolog since the last time it was fired. If this value is non-zero, active predicates are incremented
with this value.

73We hereby acknowledge Lionel Fourquaux, who suggested the design described here after a newsnet enquiry.

SWI-Prolog 6.0 Reference Manual

4.39. MEMORY MANAGEMENT 189

4.39 Memory Management

garbage collect
Invoke the global- and trail stack garbage collector. Normally the garbage collector is in-
voked automatically if necessary. Explicit invocation might be useful to reduce the need
for garbage collections in time critical segments of the code. After the garbage collection
trim stacks/0 is invoked to release the collected memory resources.

garbage collect atoms
Reclaim unused atoms. Normally invoked after agc margin (a Prolog flag) atoms have been
created. On multi-threaded versions the actual collection is delayed until there there are no
threads performing normal garbage collection. In this case garbage collect atoms/0
returns immediately. Note this implies there is no guarantee it will ever happen as there may
always be threads performing garbage collection.

trim stacks
Release stack memory resources that are not in use at this moment, returning them to the
operating system. It can be used to release memory resources in a backtracking loop, where
the iterations require typically seconds of execution time and very different, potentially large,
amounts of stack space. Such a loop can be written as follows:

loop :-
generator,

trim_stacks,
potentially_expensive_operation,

stop_condition, !.

The prolog top level loop is written this way, reclaiming memory resources after every user
query.

set prolog stack(+Stack, +KeyValue)
Set a parameter for one of the Prolog runtime stacks. Stack is one of local, global, trail
or argument. The table below describes the Key(argValue) pairs. Value can be an arithmetic
integer expression. E.g., to specify a 2Gb limit for the global stack one can use:

?- set_prolog_stack(global, limit(2*10**9)).

Current settings can be retrieved with prolog stack property/2.

limit(+Bytes)
Set the limit to which the stack is allowed to grow. If the specified value is lower than the
current usage a permission error is raised. If the limit is larger than supported, the system
silently reduces the requested limit to the system limit.

min free(+Cells)
Minimum amount of free space after trimming or shifting the stack. Setting this value
higher can reduce the number of garbage collections and stack-shifts at the cost of higher
memory usage. The spare stack amount is reported and specified in ‘cells’. A cell is 4

SWI-Prolog 6.0 Reference Manual

190 CHAPTER 4. BUILT-IN PREDICATES

bytes in the 32-bit version and 8-bytes on the 64-bit version. See address bits. See
also trim stacks/0 and debug/0.

spare(+Cells)
All stacks trigger overflow before actually reaching the limit, so the resulting error can be
handled gracefully. The spare stack is used for print message/2 from the garbage
collector and for handling exceptions. The default suffices, unless the user redefines
related hooks. Do not specify large values for this because it reduces the amount of
memory available for your real task.
Related hooks are: message hook/3 (redefining GC messages),
prolog trace interception/4 and prolog exception hook/4.

prolog stack property(?Stack, ?KeyValue)
True if KeyValue is a current property of Stack. See set prolog stack/2 for defined
properties.

4.40 Windows DDE interface

The predicates in this section deal with MS-Windows ‘Dynamic Data Exchange’ or DDE protocol.74

A Windows DDE conversation is a form of interprocess communication based on sending reserved
window-events between the communicating processes.

Failing DDE operations raise an error of the structure below, where Operation is the name of the
(partial) operation that failed and Message is a translation of the operator error code. For some errors,
Context provides additional comments.

error(dde_error(Operation, Message), Context)

4.40.1 DDE client interface

The DDE client interface allows Prolog to talk to DDE server programs. We will demonstrate the use
of the DDE interface using the Windows PROGMAN (Program Manager) application:

1 ?- open_dde_conversation(progman, progman, C).

C = 0
2 ?- dde_request(0, groups, X)

--> Unifies X with description of groups

3 ?- dde_execute(0, ’[CreateGroup("DDE Demo")]’).

Yes

4 ?- close_dde_conversation(0).

74This interface is contributed by Don Dwiggins.

SWI-Prolog 6.0 Reference Manual

4.40. WINDOWS DDE INTERFACE 191

Yes

For details on interacting with progman, use the SDK online manual section on the Shell DDE
interface. See also the Prolog library(progman), which may be used to write simple Windows
setup scripts in Prolog.

open dde conversation(+Service, +Topic, -Handle)
Open a conversation with a server supporting the given service name and topic (atoms). If
successful, Handle may be used to send transactions to the server. If no willing server is found
this predicate fails silently.

close dde conversation(+Handle)
Close the conversation associated with Handle. All opened conversations should be closed
when they’re no longer needed, although the system will close any that remain open on process
termination.

dde request(+Handle, +Item, -Value)
Request a value from the server. Item is an atom that identifies the requested data, and Value
will be a string (CF TEXT data in DDE parlance) representing that data, if the request is
successful.

dde execute(+Handle, +Command)
Request the DDE server to execute the given command-string. Succeeds if the command could
be executed and fails with error message otherwise.

dde poke(+Handle, +Item, +Command)
Issue a POKE command to the server on the specified Item. Command is passed as data of type
CF TEXT.

4.40.2 DDE server mode

The library(dde) defines primitives to realise simple DDE server applications in SWI-Prolog.
These features are provided as of version 2.0.6 and should be regarded prototypes. The C-part of the
DDE server can handle some more primitives, so if you need features not provided by this interface,
please study library(dde).

dde register service(+Template, +Goal)
Register a server to handle DDE request or DDE execute requests from other applications. To
register a service for a DDE request, Template is of the form:

+Service(+Topic, +Item, +Value)

Service is the name of the DDE service provided (like progman in the client example above).
Topic is either an atom, indicating Goal only handles requests on this topic or a variable that
also appears in Goal. Item and Value are variables that also appear in Goal. Item represents the
request data as a Prolog atom.75

75Up-to version 3.4.5 this was a list of character codes. As recent versions have atom garbage collection there is no need
for this anymore.

SWI-Prolog 6.0 Reference Manual

192 CHAPTER 4. BUILT-IN PREDICATES

The example below registers the Prolog current prolog flag/2 predicate to be accessi-
ble from other applications. The request may be given from the same Prolog as well as from
another application.

?- dde_register_service(prolog(current_prolog_flag, F, V),
current_prolog_flag(F, V)).

?- open_dde_conversation(prolog, current_prolog_flag, Handle),
dde_request(Handle, home, Home),
close_dde_conversation(Handle).

Home = ’/usr/local/lib/pl-2.0.6/’

Handling DDE execute requests is very similar. In this case the template is of the form:

+Service(+Topic, +Item)

Passing a Value argument is not needed as execute requests either succeed or fail. If Goal fails,
a ‘not processed’ is passed back to the caller of the DDE request.

dde unregister service(+Service)
Stop responding to Service. If Prolog is halted, it will automatically call this on all open
services.

dde current service(-Service, -Topic)
Find currently registered services and the topics served on them.

dde current connection(-Service, -Topic)
Find currently open conversations.

4.41 Miscellaneous

dwim match(+Atom1, +Atom2)
True if Atom1 matches Atom2 in ‘Do What I Mean’ sense. Both Atom1 and Atom2 may also be
integers or floats. The two atoms match if:

• They are identical
• They differ by one character (spy ≡ spu)
• One character is inserted/deleted (debug ≡ deug)
• Two characters are transposed (trace ≡ tarce)
• ‘Sub-words’ are glued differently (existsfile ≡ existsFile ≡ exists file)
• Two adjacent sub words are transposed (existsFile ≡ fileExists)

dwim match(+Atom1, +Atom2, -Difference)
Equivalent to dwim match/2, but unifies Difference with an atom identifying the differ-
ence between Atom1 and Atom2. The return values are (in the same order as above):
equal, mismatched char, inserted char, transposed char, separated and
transposed word.

SWI-Prolog 6.0 Reference Manual

4.41. MISCELLANEOUS 193

wildcard match(+Pattern, +String)
True if String matches the wildcard pattern Pattern. Pattern is very similar the Unix csh pattern
matcher. The patterns are given below:

? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.

〈char1〉-〈char2〉 indicates a range.
{...} Matches any of the patterns of the comma separated list between the braces.

Example:

?- wildcard_match(’[a-z]*.{pro,pl}[%˜]’, ’a_hello.pl%’).

Yes

sleep(+Time)
Suspend execution Time seconds. Time is either a floating point number or an integer. Gran-
ularity is dependent on the system’s timer granularity. A negative time causes the timer to
return immediately. On most non-realtime operating systems we can only ensure execution is
suspended for at least Time seconds.

On Unix systems the sleep/1 predicate is realised —in order of preference— by nanosleep(),
usleep(), select() if the time is below 1 minute or sleep(). On Windows systems Sleep() is used.

SWI-Prolog 6.0 Reference Manual

Modules 5
A Prolog module is a collection of predicates which defines a public interface by means of a set of
provided predicates and operators. Prolog modules are defined by an ISO standard. Unfortunately,
the standard is considered a failure and, as far as we are aware, not implemented by any concrete
Prolog implementation. The SWI-Prolog module system is derived from the Quintus Prolog module
system. The Quintus module system has been the starting point for the module systems of a number
of mainstream Prolog systems, such as SICStus, Ciao and YAP.

This chapter motivates and describes the SWI-Prolog module system. Novices can start using
the module system after reading section 5.2 and section 5.3. The primitives defined in these sections
suffice for basic usage until one needs to export predicates that call or manage other predicates dy-
namically (e.g., use call/1, assert/1, etc.). Such predicates are called meta predicates and are
discussed in section 5.4. Section 5.5 to section 5.8 describe more advanced issues. Starting with
section 5.9, we discuss more low-level aspects of the SWI-Prolog module systems that are used to
implement the visible module system, and can be used to build other code reuse mechanisms.

5.1 Why Use Modules?

In classic Prolog systems, all predicates are organised in a single namespace and any predicate can
call any predicate. Because each predicate in a file can be called from anywhere in the program, it
becomes very hard to find the dependencies and enhance the implementation of a predicate without
risking to break the overall application. This is true for any language, but even worse for Prolog due
to its frequent need for ‘helper predicates’.

A Prolog module encapsulates a set of predicates and defines an interface. Modules can import
other modules, which makes the dependencies explicit. Given explicit dependencies and a well-
defined interface, it becomes much easier to change the internal organisation of a module without
breaking the overall application.

Explicit dependencies can also be used by the development environment. The SWI-Prolog library
prolog xref can be used to analyse completeness and consistency of modules. This library is used
by the built-in editor PceEmacs for syntax highlighting, jump-to-definition, etc.

5.2 Defining a Module

Modules are normally created by loading a module file. A module file is a file holding a module/2
directive as its first term. The module/2 directive declares the name and the public (i.e., externally
visible) predicates of the module. The rest of the file is loaded into the module. Below is an example
of a module file, defining reverse/2 and hiding the helper predicate rev/3. A module can use all
built-in predicates and, by default, cannot redefine system predicates.

SWI-Prolog 6.0 Reference Manual

5.3. IMPORTING PREDICATES INTO A MODULE 195

:- module(reverse, [reverse/2]).

reverse(List1, List2) :-
rev(List1, [], List2).

rev([], List, List).
rev([Head|List1], List2, List3) :-

rev(List1, [Head|List2], List3).

The module is named reverse. Typically, the name of a module is the same as the name of the file
by which it is defined without the filename extension, but this naming is not enforced. Modules are
organised in a single and flat namespace and therefore module names must be chosen with some care
to avoid conflicts. As we will see, typical applications of the module system rarely use the name of a
module explicitly in the source text.

:- module(+Module, +PublicList)
This directive can only be used as the first term of a source file. It declares the file to be
a module file, defining a module named Module. Note that a module name is an atom.
The module exports the predicates of PublicList. PublicList is a list of predicate indicators
(name/arity or name//arity pairs) or operator declarations using the format op(Precedence,
Type, Name). Operators defined in the export list are available inside the module as well as to
modules importing this module. See also section 4.23.

Compatible to Ciao Prolog, if Module is unbound, it is unified with the basename without
extension of the file being loaded.

5.3 Importing Predicates into a Module

Predicates can be added to a module by importing them from another module. Importing adds pred-
icates to the namespace of a module. An imported predicate can be called exactly the same as a
locally defined predicate, although its implementation remains part of the module in which it has been
defined.

Importing the predicates from another module is achieved using the directives use module/1 or
use module/2. Note that both directives take file name(s) as arguments. I.e., modules are imported
based on their file name rather than their module name.

use module(+Files)
Load the file(s) specified with File just like ensure loaded/1. The files must all be module
files. All exported predicates from the loaded files are imported into the module from which
this predicate is called. This predicate is equivalent to ensure loaded/1, except that it
raises an error if File is not a module file.

use module(+File, +ImportList)
Load File, which must be a module file and import the predicates as specified by ImportList.
ImportList is a list of predicate indicators specifying the predicates that will be imported from
the loaded module. ImportList also allows for renaming or import-everything-except. See also

SWI-Prolog 6.0 Reference Manual

196 CHAPTER 5. MODULES

import option of load files/2. The first example below loads member/2 from the
lists library and append/2 under the name list concat, which is how this predicate
is named in YAP. The second example loads all exports from library option, except for
meta options/3. These renaming facilities are generally used to deal with portability
issues with as few as possible changes to the actual code. See also section C and section 5.7.

:- use_module(library(lists), [member/2,
append/2 as list_concat

]).
:- use_module(library(option), except([meta_options/3])).

The module/2 directive, use module/1 and use module/2 are sufficient to partition a
simple Prolog program into modules. The SWI-Prolog graphical cross-referencing tool gxref/0
can be used to analyse the dependencies between non-module files and propose module declarations
for each file.

5.4 Defining a meta-predicate

A meta-predicate is a predicate that calls other predicates dynamically, modifies a predicate or reasons
about properties of a predicate. Such predicates use either a compound term or a predicate indica-
tor to describe the predicate they address, e.g., assert(name(jan)) or abolish(name/1).
With modules, this simple schema no longer works as each module defines its own mapping
from name+arity to predicate. This is resolved by wrapping the original description in a term
〈module〉:〈term〉, e.g., assert(person:name(jan)) or abolish(person:name/1).

Of course, calling assert/1 from inside a module, we expect to assert to a predicate lo-
cal to this module. In other words, we do not wish to provide this :/2 wrapper by hand. The
meta predicate/1 directive tells the compiler that certain arguments are terms that will be used
to lookup a predicate and thus need to be wrapped (qualified) with 〈module〉:〈term〉, unless they are
already wrapped.

In the example below, we use this to define maplist/3 inside a module. The argument ‘2’ in the
meta predicate declaration means that the argument is module sensitive and refers to a predicate with
an arity that is two more than the term that is passed in. The compiler only distinguishes the values
0..9 and :, which denote module-sensitive arguments, from +, - and ?, which denote modes. The
values 0..9 are used by the cross-referencer and syntax highlighting. Note that the helper predicate
maplist /3 does not need to be declared as a meta-predicate because the maplist/3 wrapper
already ensures that Goal is qualified as 〈module〉:Goal. See the description of meta predicate/1
for details.

:- module(maplist, [maplist/3]).
:- meta_predicate maplist(2, ?, ?).

%% maplist(:Goal, +List1, ?List2)
%
% True if Goal can successfully be applied to all
% successive pairs of elements from List1 and List2.

SWI-Prolog 6.0 Reference Manual

5.4. DEFINING A META-PREDICATE 197

maplist(Goal, L1, L2) :-
maplist_(L1, L2, Goal).

maplist_([], [], _).
maplist_([H0|T0], [H|T], Goal) :-

call(Goal, H0, H),
maplist_(T0, T, Goal).

meta predicate +Head, . . .
Define the predicates referenced by the comma-separated list Head as meta-predicates. Each
argument of each head is a meta argument specifier. Defined specifiers are given below. Only
0..9 and : are interpreted; the mode declarations +, - and ? are ignored.

0..9
The argument is a term that is used to reference a predicate with N more arguments than
the given argument term. For example: call(0) or maplist(1, +).

:
The argument is module sensitive, but does not directly refer to a predicate. For example:
consult(:).

-
The argument is not module sensitive and unbound on entry.

?
The argument is not module sensitive and the mode is unspecified.

+
The argument is not module sensitive and bound (i.e., nonvar) on entry.

ˆ
This extension is used to denote the possibly ˆ-annotated goal of setof/3, bagof/3,
aggregate/3 and aggregate/4. It is processed similar to ‘0’, but leaving the ˆ/2
intact.

Each argument that is module sensitive (i.e., marked 0..9, : or ˆ) is qualified with the context
module of the caller if it is not already qualified. The implementation ensures that the argument
is passed as 〈module〉:〈term〉, where 〈module〉 is an atom denoting the name of a module and
〈term〉 itself is not a :/2 term where the first argument is an atom. Below is a simple declaration
and a number of queries.

:- meta_predicate
meta(0, +).

meta(Module:Term, _Arg) :-
format(’Module=˜w, Term = ˜q˜n’, [Module, Term]).

?- meta(test, x).
Module=user, Term = test

SWI-Prolog 6.0 Reference Manual

198 CHAPTER 5. MODULES

?- meta(m1:test, x).
Module=m1, Term = test
?- m2:meta(test, x).
Module=m2, Term = test
?- m1:meta(m2:test, x).
Module=m2, Term = test
?- meta(m1:m2:test, x).
Module=m2, Term = test
?- meta(m1:42:test, x).
Module=42, Term = test

The meta predicate/1 declaration is the portable mechanism for defining meta-predicates
and replaces the old SWI-Prolog specific mechanism provided by the deprecated predicates
module transparent/1, context module/1 and strip module/3. See also sec-
tion 5.15.

5.5 Overruling Module Boundaries

The module system described so far is sufficient to distribute programs over multiple modules. There
are, however, cases in which we would like to be able to overrule this schema and explicitly call
a predicate in some module or assert explicitly into some module. Calling in a particular module
is useful for debugging from the user’s top-level or to access multiple implementations of the same
interface that reside in multiple modules. Accessing the same interface from multiple modules cannot
be achieved using importing because importing a predicate with the same name and arity from two
modules results in a name conflict. Asserting in a different module can be used to create models
dynamically in a new module. See section 5.12.

Direct addressing of modules is achieved using a :/2 explicitly in a program and relies on the
module qualification mechanism described in section 5.4. Here are a few examples:

?- assert(world:done). % asserts done/0 into module world
?- world:assert(done). % the same
?- world:done. % calls done/0 in module world

5.6 Interacting with modules from the toplevel

Debugging often requires interaction with predicates that reside in modules: running them, setting
spy-points on them, etc. This can be achieved using the 〈module〉:〈term〉 construct explicitly as de-
scribed above. In SWI-Prolog, you may also wish to omit the module qualification. Setting a spy-point
(spy/1) on a plain predicate sets a spy-point on any predicate with that name in any module. Edit-
ing (edit/1) or calling an unqualified predicate invokes the DWIM (Do What I Mean) mechanism,
which generally suggests the correct qualified query.

Mainly for compatibility, we provide module/1 to switch the module with which the interactive
toplevel interacts:

SWI-Prolog 6.0 Reference Manual

5.7. COMPOSING MODULES FROM OTHER MODULES 199

module(+Module)
The call module(Module) may be used to switch the default working module for the inter-
active toplevel (see prolog/0). This may be used when debugging a module. The example
below lists the clauses of file of label/2 in the module tex.

1 ?- module(tex).

Yes
tex: 2 ?- listing(file_of_label/2).
...

5.7 Composing modules from other modules

The predicates in this section are intended to create new modules from the content of other mod-
ules. Below is an example to define a composite module. The example exports all public pred-
icates of module 1, module 2 and module 3, pred/1 from module 4, all predicates from
module 5 except do not use/1 and all predicates from module 6 while renaming pred/1
into mypred/1.

:- module(my_composite, []).
:- reexport([module_1,

module_2,
module_3

]).
:- reexport(module_4, [pred/1]).
:- reexport(module_5, except([do_not_use/1])).
:- reexport(module_6, except([pred/1 as mypred])).

reexport(+Files)
Load and import predicates as use module/1 and re-export all imported predicates. The
reexport declarations must immediately follow the module declaration.

reexport(+File, +Import)
Import from File as use module/2 and re-export the imported predicates. The reexport
declarations must immediately follow the module declaration.

5.8 Operators and modules

Operators (section 4.23) are local to modules, where the initial table behaves as if it is copied
from the module user (see section 5.10). A specific operator can be disabled inside a mod-
ule using :- op(0, Type, Name). Inheritance from the public table can be restored using
:- op(-1, Type, Name).

In addition to using the op/3 directive, operators can be declared in the module/2 directive as
shown below. Such operator declarations are visible inside the module, and importing such a module

SWI-Prolog 6.0 Reference Manual

200 CHAPTER 5. MODULES

makes the operators visible in the target module. Exporting operators is typically used by modules
that implement sub-languages such as chr (see chapter 7). The example below is copied from the
library clpfd.

:- module(clpfd,
[op(760, yfx, #<==>),

op(750, xfy, #==>),
op(750, yfx, #<==),
op(740, yfx, #\/),
...
(#<==>)/2,
(#==>)/2,
(#<==)/2,
(#\/)/2,
...

]).

5.9 Dynamic importing using import modules

Until now we discussed the public module interface that is, at least to some extent, portable between
Prolog implementations with a module system that is derived from Quintus Prolog. The remainder of
this chapter describes the underlying mechanisms that can be used to emulate other module systems
or implement other code-reuse mechanisms.

In addition to built-in predicates, imported predicates and locally defined predicates, SWI-Prolog
modules can also call predicates from its import modules. Each module has a (possibly empty) list of
import modules. In the default setup, each new module has a single import module, which is user
for all normal user modules and system for all system library modules. Module user imports from
system where all built-in predicates reside. These special modules are described in more detail in
section 5.10.

The list of import modules can be manipulated and queried using the following predicates, as well
as using set module/1.

import module(+Module, -Import) [nondet]

True if Module inherits directly from Import. All normal modules only import from
user, which imports from system. The predicates add import module/3 and
delete import module/2 can be used to manipulate the import list. See also
default module/2.

default module(+Module, -Default) [multi]

True if predicates and operators in Default are visible in Module. Modules are returned in
the same search order used for predicates and operators. That is, Default is first unified with
Module, followed by the depth-first transitive closure of import module/2.

add import module(+Module, +Import, +StartOrEnd)
If Import is not already an import module for Module, add it to this list at the start or end
depending on StartOrEnd. See also import module/2 and delete import module/2.

SWI-Prolog 6.0 Reference Manual

5.10. RESERVED MODULES AND USING THE ‘USER’ MODULE 201

delete import module(+Module, +Import)
Delete Import from the list of import modules for Module. Fails silently if Import is not in the
list.

One usage scenario of import modules is to define a module that is a copy of another, but where
one or more predicates have an alternative definition.

5.10 Reserved Modules and using the ‘user’ module

As mentioned above, SWI-Prolog contains two special modules. The first one is the module system.
This module contains all built-in predicates. Module system has no import module. The second
special module is the module user. This module forms the initial working space of the user. Initially
it is empty. The import module of module user is system, making all built-in predicates available.

All other modules import from the module user. This implies they can use all predicates im-
ported into user without explicitly importing them. If an application loads all modules from the
user module using use module/1, one achieves a scoping system similar to the C-language,
where every module can access all exported predicates without any special precautions.

5.11 An alternative import/export interface

The use module/1 predicate from section 5.3 defines import and export relations based on the
filename from which a module is loaded. If modules are created differently, such as by asserting
predicates into a new module as described in section 5.12, this interface cannot be used. The interface
below provides for import/export from modules that are not created using a module file.

export(+PredicateIndicator, . . .)
Add predicates to the public list of the context module. This implies the predicate will be
imported into another module if this module is imported with use module/[1,2]. Note
that predicates are normally exported using the directive module/2. export/1 is meant to
handle export from dynamically created modules.

import(+PredicateIndicator, . . .)
Import predicates PredicateIndicator into the current context module. PredicateIndicator must
specify the source module using the 〈module〉:〈pi〉 construct. Note that predicates are normally
imported using one of the directives use module/[1,2]. The import/1 alternative
is meant for handling imports into dynamically created modules. See also export/1 and
export list/2.

5.12 Dynamic Modules

So far, we discussed modules that were created by loading a module file. These modules have been
introduced to facilitate the development of large applications. The modules are fully defined at load-
time of the application and normally will not change during execution. Having the notion of a set of
predicates as a self-contained world can be attractive for other purposes as well. For example, assume
an application that can reason about multiple worlds. It is attractive to store the data of a particular
world in a module, so we extract information from a world simply by invoking goals in this world.

SWI-Prolog 6.0 Reference Manual

202 CHAPTER 5. MODULES

Dynamic modules can easily be created. Any built-in predicate that tries to locate a predicate in a
specific module will create this module as a side-effect if it did not yet exist. For example:

?- assert(world_a:consistent),
world_a:set_prolog_flag(unknown, fail).

These calls create a module called ‘world a’ and make the call ‘world a:consistent’ succeed. Unde-
fined predicates will not raise an exception for this module (see unknown).

Import and export from a dynamically created world can be achieved using import/1 and
export/1 or by specifying the import module as described in section 5.9.

?- world_b:export(solve/2). % exports solve/2 from world_b
?- world_c:import(world_b:solve/2). % and import it to world_c

5.13 Transparent predicates: definition and context module

The ‘module-transparent’ mechanism is still underlying the actual implementation. Direct usage by
programmers is deprecated. Please use meta predicate/1 to deal with meta-predicates.

The qualification of module-sensitive arguments described in section 5.4 is realised using trans-
parent predicates. It is now deprecated to use this mechanism directly. However, studying the un-
derlying mechanism helps to understand SWI-Prolog’s modules. In some respect, the transparent
mechanism is more powerful than meta-predicate declarations.

Each predicate of the program is assigned a module, called its definition module. The definition
module of a predicate is always the module in which the predicate was originally defined. Each active
goal in the Prolog system has a context module assigned to it.

The context module is used to find predicates for a Prolog term. By default, the context module
is the definition module of the predicate running the goal. For transparent predicates, however, this
is the context module of the goal inherited from the parent goal. Below, we implement maplist/3
using the transparent mechanism. The code of maplist/3 and maplist /3 is the same as in
section 5.4, but now we must declare both the main predicate and the helper as transparent to avoid
changing the context module when calling the helper.

:- module(maplist, maplist/3).

:- module_transparent
maplist/3,
maplist_/3.

maplist(Goal, L1, L2) :-
maplist_(L1, L2, G).

maplist_([], [], _).
maplist_([H0|T0], [H|T], Goal) :-

call(Goal, H0, H),
maplist_(T0, T, Goal).

SWI-Prolog 6.0 Reference Manual

5.14. MODULE PROPERTIES 203

Note that any call that translates terms into predicates is subject to the transparent mechanism, not
just the terms passed to module-sensitive arguments. For example, the module below counts the
number of unique atoms returned as bindings for a variable. It works as expected. If we use the
directive :- module transparent count atom results/3. instead, atom result/2
is called wrongly in the module calling count atom results/3. This can be solved using
strip module/3 to create a qualified goal and a non-transparent helper predicate that is defined in
the same module.

:- module(count_atom_results,
[count_atom_results/3
]).

:- meta_predicate count_atom_results(-,0,-).

count_atom_results(A, Goal, Count) :-
setof(A, atom_result(A, Goal), As), !,
length(As, Count).

count_atom_results(_, _, 0).

atom_result(Var, Goal) :-
call(Goal),
atom(Var).

The following predicates support the module-transparent interface:

:- module transparent(+Preds)
Preds is a comma-separated list of name/arity pairs (like dynamic/1). Each goal associated
with a transparent-declared predicate will inherit the context module from its parent goal.

context module(-Module)
Unify Module with the context module of the current goal. context module/1 itself is, of
course, transparent.

strip module(+Term, -Module, -Plain)
Used in module-transparent predicates or meta-predicates to extract the referenced module and
plain term. If Term is a module-qualified term, i.e. of the format Module:Plain, Module and
Plain are unified to these values. Otherwise, Plain is unified to Term and Module to the context
module.

5.14 Module properties

The following predicates can be used to query the module system for reflexive programming:

current module(?Module) [nondet]

True if Module is a currently defined module. This predicate enumerates all modules, whether
loaded from a file or created dynamically. Note that modules cannot be destroyed in the current
version of SWI-Prolog.

SWI-Prolog 6.0 Reference Manual

204 CHAPTER 5. MODULES

module property(?Module, ?Property)
True if Property is a property of Module. Defined properties are:

class(-Class)
True when Class is the class of the module. Defined classes are

user
Default for user-defined modules.

system
Module system and modules from 〈home〉/boot.

library
Other modules from the system directories.

test
Modules that create tests.

development
Modules that only support the development environment.

file(?File)
True if Module was loaded from File.

line count(-Line)
True if Module was loaded from the N-th line of file.

exports(-ListOfPredicateIndicators)
True if Module exports the given predicates. Predicate indicators are in canonical
form (i.e., always using name/arity and never the DCG form name//arity). Fu-
ture versions may also use the DCG form and include public operators. See also
predicate property/2.

exported operators(-ListOfOperators)
True if Module exports the given operators. Each exported operator is represented as a
term op(Pri,Assoc,Name).

set module(:Property)
Modify properties of the module. Currently, the following properties may be modified:

base(+Base)
Set the default import module of the current module to Module. Typically, Module is one
of user or system. See section 5.9.

class(+Class)
Set the class of the module. See module property/2.

5.15 Compatibility of the Module System

The SWI-Prolog module system is largely derived from the Quintus Prolog module system, which
is also adopted by SICStus, Ciao and YAP. Originally, the mechanism for defining meta-predicates
in SWI-Prolog was based on the module transparent/1 directive and strip module/3.
Since 5.7.4 it supports the de-facto standard meta predicate/1 directive for implementing meta-
predicates, providing much better compatibility.

SWI-Prolog 6.0 Reference Manual

5.15. COMPATIBILITY OF THE MODULE SYSTEM 205

The support for the meta predicate/1 mechanism, however, is considerably different.
On most systems, the caller of a meta-predicate is compiled differently to provide the required
〈module〉:〈term〉 qualification. This implies that the meta-declaration must be available to the com-
piler when compiling code that calls a meta-predicate. In practice, this implies that other systems pose
the following restrictions on meta-predicates:

• Modules that provide meta-predicates for a module to be compiled must be loaded explicitly by
that module.

• The meta-predicate directives of exported predicates must follow the module/2 directive im-
mediately.

• After changing a meta-declaration, all modules that call the modified predicates need to be
recompiled.

In SWI-Prolog, meta-predicates are also module-transparent, and qualifying the module-sensitive
arguments is done inside the meta-predicate. As a result, the caller need not be aware that it is calling
a meta-predicate and none of the above restrictions hold for SWI-Prolog. However, code that aims at
portability must obey the above rules.

Other differences are listed below.

• If a module does not define a predicate, it is searched for in the import modules. By default, the
import module of any user-defined module is the user module. In turn, the user module im-
ports from the module system that provides all built-in predicates. The auto-import hierarchy
can be changed using add import module/3 and delete import module/2.

This mechanism can be used to realise a simple object-oriented system or hierarchical module
system.

• Operator declarations are local to a module and may be exported. In Quintus and SICStus
all operators are global. YAP and Ciao also use local operators. SWI-Prolog provides global
operator declarations from within a module by explicitly qualifying the operator name with the
user module.

:- op(precedence, type, user:(operatorname)).

SWI-Prolog 6.0 Reference Manual

Special Variables and
Coroutining 6
This chapter deals with extensions primarily designed to support constraint logic programming (CLP).
The low-level attributed variable interface defined in section 6.1 is not intended for the typical Prolog
programmer. Instead, the typical Prolog programmer should use the coroutining predicates and the
various constraint solvers built on top of attributed variables. CHR (chapter 7) provides a general
purpose constraint handling language.

As a rule of thumb, constraint programming reduces the search space by reordering goals and
joining goals based on domain knowledge. A typical example is constraint reasoning over integer
domains. Plain Prolog has no efficient means to deal with (integer) X > 0 and X < 3. At best
it could translate X > 0 with uninstantiated X to between(1, infinite, X) and a similar primitive
for X < 3. If the two are combined it has no choice but to generate and test over this infinite two-
dimensional space. Instead, a constraint system will delay an uninstantiated goal to X > 0. If, later,
it finds a value for X it will execute the test. If it finds X < 3 it will combine this knowledge to infer
that X is in 1..2 (see below). If it never finds a concrete value for X it can be asked to label X and
produce 1 and 2 on backtracking. See section A.7.

1 ?- [library(clpfd)].
...
true.

2 ?- X #> 0, X #< 3.
X in 1..2.

Using constraints generally makes your program more declarative. There are some caveats though:

• Constraints and cuts do not merge well. A cut after a goal that is delayed prunes the search
space before the condition is true.

• Term-copying operations (assert/1, retract/2, findall/3, copy term/2, etc.)
generally also copy constraints. The effect varies from ok, silent copying of huge constraint
networks to violations of the internal consistency of constraint networks. As a rule of thumb,
copying terms holding attributes must be deprecated.

6.1 Attributed variables

Attributed variables provide a technique for extending the Prolog unification algorithm
[Holzbaur, 1992] by hooking the binding of attributed variables. There is no consensus in the Pro-
log community on the exact definition and interface to attributed variables. The SWI-Prolog interface

SWI-Prolog 6.0 Reference Manual

6.1. ATTRIBUTED VARIABLES 207

is identical to the one realised by Bart Demoen for hProlog [Demoen, 2002]. This interface is sim-
ple and available on all Prolog systems that can run the Leuven CHR system (see chapter 7 and the
Leuven CHR page).

Binding an attributed variable schedules a goal to be executed at the first possible opportunity.
In the current implementation the hooks are executed immediately after a successful unification of
the clause-head or successful completion of a foreign language (built-in) predicate. Each attribute
is associated to a module, and the hook (attr unify hook/2) is executed in this module. The
example below realises a very simple and incomplete finite domain reasoner:

:- module(domain,
[domain/2 % Var, ?Domain
]).

:- use_module(library(ordsets)).

domain(X, Dom) :-
var(Dom), !,
get_attr(X, domain, Dom).

domain(X, List) :-
list_to_ord_set(List, Domain),
put_attr(Y, domain, Domain),
X = Y.

% An attributed variable with attribute value Domain has been
% assigned the value Y

attr_unify_hook(Domain, Y) :-
(get_attr(Y, domain, Dom2)
-> ord_intersection(Domain, Dom2, NewDomain),

(NewDomain == []
-> fail
; NewDomain = [Value]
-> Y = Value
; put_attr(Y, domain, NewDomain)
)

; var(Y)
-> put_attr(Y, domain, Domain)
; ord_memberchk(Y, Domain)
).

% Translate attributes from this module to residual goals

attribute_goals(X) -->
{ get_attr(X, domain, List) },
[domain(X, List)].

Before explaining the code we give some example queries:

SWI-Prolog 6.0 Reference Manual

208 CHAPTER 6. SPECIAL VARIABLES AND COROUTINING

?- domain(X, [a,b]), X = c fail
?- domain(X, [a,b]), domain(X, [a,c]). X = a
?- domain(X, [a,b,c]), domain(X, [a,c]). domain(X, [a, c])

The predicate domain/2 fetches (first clause) or assigns (second clause) the variable a domain,
a set of values the variable can be unified with. In the second clause, domain/2 first associates the
domain with a fresh variable (Y) and then unifies X to this variable to deal with the possibility that
X already has a domain. The predicate attr unify hook/2 (see below) is a hook called after a
variable with a domain is assigned a value. In the simple case where the variable is bound to a concrete
value, we simply check whether this value is in the domain. Otherwise we take the intersection of the
domains and either fail if the intersection is empty (first example), assign the value if there is only one
value in the intersection (second example), or assign the intersection as the new domain of the variable
(third example). The nonterminal attribute goals/3 is used to translate remaining attributes to
user-readable goals that, when executed, reinstate these attributes.

6.1.1 Attribute manipulation predicates

attvar(@Term)
Succeeds if Term is an attributed variable. Note that var/1 also succeeds on attributed vari-
ables. Attributed variables are created with put attr/3.

put attr(+Var, +Module, +Value)
If Var is a variable or attributed variable, set the value for the attribute named Module to Value.
If an attribute with this name is already associated with Var, the old value is replaced. Back-
tracking will restore the old value (i.e., an attribute is a mutable term; see also setarg/3).
This predicate raises a representation error if Var is not a variable and a type error if Module is
not an atom.

get attr(+Var, +Module, -Value)
Request the current value for the attribute named Module. If Var is not an attributed variable
or the named attribute is not associated to Var this predicate fails silently. If Module is not an
atom, a type error is raised.

del attr(+Var, +Module)
Delete the named attribute. If Var loses its last attribute it is transformed back into a traditional
Prolog variable. If Module is not an atom, a type error is raised. In all other cases this predicate
succeeds regardless of whether or not the named attribute is present.

6.1.2 Attributed variable hooks

Attribute names are linked to modules. This means that certain operations on attributed variables
cause hooks to be called in the module whose name matches the attribute name.

attr unify hook(+AttValue, +VarValue)
A hook that must be defined in the module to which an attributed variable refers. It is called
after the attributed variable has been unified with a non-var term, possibly another attributed
variable. AttValue is the attribute that was associated to the variable in this module and VarValue
is the new value of the variable. Normally this predicate fails to veto binding the variable to
VarValue, forcing backtracking to undo the binding. If VarValue is another attributed variable

SWI-Prolog 6.0 Reference Manual

6.1. ATTRIBUTED VARIABLES 209

the hook often combines the two attributes and associates the combined attribute with VarValue
using put attr/3.

attr portray hook(+AttValue, +Var)
Called by write term/2 and friends for each attribute if the option attributes(portray)
is in effect. If the hook succeeds the attribute is considered printed. Otherwise
Module = ... is printed to indicate the existence of a variable. New infrastructure
dealing with communicating attribute values must be based on copy term/3 and its hook
attribute goals//1.

attribute goals(+Var) //
This nonterminal, if it is defined in a module, is used by copy term/3 to project attributes
of that module to residual goals. It is also used by the toplevel to obtain residual goals after
executing a query.

6.1.3 Operations on terms with attributed variables

copy term(+Term, -Copy, -Gs)
Create a regular term Copy as a copy of Term (without any attributes), and a list Gs of goals
that represents the attributes. The goal maplist(call,Gs) recreates the attributes for Copy. The
nonterminal attribute goals//1, as defined in the modules the attributes stem from, is
used to convert attributes to lists of goals.

This building block is used by the toplevel to report pending attributes in a portable and under-
standable fashion. This predicate is the preferred way to reason about and communicate terms
with constraints.

copy term nat(+Term, -Copy)
As copy term/2. Attributes, however, are not copied but replaced by fresh variables.

term attvars(+Term, -AttVars)
AttVars is a list of all attributed variables in Term and its attributes. That is,
term attvars/2 works recursively through attributes. This predicate is cycle-safe.
The goal term attvars(Term, []) in an efficient test that Term has no attributes; scanning
the term is aborted after the first attributed variable is found.

6.1.4 Special purpose predicates for attributes

Normal user code should deal with put attr/3, get attr/3 and del attr/2. The routines in
this section fetch or set the entire attribute list of a variable. Use of these predicates is anticipated to
be restricted to printing and other special purpose operations.

get attrs(+Var, -Attributes)
Get all attributes of Var. Attributes is a term of the form att(Module, Value, MoreAttributes),
where MoreAttributes is [] for the last attribute.

put attrs(+Var, -Attributes)
Set all attributes of Var. See get attrs/2 for a description of Attributes.

SWI-Prolog 6.0 Reference Manual

210 CHAPTER 6. SPECIAL VARIABLES AND COROUTINING

del attrs(+Var)
If Var is an attributed variable, delete all its attributes. In all other cases, this predicate succeeds
without side-effects.

6.2 Coroutining

Coroutining deals with having Prolog goals scheduled for execution as soon as some conditions are
fulfilled. In Prolog the most commonly used condition is the instantiation (binding) of a variable.
Scheduling a goal to execute immediately after a variable is bound can be used to avoid instantiation
errors for some built-in predicates (e.g. arithmetic), do work lazy, prevent the binding of a variable
to a particular value, etc. Using freeze/2 for example we can define a variable that can only be
assigned an even number:

?- freeze(X, X mod 2 =:= 0), X = 3

No

freeze(+Var, :Goal)
Delay the execution of Goal until Var is bound (i.e. is not a variable or attributed variable).
If Var is bound on entry freeze/2 is equivalent to call/1. The freeze/2 pred-
icate is realised using an attributed variable associated with the module freeze. Use
frozen(Var, Goal) to find out whether and which goals are delayed on Var.

frozen(@Var, -Goal)
Unify Goal with the goal or conjunction of goals delayed on Var. If no goals are frozen on Var,
Goal is unified to true.

when(@Condition, :Goal)
Execute Goal when Condition becomes true. Condition is one of ?=(X, Y), nonvar(X),
ground(X), ,(Cond1, Cond2) or ;(Cond1, Cond2). See also freeze/2 and dif/2. The
implementation can deal with cyclic terms in X and Y.

The when/2 predicate is realised using attributed variables associated with the module when.
It is defined in the autoload library when.

dif(@A, @B)
The dif/2 predicate provides a constraint stating that A and B are different terms.
If A and B can never unify, dif/2 succeeds deterministically. If A and B are iden-
tical it fails immediately, and finally, if A and B can unify, goals are delayed that
prevent A and B to become equal. The dif/2 predicate behaves as if defined by
dif(X, Y) :- when(?=(X, Y), X \== Y). See also ?=/2. The implementa-
tion can deal with cyclic terms.

The dif/2 predicate is realised using attributed variables associated with the module dif. It
is defined in the autoload library dif.

call residue vars(:Goal, -Vars)
Find residual attributed variables left by Goal. This predicate is intended for debugging pro-
grams using coroutining or constraints. Consider a program that poses contradicting constraints

SWI-Prolog 6.0 Reference Manual

6.3. GLOBAL VARIABLES 211

on a variable. Such programs should fail, but sometimes succeed because the constraint solver
is too weak to detect the contradiction. Ideally, delayed goals and constraints are all executed at
the end of the computation. The meta predicate call residue vars/2 finds variables that
are given attribute variables or whose attributes are modified1 by Goal, regardless of whether
or not these variables are reachable from the arguments of Goal.

The predicate has considerable implications. During the execution of Goal, the garbage collec-
tor does not reclaim attributed variables. This causes some degradation of GC performance. In
a well-behaved program there are no such variables, so the space impact is generally minimal.
The actual collection of Vars is implemented using a scan of the trail and global stacks.

6.3 Global variables

Global variables are associations between names (atoms) and terms. They differ in various ways from
storing information using assert/1 or recorda/3.

• The value lives on the Prolog (global) stack. This implies that lookup time is independent of the
size of the term. This is particularly interesting for large data structures such as parsed XML
documents or the CHR global constraint store.

• They support both global assignment using nb setval/2 and backtrackable assignment using
b setval/2.

• Only one value (which can be an arbitrary complex Prolog term) can be associated to a variable
at a time.

• Their value cannot be shared among threads. Each thread has its own namespace and values for
global variables.

• Currently global variables are scoped globally. We may consider module scoping in future
versions.

Both b setval/2 and nb setval/2 implicitly create a variable if the referenced name does
not already refer to a variable.

Global variables may be initialised from directives to make them available during the program
lifetime, but some considerations are necessary for saved states and threads. Saved states do not store
global variables, which implies they have to be declared with initialization/1 to recreate them
after loading the saved state. Each thread has its own set of global variables, starting with an empty
set. Using thread initialization/1 to define a global variable it will be defined, restored
after reloading a saved state and created in all threads that are created after the registration. Finally,
global variables can be initialised using the exception hook exception/3. The latter technique is
used by CHR (see chapter 7).

b setval(+Name, +Value)
Associate the term Value with the atom Name or replace the currently associated value with
Value. If Name does not refer to an existing global variable, a variable with initial value [] is
created (the empty list). On backtracking the assignment is reversed.

1Tracking modifications is currently not complete and this feature may be dropped completely in future versions.

SWI-Prolog 6.0 Reference Manual

212 CHAPTER 6. SPECIAL VARIABLES AND COROUTINING

b getval(+Name, -Value)
Get the value associated with the global variable Name and unify it with Value. Note that this
unification may further instantiate the value of the global variable. If this is undesirable the
normal precautions (double negation or copy term/2) must be taken. The b getval/2
predicate generates errors if Name is not an atom or the requested variable does not exist.

nb setval(+Name, +Value)
Associates a copy of Value created with duplicate term/2 with the atom Name. Note that
this can be used to set an initial value other than [] prior to backtrackable assignment.

nb getval(+Name, -Value)
The nb getval/2 predicate is a synonym for b getval/2, introduced for compatibility
and symmetry. As most scenarios will use a particular global variable using either non-
backtrackable or backtrackable assignment, using nb getval/2 can be used to document
that the variable is non-backtrackable.

nb linkval(+Name, +Value)
Associates the term Value with the atom Name without copying it. This is a fast special-
purpose variation of nb setval/2 intended for expert users only because the semantics on
backtracking to a point before creating the link are poorly defined for compound terms. The
principal term is always left untouched, but backtracking behaviour on arguments is undone if
the original assignment was trailed and left alone otherwise, which implies that the history that
created the term affects the behaviour on backtracking. Consider the following example:

demo_nb_linkval :-
T = nice(N),
(N = world,

nb_linkval(myvar, T),
fail

; nb_getval(myvar, V),
writeln(V)

).

nb current(?Name, ?Value)
Enumerate all defined variables with their value. The order of enumeration is undefined.

nb delete(+Name)
Delete the named global variable.

6.3.1 Compatibility of SWI-Prolog Global Variables

Global variables have been introduced by various Prolog implementations recently. The implemen-
tation of them in SWI-Prolog is based on hProlog by Bart Demoen. In discussion with Bart it was
decided that the semantics of hProlog nb setval/2, which is equivalent to nb linkval/2, is
not acceptable for normal Prolog users as the behaviour is influenced by how built-in predicates that
construct terms (read/1, =../2, etc.) are implemented.

GNU-Prolog provides a rich set of global variables, including arrays. Arrays can be implemented
easily in SWI-Prolog using functor/3 and setarg/3 due to the unrestricted arity of compound
terms.

SWI-Prolog 6.0 Reference Manual

CHR: Constraint Handling
Rules 7
This chapter is written by Tom Schrijvers, K.U. Leuven, and adjustments by Jan Wielemaker.

The CHR system of SWI-Prolog is the K.U.Leuven CHR system. The runtime environment is
written by Christian Holzbaur and Tom Schrijvers while the compiler is written by Tom Schrijvers.
Both are integrated with SWI-Prolog and licensed under compatible conditions with permission from
the authors.

The main reference for the K.U.Leuven CHR system is:

• T. Schrijvers, and B. Demoen, The K.U.Leuven CHR System: Implementation and Applica-
tion, First Workshop on Constraint Handling Rules: Selected Contributions (Frühwirth, T. and
Meister, M., eds.), pp. 1–5, 2004.

On the K.U.Leuven CHR website (http://dtai.cs.kuleuven.be/CHR/) you can find
more related papers, references and example programs.

7.1 Introduction

Constraint Handling Rules (CHR) is a committed-choice rule-based language embedded in Prolog. It
is designed for writing constraint solvers and is particularly useful for providing application-specific
constraints. It has been used in many kinds of applications, like scheduling, model checking, abduc-
tion, and type checking, among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap), Haskell
and Java. This CHR system is based on the compilation scheme and runtime environment of CHR in
SICStus.

In this documentation we restrict ourselves to giving a short overview of CHR in general and
mainly focus on elements specific to this implementation. For a more thorough review of CHR we
refer the reader to [Frühwirth, 1998]. More background on CHR can be found at [Frühwirth,].

In section 7.2 we present the syntax of CHR in Prolog and explain informally its operational se-
mantics. Next, section 7.3 deals with practical issues of writing and compiling Prolog programs con-
taining CHR. Section 7.4 explains the (currently primitive) CHR debugging facilities. Section 7.4.3
provides a few useful predicates to inspect the constraint store, and section 7.5 illustrates CHR with
two example programs. Section 7.6 describes some compatibility issues with older versions of this
system and SICStus’ CHR system. Finally, section 7.7 concludes with a few practical guidelines for
using CHR.

7.2 Syntax and Semantics

7.2.1 Syntax

The syntax of CHR rules is the following:

SWI-Prolog 6.0 Reference Manual

214 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

rules --> rule, rules.
rules --> [].

rule --> name, actual_rule, pragma, [atom(’.’)].

name --> atom, [atom(’@’)].
name --> [].

actual_rule --> simplification_rule.
actual_rule --> propagation_rule.
actual_rule --> simpagation_rule.

simplification_rule --> head, [atom(’<=>’)], guard, body.
propagation_rule --> head, [atom(’==>’)], guard, body.
simpagation_rule --> head, [atom(’\’)], head, [atom(’<=>’)],

guard, body.

head --> constraints.

constraints --> constraint, constraint_id.
constraints --> constraint, constraint_id, [atom(’,’)], constraints.

constraint --> compound_term.

constraint_id --> [].
constraint_id --> [atom(’#’)], variable.
constraint_id --> [atom(’#’)], [atom(’passive’)] .

guard --> [].
guard --> goal, [atom(’|’)].

body --> goal.

pragma --> [].
pragma --> [atom(’pragma’)], actual_pragmas.

actual_pragmas --> actual_pragma.
actual_pragmas --> actual_pragma, [atom(’,’)], actual_pragmas.

actual_pragma --> [atom(’passive(’)], variable, [atom(’)’)].

Note that the guard of a rule may not contain any goal that binds a variable in the head of the rule with
a non-variable or with another variable in the head of the rule. It may, however, bind variables that do
not appear in the head of the rule, e.g. an auxiliary variable introduced in the guard.

SWI-Prolog 6.0 Reference Manual

7.2. SYNTAX AND SEMANTICS 215

7.2.2 Semantics

In this subsection the operational semantics of CHR in Prolog are presented informally. They do not
differ essentially from other CHR systems.

When a constraint is called, it is considered an active constraint and the system will try to apply
the rules to it. Rules are tried and executed sequentially in the order they are written.

A rule is conceptually tried for an active constraint in the following way. The active constraint
is matched with a constraint in the head of the rule. If more constraints appear in the head, they are
looked for among the suspended constraints, which are called passive constraints in this context. If
the necessary passive constraints can be found and all match with the head of the rule and the guard of
the rule succeeds, then the rule is committed and the body of the rule executed. If not all the necessary
passive constraints can be found, or the matching or the guard fails, then the body is not executed and
the process of trying and executing simply continues with the following rules. If for a rule there are
multiple constraints in the head, the active constraint will try the rule sequentially multiple times, each
time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by some rule, or
after the last rule has been processed. In the latter case the active constraint becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The other way
it may interact again with the rules is when a variable appearing in the constraint becomes bound to
either a non-variable or another variable involved in one or more constraints. In that case the constraint
is triggered, i.e. it becomes an active constraint and all the rules are tried.

Rule Types There are three different kinds of rules, each with its specific semantics:

• simplification
The simplification rule removes the constraints in its head and calls its body.

• propagation
The propagation rule calls its body exactly once for the constraints in its head.

• simpagation
The simpagation rule removes the constraints in its head after the \ and then calls its body. It is
an optimization of simplification rules of the form:

constraints1, constraints2 <=> constraints1, body

Namely, in the simpagation form:

constraints1\constraints2 <=> body

The constraints1 constraints are not called in the body.

Rule Names Naming a rule is optional and has no semantic meaning. It only functions as documen-
tation for the programmer.

Pragmas The semantics of the pragmas are:

passive(Identifier)
The constraint in the head of a rule Identifier can only match a passive constraint in that rule.
There is an abbreviated syntax for this pragma. Instead of:

SWI-Prolog 6.0 Reference Manual

216 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

..., c # Id, ... <=> ... pragma passive(Id)

you can also write

..., c # passive, ... <=> ...

Additional pragmas may be released in the future.

:- chr option(+Option, +Value)
It is possible to specify options that apply to all the CHR rules in the module. Options are
specified with the chr option/2 declaration:

:- chr_option(Option,Value).

and may appear in the file anywhere after the first constraints declaration.

Available options are:

check guard bindings
This option controls whether guards should be checked for (illegal) variable bindings or
not. Possible values for this option are on to enable the checks, and off to disable the
checks. If this option is on, any guard fails when it binds a variable that appears in the
head of the rule. When the option is off (default), the behavior of a binding in the guard
is undefined.

optimize
This option controls the degree of optimization. Possible values are full to enable
all available optimizations, and off (default) to disable all optimizations. The default
is derived from the SWI-Prolog flag optimise, where true is mapped to full.
Therefore the command-line option -O provides full CHR optimization. If optimization
is enabled, debugging must be disabled.

debug
This option enables or disables the possibility to debug the CHR code. Possible values
are on (default) and off. See section 7.4 for more details on debugging. The default is
derived from the Prolog flag generate debug info, which is true by default. See
-nodebug. If debugging is enabled, optimization must be disabled.

7.3 CHR in SWI-Prolog Programs

7.3.1 Embedding in Prolog Programs

The CHR constraints defined in a .pl file are associated with a module. The default module is user.
One should never load different .pl files with the same CHR module name.

SWI-Prolog 6.0 Reference Manual

7.3. CHR IN SWI-PROLOG PROGRAMS 217

7.3.2 Constraint declaration

:- chr constraint(+Specifier)
Every constraint used in CHR rules has to be declared with a chr constraint/1 decla-
ration by the constraint specifier. For convenience multiple constraints may be declared at
once with the same chr constraint/1 declaration followed by a comma-separated list of
constraint specifiers.

A constraint specifier is, in its compact form, F/A where F and A are respectively the functor
name and arity of the constraint, e.g.:

:- chr_constraint foo/1.
:- chr_constraint bar/2, baz/3.

In its extended form, a constraint specifier is c(A1,...,An) where c is the constraint’s func-
tor, n its arity and the Ai are argument specifiers. An argument specifier is a mode, optionally
followed by a type. E.g.

:- chr_constraint get_value(+,?).
:- chr_constraint domain(?int, +list(int)),

alldifferent(?list(int)).

Modes A mode is one of:

-
The corresponding argument of every occurrence of the constraint is always unbound.

+
The corresponding argument of every occurrence of the constraint is always ground.

?
The corresponding argument of every occurrence of the constraint can have any instantiation,
which may change over time. This is the default value.

Types A type can be a user-defined type or one of the built-in types. A type comprises a (possibly
infinite) set of values. The type declaration for a constraint argument means that for every instance of
that constraint the corresponding argument is only ever bound to values in that set. It does not state
that the argument necessarily has to be bound to a value.

The built-in types are:

int
The corresponding argument of every occurrence of the constraint is an integer number.

dense int
The corresponding argument of every occurrence of the constraint is an integer that can be used
as an array index. Note that if this argument takes values in [0, n], the array takes O(n) space.

float
. . . a floating point number.

SWI-Prolog 6.0 Reference Manual

218 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

number
. . . a number.

natural
. . . a positive integer.

any
The corresponding argument of every occurrence of the constraint can have any type. This is
the default value.

:- chr type(+TypeDeclaration)
User-defined types are algebraic data types, similar to those in Haskell or the discriminated
unions in Mercury. An algebraic data type is defined using chr type/1:

:- chr_type type ---> body.

If the type term is a functor of arity zero (i.e. one having zero arguments), it names a monomor-
phic type. Otherwise, it names a polymorphic type; the arguments of the functor must be distinct
type variables. The body term is defined as a sequence of constructor definitions separated by
semi-colons.

Each constructor definition must be a functor whose arguments (if any) are types. Discriminated
union definitions must be transparent: all type variables occurring in the body must also occur
in the type.

Here are some examples of algebraic data type definitions:

:- chr_type color ---> red ; blue ; yellow ; green.

:- chr_type tree ---> empty ; leaf(int) ; branch(tree, tree).

:- chr_type list(T) ---> [] ; [T | list(T)].

:- chr_type pair(T1, T2) ---> (T1 - T2).

Each algebraic data type definition introduces a distinct type. Two algebraic data types that
have the same bodies are considered to be distinct types (name equivalence).

Constructors may be overloaded among different types: there may be any number of construc-
tors with a given name and arity, so long as they all have different types.

Aliases can be defined using ==. For example, if your program uses lists of lists of integers,
you can define an alias as follows:

:- chr_type lli == list(list(int)).

SWI-Prolog 6.0 Reference Manual

7.3. CHR IN SWI-PROLOG PROGRAMS 219

Type Checking Currently two complementary forms of type checking are performed:

1. Static type checking is always performed by the compiler. It is limited to CHR rule heads and
CHR constraint calls in rule bodies.

Two kinds of type error are detected. The first is where a variable has to belong to two types.
For example, in the program:

:-chr_type foo ---> foo.
:-chr_type bar ---> bar.

:-chr_constraint abc(?foo).
:-chr_constraint def(?bar).

foobar @ abc(X) <=> def(X).

the variable X has to be of both type foo and bar. This is reported as a type clash error:

CHR compiler ERROR:
‘--> Type clash for variable _G5398 in rule foobar:

expected type foo in body goal def(_G5398, _G5448)
expected type bar in head def(_G5448, _G5398)

The second kind of error is where a functor is used that does not belong to the declared type.
For example in:

:-chr_type foo ---> foo.
:-chr_type bar ---> bar.

:-chr_constraint abc(?foo).

foo @ abc(bar) <=> true.

bar appears in the head of the rule where something of type foo is expected. This is reported
as:

CHR compiler ERROR:
‘--> Invalid functor in head abc(bar) of rule foo:

found ‘bar’,
expected type ‘foo’!

No runtime overhead is incurred in static type checking.

2. Dynamic type checking checks at runtime, during program execution, whether the arguments
of CHR constraints respect their declared types. The when/2 co-routining library is used to
delay dynamic type checks until variables are instantiated.

The kind of error detected by dynamic type checking is where a functor is used that does not
belong to the declared type. E.g. for the program:

SWI-Prolog 6.0 Reference Manual

220 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

:-chr_type foo ---> foo.

:-chr_constraint abc(?foo).

we get the following error in an erroneous query:

?- abc(bar).
ERROR: Type error: ‘foo’ expected, found ‘bar’ (CHR Runtime Type Error)

Dynamic type checking is weaker than static type checking in the sense that it only checks the
particular program execution at hand rather than all possible executions. It is stronger in the
sense that it tracks types throughout the whole program.

Note that it is enabled only in debug mode, as it incurs some (minor) runtime overhead.

7.3.3 Compilation

The SWI-Prolog CHR compiler exploits term expansion/2 rules to translate the constraint han-
dling rules to plain Prolog. These rules are loaded from the library chr. They are activated if the
compiled file has the .chr extension or after finding a declaration in the following format:

:- chr_constraint ...

It is advised to define CHR rules in a module file, where the module declaration is immediately
followed by including the library(chr) library as exemplified below:

:- module(zebra, [zebra/0]).
:- use_module(library(chr)).

:- chr_constraint ...

Using this style, CHR rules can be defined in ordinary Prolog .pl files and the operator definitions
required by CHR do not leak into modules where they might cause conflicts.

7.4 Debugging

The CHR debugging facilities are currently rather limited. Only tracing is currently available. To use
the CHR debugging facilities for a CHR file it must be compiled for debugging. Generating debug
info is controlled by the CHR option debug, whose default is derived from the SWI-Prolog flag
generate debug info. Therefore debug info is provided unless the -nodebug is used.

7.4.1 Ports

For CHR constraints the four standard ports are defined:

call
A new constraint is called and becomes active.

SWI-Prolog 6.0 Reference Manual

7.4. DEBUGGING 221

exit
An active constraint exits: it has either been inserted in the store after trying all rules or has
been removed from the constraint store.

fail
An active constraint fails.

redo
An active constraint starts looking for an alternative solution.

In addition to the above ports, CHR constraints have five additional ports:

wake
A suspended constraint is woken and becomes active.

insert
An active constraint has tried all rules and is suspended in the constraint store.

remove
An active or passive constraint is removed from the constraint store.

try
An active constraint tries a rule with possibly some passive constraints. The try port is entered
just before committing to the rule.

apply
An active constraint commits to a rule with possibly some passive constraints. The apply port
is entered just after committing to the rule.

7.4.2 Tracing

Tracing is enabled with the chr trace/0 predicate and disabled with the chr notrace/0 pred-
icate.

When enabled the tracer will step through the call, exit, fail, wake and apply ports,
accepting debug commands, and simply write out the other ports.

The following debug commands are currently supported:

CHR debug options:

<cr> creep c creep
s skip
g ancestors
n nodebug
b break
a abort
f fail
? help h help

Their meaning is:

SWI-Prolog 6.0 Reference Manual

222 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

creep
Step to the next port.

skip
Skip to exit port of this call or wake port.

ancestors
Print list of ancestor call and wake ports.

nodebug
Disable the tracer.

break
Enter a recursive Prolog top-level. See break/0.

abort
Exit to the top-level. See abort/0.

fail
Insert failure in execution.

help
Print the above available debug options.

7.4.3 CHR Debugging Predicates

The chr module contains several predicates that allow inspecting and printing the content of the
constraint store.

chr trace
Activate the CHR tracer. By default the CHR tracer is activated and deactivated automatically
by the Prolog predicates trace/0 and notrace/0.

chr notrace
Deactivate the CHR tracer. By default the CHR tracer is activated and deactivated automatically
by the Prolog predicates trace/0 and notrace/0.

chr leash(+Spec)
Define the set of CHR ports on which the CHR tracer asks for user intervention (i.e. stops).
Spec is either a list of ports as defined in section 7.4.1 or a predefined ‘alias’. Defined aliases
are: full to stop at all ports, none or off to never stop, and default to stop at the call,
exit, fail, wake and apply ports. See also leash/1.

chr show store(+Mod)
Prints all suspended constraints of module Mod to the standard output. This predicate is auto-
matically called by the SWI-Prolog top-level at the end of each query for every CHR module
currently loaded. The Prolog flag chr toplevel show store controls whether the
top-level shows the constraint stores. The value true enables it. Any other value disables it.

find chr constraint(-Constraint)
Returns a constraint in the constraint store. Via backtracking, all constraints in the store can be
enumerated.

SWI-Prolog 6.0 Reference Manual

7.5. EXAMPLES 223

7.5 Examples

Here are two example constraint solvers written in CHR.

• The program below defines a solver with one constraint, leq/2/, which is a less-than-or-
equal constraint, also known as a partial order constraint.

:- module(leq,[leq/2]).
:- use_module(library(chr)).

:- chr_constraint leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

When the above program is saved in a file and loaded in SWI-Prolog, you can call the leq/2
constraints in a query, e.g.:

?- leq(X,Y), leq(Y,Z).
leq(_G23837, _G23841)
leq(_G23838, _G23841)
leq(_G23837, _G23838)

X = _G23837{leq = ...}
Y = _G23838{leq = ...}
Z = _G23841{leq = ...}

Yes

When the query succeeds, the SWI-Prolog top-level prints the content of the CHR constraint
store and displays the bindings generated during the query. Some of the query variables may
have been bound to attributed variables, as you see in the above example.

• The program below implements a simple finite domain constraint solver.

:- module(dom,[dom/2]).
:- use_module(library(chr)).

:- chr_constraint dom(?int,+list(int)).
:- chr_type list(T) ---> [] ; [T|list(T)].

dom(X,[]) <=> fail.
dom(X,[Y]) <=> X = Y.
dom(X,L) <=> nonvar(X) | memberchk(X,L).
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).

SWI-Prolog 6.0 Reference Manual

224 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

When the above program is saved in a file and loaded in SWI-Prolog, you can call the dom/2
constraints in a query, e.g.:

?- dom(A,[1,2,3]), dom(A,[3,4,5]).

A = 3

Yes

7.6 Backwards Compatibility

7.6.1 The Old SICStus CHR implemenation

There are small differences between the current K.U.Leuven CHR system in SWI-Prolog, older ver-
sions of the same system, and SICStus’ CHR system.

The current system maps old syntactic elements onto new ones and ignores a number of no longer
required elements. However, for each a deprecated warning is issued. You are strongly urged to
replace or remove deprecated features.

Besides differences in available options and pragmas, the following differences should be noted:

• The constraints/1 declaration
This declaration is deprecated. It has been replaced with the chr constraint/1 declara-
tion.

• The option/2 declaration
This declaration is deprecated. It has been replaced with the chr option/2 declaration.

• The handler/1 declaration
In SICStus every CHR module requires a handler/1 declaration declaring a unique handler
name. This declaration is valid syntax in SWI-Prolog, but will have no effect. A warning will
be given during compilation.

• The rules/1 declaration
In SICStus, for every CHR module it is possible to only enable a subset of the available rules
through the rules/1 declaration. The declaration is valid syntax in SWI-Prolog, but has no
effect. A warning is given during compilation.

• Guard bindings
The check guard bindings option only turns invalid calls to unification into failure. In
SICStus this option does more: it intercepts instantiation errors from Prolog built-ins such as
is/2 and turns them into failure. In SWI-Prolog, we do not go this far, as we like to separate
concerns more. The CHR compiler is aware of the CHR code, the Prolog system, and the
programmer should be aware of the appropriate meaning of the Prolog goals used in guards and
bodies of CHR rules.

SWI-Prolog 6.0 Reference Manual

7.7. PROGRAMMING TIPS AND TRICKS 225

7.6.2 The Old ECLiPSe CHR implemenation

The old ECLiPSe CHR implementation features a label with/1 construct for labeling variables
in CHR constraints. This feature has long since been abandoned. However, a simple transformation
is all that is required to port the functionality.

label_with Constraint1 if Condition1.
...
label_with ConstraintN if ConditionN.
Constraint1 :- Body1.
...
ConstraintN :- BodyN.

is transformed into

:- chr_constraint my_labeling/0.

my_labeling \ Constraint1 <=> Condition1 | Body1.
...
my_labeling \ ConstraintN <=> ConditionN | BodyN.
my_labeling <=> true.

Be sure to put this code after all other rules in your program! With my labeling/0 (or another
predicate name of your choosing) the labeling is initiated, rather than ECLiPSe’s chr labeling/0.

7.7 Programming Tips and Tricks

In this section we cover several guidelines on how to use CHR to write constraint solvers and how to
do so efficiently.

• Check guard bindings yourself
It is considered bad practice to write guards that bind variables of the head and to rely on the
system to detect this at runtime. It is inefficient and obscures the working of the program.

• Set semantics
The CHR system allows the presence of identical constraints, i.e. multiple constraints with the
same functor, arity and arguments. For most constraint solvers, this is not desirable: it affects
efficiency and possibly termination. Hence appropriate simpagation rules should be added of
the form:

constraint\constraint <=> true

• Multi-headed rules
Multi-headed rules are executed more efficiently when the constraints share one or more vari-
ables.

• Mode and type declarations
Provide mode and type declarations to get more efficient program execution. Make sure to
disable debug (-nodebug) and enable optimization (-O).

SWI-Prolog 6.0 Reference Manual

226 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

• Compile once, run many times
Does consulting your CHR program take a long time in SWI-Prolog? Probably it takes the
CHR compiler a long time to compile the CHR rules into Prolog code. When you disable opti-
mizations the CHR compiler will be a lot quicker, but you may lose performance. Alternatively,
you can just use SWI-Prolog’s qcompile/1 to generate a .qlf file once from your .pl file.
This .qlf contains the generated code of the CHR compiler (be it in a binary format). When
you consult the .qlf file, the CHR compiler is not invoked and consultation is much faster.

• Finding Constraints
The find chr constraint/1 predicate is fairly expensive. Avoid it, if possible. If you
must use it, try to use it with an instantiated top-level constraint symbol.

7.8 Compiler Errors and Warnings

In this section we summarize the most important error and warning messages of the CHR compiler.

7.8.1 CHR Compiler Errors

Type clash for variable ... in rule ...

This error indicates an inconsistency between declared types; a variable can not belong to two
types. See static type checking.

Invalid functor in head ... of rule ...

This error indicates an inconsistency between a declared type and the use of a functor in a rule.
See static type checking.

Cyclic alias definition: ... == ...

You have defined a type alias in terms of itself, either directly or indirectly.

Ambiguous type aliases You have defined two overlapping type aliases.

Multiple definitions for type

You have defined the same type multiple times.

Non-ground type in constraint definition: ...

You have declared a non-ground type for a constraint argument.

Could not find type definition for ...

You have used an undefined type in a type declaration.

Illegal mode/type declaration You have used invalid syntax in a constraint declaration.

Constraint multiply defined There is more than one declaration for the same constraint.

Undeclared constraint ... in head of ...

You have used an undeclared constraint in the head of a rule. This often indicates a misspelled
constraint name or wrong number of arguments.

SWI-Prolog 6.0 Reference Manual

7.8. COMPILER ERRORS AND WARNINGS 227

Invalid pragma ... in ... Pragma should not be a variable.

You have used a variable as a pragma in a rule. This is not allowed.

Invalid identifier ... in pragma passive in ...

You have used an identifier in a passive pragma that does not correspond to an identifier in the
head of the rule. Likely the identifier name is misspelled.

Unknown pragma ... in ...

You have used an unknown pragma in a rule. Likely the pragma is misspelled or not supported.

Something unexpected happened in the CHR compiler

You have most likely bumped into a bug in the CHR compiler. Please contact Tom Schrijvers
to notify him of this error.

SWI-Prolog 6.0 Reference Manual

Multi-threaded applications 8
SWI-Prolog multithreading is based on standard C-language multithreading support. It is not like
ParLog or other parallel implementations of the Prolog language. Prolog threads have their own
stacks and only share the Prolog heap: predicates, records, flags and other global non-backtrackable
data. SWI-Prolog thread support is designed with the following goals in mind.

• Multi-threaded server applications
Today’s computing services often focus on (internet) server applications. Such applications
often have need for communication between services and/or fast non-blocking service to mul-
tiple concurrent clients. The shared heap provides fast communication, and thread creation is
relatively cheap.1

• Interactive applications
Interactive applications often need to perform extensive computation. If such computations are
executed in a new thread, the main thread can process events and allow the user to cancel the
ongoing computation. User interfaces can also use multiple threads, each thread dealing with
input from a distinct group of windows. See also section 8.8.

• Natural integration with foreign code
Each Prolog thread runs in a native thread of the operating system, automatically making them
cooperate with MT-safe foreign-code. In addition, any foreign thread can create its own Prolog
engine for dealing with calling Prolog from C-code.

SWI-Prolog multithreading is based on the POSIX thread standard [Butenhof, 1997] used on most
popular systems except for MS-Windows. On Windows it uses the pthread-win32 emulation of POSIX
threads mixed with the Windows native API for smoother and faster operation.

8.1 Creating and destroying Prolog threads

thread create(:Goal, -Id, +Options)
Create a new Prolog thread (and underlying C-thread) and start it by executing Goal. If the
thread is created successfully, the thread-identifier of the created thread is unified to Id. Options
is a list of options. The currently defined options are below. Stack size options can also take
the value inf or infinite, which is mapped to the maximum stack size supported by the
platform.

alias(AliasName)
Associate an ‘alias name’ with the thread. This name may be used to refer to the thread
and remains valid until the thread is joined (see thread join/2).

1On a dual AMD-Athlon 1600, SWI-Prolog 5.1.0 creates and joins 4,957 threads per second elapsed time.

SWI-Prolog 6.0 Reference Manual

8.1. CREATING AND DESTROYING PROLOG THREADS 229

at exit(:AtExit)
Register AtExit as using thread at exit/1 before entering the thread goal. Unlike
calling thread at exit/1 as part of the normal Goal, this ensures the Goal is called.
Using thread at exit/1, the thread may be signalled or run out of resources before
thread at exit/1 is reached.

detached(Bool)
If false (default), the thread can be waited for using thread join/2.
thread join/2 must be called on this thread to reclaim all resources associated
with the thread. If true, the system will reclaim all associated resources automatically
after the thread finishes. Please note that thread identifiers are freed for reuse after a
detached thread finishes or a normal thread has been joined. See also thread join/2
and thread detach/1.
If a detached thread dies due to failure or exception of the initial goal, the thread prints a
message using print message/2. If such termination is considered normal, the code
must be wrapped using ignore/1 and/or catch/3 to ensure successful completion.

global(K-Bytes)
Set the limit to which the global stack of this thread may grow. If omitted, the limit of the
calling thread is used. See also the -G command-line option.

local(K-Bytes)
Set the limit to which the local stack of this thread may grow. If omitted, the limit of the
calling thread is used. See also the -L command-line option.

c stack(K-Bytes)
Set the limit to which the system stack of this thread may grow. The default, minimum
and maximum values are system-dependent.2.

trail(K-Bytes)
Set the limit to which the trail stack of this thread may grow. If omitted, the limit of the
calling thread is used. See also the -T command-line option.

The Goal argument is copied to the new Prolog engine. This implies that further instantiation
of this term in either thread does not have consequences for the other thread: Prolog threads do
not share data from their stacks.

thread self(-Id)
Get the Prolog thread identifier of the running thread. If the thread has an alias, the alias name
is returned.

thread join(+Id, -Status)
Wait for the termination of the thread with the given Id. Then unify the result status of the
thread with Status. After this call, Id becomes invalid and all resources associated with the
thread are reclaimed. Note that threads with the attribute detached(true) cannot be joined.
See also thread property/2.

A thread that has been completed without thread join/2 being called on it is partly re-
claimed: the Prolog stacks are released and the C-thread is destroyed. A small data structure
representing the exit status of the thread is retained until thread join/2 is called on the
thread. Defined values for Status are:

2Older versions used stack. This is still accepted as a synonym.

SWI-Prolog 6.0 Reference Manual

230 CHAPTER 8. MULTI-THREADED APPLICATIONS

true
The goal has been proven successfully.

false
The goal has failed.

exception(Term)
The thread is terminated on an exception. See print message/2 to turn system
exceptions into readable messages.

exited(Term)
The thread is terminated on thread exit/1 using the argument Term.

thread detach(+Id)
Switch thread into detached state (see detached(Bool) option at thread create/3) at
runtime. Id is the identifier of the thread placed in detached state. This may be the result of
thread self/1.

One of the possible applications is to simplify debugging. Threads that are created as de-
tached leave no traces if they crash. For non-detached threads the status can be inspected using
thread property/2. Threads nobody is waiting for may be created normally and detach
themselves just before completion. This way they leave no traces on normal completion and
their reason for failure can be inspected.

thread exit(+Term) [deprecated]

Terminates the thread immediately, leaving exited(Term) as result state for
thread join/2. If the thread has the attribute detached(true) it terminates, but its
exit status cannot be retrieved using thread join/2, making the value of Term irrelevant.
The Prolog stacks and C-thread are reclaimed.

The current implementation does not guarantee proper releasing of all mutexes and proper
cleanup in setup call cleanup/3, etc. Please use the exception mechanism (throw/1)
to abort execution using non-standard control.

thread initialization(:Goal)
Run Goal when thread is started. This predicate is similar to initialization/1, but is
intended for initialization operations of the runtime stacks, such as setting global variables
as described in section 6.3. Goal is run on four occasions: at the call to this predicate, after
loading a saved state, on starting a new thread and on creating a Prolog engine through the C
interface. On loading a saved state, Goal is executed after running the initialization/1
hooks.

thread at exit(:Goal)
Run Goal just before releasing the thread resources. This is to be compared to at halt/1, but
only for the current thread. These hooks are run regardless of why the execution of the thread
has been completed. When these hooks are run, the return code is already available through
thread property/2 using the result of thread self/1 as thread identifier. Note that
there are two scenarios for using exit hooks. Using thread at exit/1 is typically used
if the thread creates a side-effect that must be reverted if the thread dies. Another scenario is
where the creator of the thread wants to be informed when the thread ends. That cannot be
guaranteed by means of thread at exit/1 because it is possible that the thread cannot be

SWI-Prolog 6.0 Reference Manual

8.2. MONITORING THREADS 231

created or dies almost instantly due to a signal or resource error. The at exit(Goal) option
of thread create/3 is designed to deal with this scenario.

thread setconcurrency(-Old, +New)
Determine the concurrency of the process, which is defined as the maximum number of con-
currently active threads. ‘Active’ here means they are using CPU time. This option is provided
if the thread implementation provides pthread setconcurrency(). Solaris is a typical example of
this family. On other systems this predicate unifies Old to 0 (zero) and succeeds silently.

8.2 Monitoring threads

Normal multithreaded applications should not need the predicates from this section because almost
any usage of these predicates is unsafe. For example checking the existence of a thread before sig-
nalling it is of no use as it may vanish between the two calls. Catching exceptions using catch/3 is
the only safe way to deal with thread-existence errors.

These predicates are provided for diagnosis and monitoring tasks. See also section 8.5, describing
more high-level primitives.

thread property(?Id, ?Property)
True if thread Id has Property. Either or both arguments may be unbound, enumerating all
relations on backtracking. Calling thread property/2 does not influence any thread. See
also thread join/2. For threads that have an alias name, this name is returned in Id instead
of the opaque thread identifier. Defined properties are:

alias(Alias)
Alias is the alias name of thread Id.

detached(Boolean)
Current detached status of the thread.

status(Status)
Current status of the thread. Status is one of:

running
The thread is running. This is the initial status of a thread. Please note that threads
waiting for something are considered running too.

false
The Goal of the thread has been completed and failed.

true
The Goal of the thread has been completed and succeeded.

exited(Term)
The Goal of the thread has been terminated using thread exit/1 with Term as
argument. If the underlying native thread has exited (using pthread exit()) Term is
unbound.

exception(Term)
The Goal of the thread has been terminated due to an uncaught exception (see
throw/1 and catch/3).

SWI-Prolog 6.0 Reference Manual

232 CHAPTER 8. MULTI-THREADED APPLICATIONS

See also thread statistics/3 to obtain resource usage information and
message queue property/2 to get the number of queued messages for a thread.

thread statistics(+Id, +Key, -Value)
Obtains statistical information on thread Id as statistics/2 does in single-threaded appli-
cations. This call supports all keys of statistics/2, although only stack sizes and CPU
time yield different values for each thread.3

mutex statistics
Print usage statistics on internal mutexes and mutexes associated with dynamic predicates.
For each mutex two numbers are printed: the number of times the mutex was acquired and
the number of collisions: the number of times the calling thread has to wait for the mutex.
Generally collision count is close to zero on single-CPU hardware.

8.3 Thread communication

8.3.1 Message queues

Prolog threads can exchange data using dynamic predicates, database records, and other globally
shared data. These provide no suitable means to wait for data or a condition as they can only be
checked in an expensive polling loop. Message queues provide a means for threads to wait for data or
conditions without using the CPU.

Each thread has a message queue attached to it that is identified by the thread. Additional queues
are created using message queue create/1.

thread send message(+QueueOrThreadId, +Term)
Place Term in the given queue or default queue of the indicated thread (which can even be the
message queue of itself, see thread self/1). Any term can be placed in a message queue,
but note that the term is copied to the receiving thread and variable bindings are thus lost. This
call returns immediately.

If more than one thread is waiting for messages on the given queue and at least one of these
is waiting with a partially instantiated Term, the waiting threads are all sent a wake-up signal,
starting a rush for the available messages in the queue. This behaviour can seriously harm
performance with many threads waiting on the same queue as all-but-the-winner perform a
useless scan of the queue. If there is only one waiting thread or all waiting threads wait with an
unbound variable, an arbitrary thread is restarted to scan the queue.4

thread get message(?Term)
Examines the thread message queue and if necessary blocks execution until a term that unifies
to Term arrives in the queue. After a term from the queue has been unified to Term, the term is
deleted from the queue.

Please note that non-unifying messages remain in the queue. After the following has been
executed, thread 1 has the term b(gnu) in its queue and continues execution using A = gnat.

3There is no portable interface to obtain thread-specific CPU time and some operating systems provide no access to this
information at all. On such systems the total process CPU is returned. Thread CPU time is supported on MS-Windows,
Linux and MacOSX.

4See the documentation for the POSIX thread functions pthread cond signal() v.s. pthread cond broadcast() for back-
ground information.

SWI-Prolog 6.0 Reference Manual

8.3. THREAD COMMUNICATION 233

<thread 1>
thread_get_message(a(A)),

<thread 2>
thread_send_message(Thread_1, b(gnu)),
thread_send_message(Thread_1, a(gnat)),

See also thread peek message/1.

thread peek message(?Term)
Examines the thread message queue and compares the queued terms with Term until
one unifies or the end of the queue has been reached. In the first case the call suc-
ceeds, possibly instantiating Term. If no term from the queue unifies, this call fails. I.e.,
thread peek message/1 never waits and does not remove any term from the queue. See
also thread get message/3.

message queue create(?Queue)
If Queue is an atom, create a named queue. To avoid ambiguity of
thread send message/2, the name of a queue may not be in use as a thread name.
If Queue is unbound an anonymous queue is created and Queue is unified to its identifier.

message queue create(-Queue, +Options)
Create a message queue from Options. Defined options are:

alias(+Alias)
Same as message queue create(Alias), but according to the ISO draft on Prolog
threads.

max size(+Size)
Maximum number of terms in the queue. If this number is reached,
thread send message/2 will suspend until the queue is drained. The option
can be used if the source, sending messages to the queue, is faster than the drain,
consuming the messages.

message queue destroy(+Queue)
Destroy a message queue created with message queue create/1. A permission error
is raised if Queue refers to (the default queue of) a thread. Other threads that are waiting for
Queue using thread get message/2 receive an existence error.

thread get message(+Queue, ?Term)
As thread get message/1, operating on a given queue. It is allowed (but not advised)
to get messages from the queue of other threads. This predicate raises an existence error
exception if Queue doesn’t exist or is destroyed using message queue destroy/1 while
this predicate is waiting.

thread get message(+Queue, ?Term, +Options)
As thread get message/2, but providing additional Options:

SWI-Prolog 6.0 Reference Manual

234 CHAPTER 8. MULTI-THREADED APPLICATIONS

timeout(+Time)
Time is a float or integer and specifies the maximum time to wait in seconds. If Time
is 0.0 or less, thread get message/3 examines the queue but does not suspend if
no matching term is available. If no message arrives before the time interval elapses,
Term is unified to the atom timeout. Both resolution and maximum wait time is
platform-dependent.5

thread peek message(+Queue, ?Term)
As thread peek message/1, operating on a given queue. It is allowed to peek into an-
other thread’s message queue, an operation that can be used to check whether a thread has
swallowed a message sent to it.

message queue property(?Queue, ?Property)
True if Property is a property of Queue. Defined properties are:

alias(Alias)
Queue has the given alias name.

max size(Size)
Maximum number of terms that can be in the queue. See message queue create/2.
This property is not present if there is no limit (default).

size(Size)
Queue currently contains Size terms. Note that due to concurrent access the returned
value may be outdated before it is returned. It can be used for debugging purposes as well
as work distribution purposes.

The size(Size) property is always present and may be used to enumerate the created message
queues. Note that this predicate does not enumerate threads, but can be used to query the
properties of the default queue of a thread.

Explicit message queues are designed with the worker-pool model in mind, where multiple threads
wait on a single queue and pick up the first goal to execute. Below is a simple implementation where
the workers execute arbitrary Prolog goals. Note that this example provides no means to tell when all
work is done. This must be realised using additional synchronisation.

%% create_workers(?Id, +N)
%
% Create a pool with Id and number of workers. After the pool is
% created, post_job/1 can be used to send jobs to the pool.

create_workers(Id, N) :-
message_queue_create(Id),
forall(between(1, N, _),

thread_create(do_work(Id), _, [])).

do_work(Id) :-

5The implementation uses MsgWaitForMultipleObjects() on MS-Windows and pthread cond timedwait() on other sys-
tems.

SWI-Prolog 6.0 Reference Manual

8.3. THREAD COMMUNICATION 235

repeat,
thread_get_message(Id, Goal),
(catch(Goal, E, print_message(error, E))
-> true
; print_message(error, goal_failed(Goal, worker(Id)))
),

fail.

%% post_job(+Id, +Goal)
%
% Post a job to be executed by one of the pool’s workers.

post_job(Id, Goal) :-
thread_send_message(Id, Goal).

8.3.2 Signalling threads

These predicates provide a mechanism to make another thread execute some goal as an interrupt.
Signalling threads is safe as these interrupts are only checked at safe points in the virtual machine.
Nevertheless, signalling in multithreaded environments should be handled with care as the receiving
thread may hold a mutex (see with mutex/2). Signalling probably only makes sense to start de-
bugging threads and to cancel no-longer-needed threads with throw/1, where the receiving thread
should be designed carefully to handle exceptions at any point.

thread signal(+ThreadId, :Goal)
Make thread ThreadId execute Goal at the first opportunity. In the current implementation, this
implies at the first pass through the Call-port. The predicate thread signal/2 itself places
Goal into the signalled thread’s signal queue and returns immediately.

Signals (interrupts) do not cooperate well with the world of multithreading, mainly because the
status of mutexes cannot be guaranteed easily. At the call-port, the Prolog virtual machine holds
no locks and therefore the asynchronous execution is safe.

Goal can be any valid Prolog goal, including throw/1 to make the receiving thread generate
an exception, and trace/0 to start tracing the receiving thread.

In the Windows version, the receiving thread immediately executes the signal if it reaches a
Windows GetMessage() call, which generally happens if the thread is waiting for (user-)input.

8.3.3 Threads and dynamic predicates

Besides queues (section 8.3.1) threads can share and exchange data using dynamic predicates. The
multithreaded version knows about two types of dynamic predicates. By default, a predicate declared
dynamic (see dynamic/1) is shared by all threads. Each thread may assert, retract and run the dy-
namic predicate. Synchronisation inside Prolog guarantees the consistency of the predicate. Updates
are logical: visible clauses are not affected by assert/retract after a query started on the predicate. In
many cases primitives from section 8.4 should be used to ensure that application invariants on the
predicate are maintained.

SWI-Prolog 6.0 Reference Manual

236 CHAPTER 8. MULTI-THREADED APPLICATIONS

Besides shared predicates, dynamic predicates can be declared with the thread local/1 di-
rective. Such predicates share their attributes, but the clause list is different in each thread.

thread local +Functor/+Arity, . . .
This directive is related to the dynamic/1 directive. It tells the system that the predicate may
be modified using assert/1, retract/1, etc., during execution of the program. Unlike
normal shared dynamic data, however, each thread has its own clause list for the predicate. As
a thread starts, this clause list is empty. If there are still clauses when the thread terminates,
these are automatically reclaimed by the system (see also volatile/1). The thread local
property implies the properties dynamic and volatile.

Thread-local dynamic predicates are intended for maintaining thread-specific state or interme-
diate results of a computation.

It is not recommended to put clauses for a thread-local predicate into a file, as in the example
below, because the clause is only visible from the thread that loaded the source file. All other
threads start with an empty clause list.

:- thread_local
foo/1.

foo(gnat).

DISCLAIMER Whether or not this declaration is appropriate in the sense of the proper mech-
anism to reach the goal is still debated. If you have strong feelings in favour or against, please
share them in the SWI-Prolog mailing list.

8.4 Thread synchronisation

All internal Prolog operations are thread-safe. This implies that two Prolog threads can operate on the
same dynamic predicate without corrupting the consistency of the predicate. This section deals with
user-level mutexes (called monitors in ADA or critical-sections by Microsoft). A mutex is a MUTual
EXclusive device, which implies that at most one thread can hold a mutex.

Mutexes are used to realise related updates to the Prolog database. With ‘related’, we refer to
the situation where a ‘transaction’ implies two or more changes to the Prolog database. For example,
we have a predicate address/2, representing the address of a person and we want to change the
address by retracting the old and asserting the new address. Between these two operations the database
is invalid: this person has either no address or two addresses, depending on the assert/retract order.

Here is how to realise a correct update:

:- initialization
mutex_create(addressbook).

change_address(Id, Address) :-
mutex_lock(addressbook),
retractall(address(Id, _)),
asserta(address(Id, Address)),
mutex_unlock(addressbook).

SWI-Prolog 6.0 Reference Manual

8.4. THREAD SYNCHRONISATION 237

mutex create(?MutexId)
Create a mutex. If MutexId is an atom, a named mutex is created. If it is a variable, an anony-
mous mutex reference is returned. There is no limit to the number of mutexes that can be
created.

mutex create(-MutexId, +Options)
Create a mutex using options. Defined options are:

alias(Alias)
Set the alias name. Using mutex create(X, [alias(name)]) is preferred over the equiv-
alent mutex create(name).

mutex destroy(+MutexId)
Destroy a mutex. After this call, MutexId becomes invalid and further references yield an
existence error exception.

with mutex(+MutexId, :Goal)
Execute Goal while holding MutexId. If Goal leaves choice-points, these are destroyed (as
in once/1). The mutex is unlocked regardless of whether Goal succeeds, fails or raises an
exception. An exception thrown by Goal is re-thrown after the mutex has been successfully
unlocked. See also mutex create/1 and setup call cleanup/3.

Although described in the thread section, this predicate is also available in the single-threaded
version, where it behaves simply as once/1.

mutex lock(+MutexId)
Lock the mutex. Prolog mutexes are recursive mutexes: they can be locked multiple times by
the same thread. Only after unlocking it as many times as it is locked does the mutex become
available for locking by other threads. If another thread has locked the mutex the calling thread
is suspended until the mutex is unlocked.

If MutexId is an atom, and there is no current mutex with that name, the mutex is created
automatically using mutex create/1. This implies named mutexes need not be declared
explicitly.

Please note that locking and unlocking mutexes should be paired carefully. Especially make
sure to unlock mutexes even if the protected code fails or raises an exception. For most common
cases, use with mutex/2, which provides a safer way for handling Prolog-level mutexes. The
predicate setup call cleanup/3 is another way to guarantee that the mutex is unlocked
while retaining non-determinism.

mutex trylock(+MutexId)
As mutex lock/1, but if the mutex is held by another thread, this predicates fails immedi-
ately.

mutex unlock(+MutexId)
Unlock the mutex. This can only be called if the mutex is held by the calling thread. If this is
not the case, a permission error exception is raised.

mutex unlock all
Unlock all mutexes held by the current thread. This call is especially useful to handle thread
termination using abort/0 or exceptions. See also thread signal/2.

SWI-Prolog 6.0 Reference Manual

238 CHAPTER 8. MULTI-THREADED APPLICATIONS

mutex property(?MutexId, ?Property)
True if Property is a property of MutexId. Defined properties are:

alias(Alias)
Mutex has the defined alias name. See mutex create/2 using the ‘alias’ option.

status(Status)
Current status of the mutex. One of unlocked if the mutex is currently not locked,
or locked(Owner, Count) if mutex is locked Count times by thread Owner. Note that
unless Owner is the calling thread, the locked status can change at any time. There is no
useful application of this property, except for diagnostic purposes.6

8.5 Thread support library(threadutil)

This library defines a couple of useful predicates for demonstrating and debugging multithreaded
applications. This library is certainly not complete.

threads
Lists all current threads and their status.

join threads
Join all terminated threads. For normal applications, dealing with terminated threads must be
part of the application logic, either detaching the thread before termination or making sure it
will be joined. The predicate join threads/0 is intended for interactive sessions to reclaim
resources from threads that died unexpectedly during development.

interactor
Create a new console and run the Prolog top-level in this new console. See also
attach console/0. In the Windows version a new interactor can also be created
from the Run/New thread menu.

8.5.1 Debugging threads

Support for debugging threads is still very limited. Debug and trace mode are flags that are local
to each thread. Individual threads can be debugged either using the graphical debugger described
in section 3.5 (see tspy/1 and friends) or by attaching a console to the thread and running the
traditional command-line debugger (see attach console/0). When using the graphical debugger,
the debugger must be loaded from the main thread (for example using guitracer) before gtrace/0
can be called from a thread.

attach console
If the current thread has no console attached yet, attach one and redirect the user streams (input,
output, and error) to the new console window. On Unix systems the console is an xterm
application. On Windows systems this requires the GUI version swipl-win.exe rather than
the console-based swipl.exe.

This predicate has a couple of useful applications. One is to separate (debugging) I/O of differ-
ent threads. Another is to start debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this thread:

6BUG: As Owner and Count are fetched separately from the mutex, the values may be inconsistent.

SWI-Prolog 6.0 Reference Manual

8.6. UNBOUNDED THREAD CREATION 239

?- thread_signal(10, (attach_console, trace)).

tdebug(+ThreadId)
Prepare ThreadId for debugging using the graphical tracer. This implies installing the tracer
hooks in the thread and switching the thread to debug mode using debug/0. The call is
injected into the thread using thread signal/2. We refer to the documentation of this
predicate for asynchronous interaction with threads. New threads created inherit their debug
mode from the thread that created them.

tdebug
Call tdebug/1 in all running threads.

tnodebug(+ThreadId)
Disable debugging thread ThreadId.

tnodebug
Disable debugging in all threads.

tspy(:Spec, +ThreadId)
Set a spy-point as spy/1 and enable the thread for debugging using tdebug/1. Note that a
spy-point is a global flag on a predicate that is visible from all threads. Spy points are honoured
in all threads that are in debug mode and ignored in threads that are in nodebug mode.

tspy(:Spec)
Set a spy-point as spy/1 and enable debugging in all threads using tdebug/0. Note that
removing spy-points can be done using nospy/1. Disabling spy-points in a specific thread is
achieved by tnodebug/1.

8.5.2 Profiling threads

In the current implementation, at most one thread can be profiled at any moment. Any thread can call
profile/1 to profile the execution of some part of its code. The predicate tprofile/1 allows
for profiling the execution of another thread until the user stops collecting profile data.

tprofile(+ThreadId)
Start collecting profile data in ThreadId and ask the user to hit 〈return〉 to stop the profiler. See
section 4.38 for details on the execution profiler.

8.6 Unbounded thread creation

(SWI-)Prolog threads are rather heavyweight objects, notably on 32-bit systems, because every thread
uses a considerable amount of virtual address space. SWI-Prolog threads claim the stack limit in
virtual address space for each of the runtime stacks, while on 32-bit systems this resource is generally
limited somewhere between 1 GB and 3.5 GB, depending on the operating system and operating
configuration.

If SWI-Prolog starts a thread it copies the initial goal and starts a POSIX thread which allocates a
new Prolog engine that starts proving the given goal. If allocation of the engine fails, typically due to

SWI-Prolog 6.0 Reference Manual

240 CHAPTER 8. MULTI-THREADED APPLICATIONS

lack of virtual memory space, the thread is still created with minimal (8 Kbyte) stacks and immediately
calls its exit handlers. See the option at exit(Goal). Although this mechanism allows for handling
this type of error gracefully it is not safe to rely on it. Allocating an engine that nearly exhausts virtual
address space may cause failures in normal memory allocation that can appear anywhere in Prolog or
the foreign libraries used by it. Such errors typically kill the process with a fatal error.

Especially on 32-bit hardware, the design of the application must consider this issue and avoid
ungraceful termination, being conservative with the dynamic creation of new threads.

8.7 Multi-threaded mixed C and Prolog applications

All foreign code linked to the multithreading version of SWI-Prolog should be thread-safe (reentrant)
or guarded in Prolog using with mutex/2 from simultaneous access from multiple Prolog threads.
If you want to write mixed multithreaded C and Prolog applications you should first familiarise your-
self with writing multithreaded applications in C (C++).

If you are using SWI-Prolog as an embedded engine in a multithreaded application you can access
the Prolog engine from multiple threads by creating an engine in each thread from which you call
Prolog. Without creating an engine, a thread can only use functions that do not use the term t type
(for example PL new atom()).

The system supports two models. Section 8.7.1 describes the original one-to-one mapping. In this
schema a native thread attaches a Prolog thread if it needs to call Prolog and detaches it when finished,
as opposed to the model from section 8.7.2, where threads temporarily use a Prolog engine.

8.7.1 A Prolog thread for each native thread (one-to-one)

In the one-to-one model, the thread that called PL initialise() has a Prolog engine at-
tached. If another C-thread in the system wishes to call Prolog it must first attach an engine us-
ing PL thread attach engine() and call PL thread destroy engine() after all Prolog
work is finished. This model is especially suitable with long running threads that need to do Prolog
work regularly. See section 8.7.2 for the alternative many-to-many model.

int PL thread self()
Returns the integer Prolog identifier of the engine or -1 if the calling thread has no Prolog
engine. This function is also provided in the single-threaded version of SWI-Prolog, where it
returns -2.

int PL unify thread id(term t t, int i)
Unify t with the Prolog thread identifier for thread i. Thread identifiers are normally returned
from PL thread self(). Returns -1 if the thread does not exist or the unification fails.

int PL thread attach engine(const PL thread attr t *attr)
Creates a new Prolog engine in the calling thread. If the calling thread already has an engine
the reference count of the engine is incremented. The attr argument can be NULL to create a
thread with default attributes. Otherwise it is a pointer to a structure with the definition below.
For any field with value ‘0’, the default is used. The cancel field may be filled with a pointer
to a function that is called when PL cleanup() terminates the running Prolog engines. If
this function is not present or returns FALSE pthread cancel() is used.

SWI-Prolog 6.0 Reference Manual

8.7. MULTI-THREADED MIXED C AND PROLOG APPLICATIONS 241

typedef struct
{ unsigned long local_size; /* Stack sizes (K-bytes) */

unsigned long global_size;
unsigned long trail_size;
unsigned long argument_size;
char * alias; /* alias name */
int (*cancel)(int thread);

} PL_thread_attr_t;

The structure may be destroyed after PL thread attach engine() has returned. On suc-
cess it returns the Prolog identifier for the thread (as returned by PL thread self()). If an
error occurs, -1 is returned. If this Prolog is not compiled for multithreading, -2 is returned.

int PL thread destroy engine()
Destroy the Prolog engine in the calling thread. Only takes ef-
fect if PL thread destroy engine() is called as many times as
PL thread attach engine() in this thread. Returns TRUE on success and FALSE
if the calling thread has no engine or this Prolog does not support threads.

Please note that construction and destruction of engines are relatively expensive operations.
Only destroy an engine if performance is not critical and memory is a critical resource.

int PL thread at exit(void (*function)(void *), void *closure, int global)
Register a handle to be called as the Prolog engine is destroyed. The handler function is called
with one void * argument holding closure. If global is TRUE, the handler is installed for all
threads. Globally installed handlers are executed after the thread-local handlers. If the handler
is installed local for the current thread only (global == FALSE) it is stored in the same FIFO
queue as used by thread at exit/1.

8.7.2 Pooling Prolog engines (many-to-many)

In this model Prolog engines live as entities that are independent from threads. If a thread needs to
call Prolog it takes one of the engines from the pool and returns the engine when done. This model is
suitable in the following identified cases:

• Compatibility with the single-threaded version
In the single-threaded version, foreign threads must serialise access to the one and only thread
engine. Functions from this section allow sharing one engine among multiple threads.

• Many native threads with infrequent Prolog work
Prolog threads are expensive in terms of memory and time to create and destroy them. For
systems that use a large number of threads that only infrequently need to call Prolog, it is better
to take an engine from a pool and return it there.

• Prolog status must be handed to another thread
This situation has been identified by Uwe Lesta when creating a .NET interface for SWI-Prolog.
.NET distributes work for an active internet connection over a pool of threads. If a Prolog engine
contains the state for a connection, it must be possible to detach the engine from a thread and
re-attach it to another thread handling the same connection.

SWI-Prolog 6.0 Reference Manual

242 CHAPTER 8. MULTI-THREADED APPLICATIONS

PL engine t PL create engine(PL thread attr t *attributes)
Create a new Prolog engine. attributes is described with PL thread attach engine().
Any thread can make this call after PL initialise() returns success. The returned engine
is not attached to any thread and lives until PL destroy engine() is used on the returned
handle.

In the single-threaded version this call always returns NULL, indicating failure.

int PL destroy engine(PL engine t e)
Destroy the given engine. Destroying an engine is only allowed if the engine is not attached to
any thread or attached to the calling thread. On success this function returns TRUE, on failure
the return value is FALSE.

int PL set engine(PL engine t engine, PL engine t *old)
Make the calling thread ready to use engine. If old is non-NULL the current engine associated
with the calling thread is stored at the given location. If engine equals PL ENGINE MAIN the
initial engine is attached to the calling thread. If engine is PL ENGINE CURRENT the engine is
not changed. This can be used to query the current engine. This call returns PL ENGINE SET
if the engine was switched successfully, PL ENGINE INVAL if engine is not a valid engine
handle and PL ENGINE INUSE if the engine is currently in use by another thread.

Engines can be changed at any time. For example, it is allowed to select an engine to initiate a
Prolog goal, detach it and at a later moment execute the goal from another thread. Note however
that the term t, qid t and fid t types are interpreted relative to the engine for which they
are created. Behaviour when passing one of these types from one engine to another is undefined.

In the single-threaded version this call only succeeds if engine refers to the main engine.

Engines in single-threaded SWI-Prolog

In theory it is possible to port the API of section 8.7.2 to the single-threaded version of SWI-Prolog.
This allows C-programs to control multiple Prolog engines concurrently. This has not yet been re-
alised.

8.8 Multithreading and the XPCE graphics system

GUI applications written in XPCE can benefit from Prolog threads if they need to do expensive com-
putations that would otherwise block the UI. The XPCE message passing system is guarded with a
single mutex, which synchronises both access from Prolog and activation through the GUI. In MS-
Windows, GUI events are processed by the thread that created the window in which the event occurred,
whereas in Unix/X11 they are processed by the thread that dispatches messages. In practice, the most
feasible approach to graphical Prolog implementations is to control XPCE from a single thread and
deploy other threads for (long) computations.

Traditionally, XPCE runs in the foreground (main) thread. We are working towards a situation
where XPCE can run comfortably in a separate thread. A separate XPCE thread can be created using
pce dispatch/1. It is also possible to create this thread as the (pce) is loaded by setting the
xpce threaded to true.

Threads other than the thread in which XPCE runs are provided with two predicates to communi-
cate with XPCE.

SWI-Prolog 6.0 Reference Manual

8.8. MULTITHREADING AND THE XPCE GRAPHICS SYSTEM 243

in pce thread(:Goal) [det]

Assuming XPCE is running in the foreground thread, this call gives background threads the
opportunity to make calls to the XPCE thread. A call to in pce thread/1 succeeds
immediately, copying Goal to the XPCE thread. Goal is added to the XPCE event queue and
executed synchronous to normal user events like typing and clicking.

in pce thread sync(:Goal) [semidet]

Same as in pce thread/1, but wait for Goal to be completed. Success depends on the suc-
cess of executing Goal. Variable bindings inside Goal are visible to the caller, but it should be
noted that the values are being copied. If Goal throws an exception, this exception is re-thrown
by in pce thread/1. If the calling thread is the ‘pce thread’, in pce thread sync/1
executes a direct meta-call. See also pce thread/1.

Note that in pce thread sync/1 is expensive because it requires copying and thread com-
munication. For example, in pce thread synctrue runs at approximately 50,000 calls
per second (AMD Phenom 9600B, Ubuntu 11.04).

pce dispatch(+Options)
Create a Prolog thread with the alias name pce for XPCE event-handling. In the X11 version
this call creates a thread that executes the X11 event-dispatch loop. In MS-Windows it creates
a thread that executes a windows event-dispatch loop. The XPCE event-handling thread has
the alias pce. Options specifies the thread attributes as thread create/3.

SWI-Prolog 6.0 Reference Manual

Foreign Language Interface 9
SWI-Prolog offers a powerful interface to C [Kernighan & Ritchie, 1978]. The main design objectives
of the foreign language interface are flexibility and performance. A foreign predicate is a C-function
that has the same number of arguments as the predicate represented. C-functions are provided to
analyse the passed terms, convert them to basic C-types as well as to instantiate arguments using
unification. Non-deterministic foreign predicates are supported, providing the foreign function with a
handle to control backtracking.

C can call Prolog predicates, providing both an query interface and an interface to extract multiple
solutions from an non-deterministic Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. It is also possible to write the ‘main’ in C and use Prolog as an embedded logical
engine.

9.1 Overview of the Interface

A special include file called SWI-Prolog.h should be included with each C-source file that is to be
loaded via the foreign interface. The installation process installs this file in the directory include in
the SWI-Prolog home directory (?- current prolog flag(home, Home).). This C-header
file defines various data types, macros and functions that can be used to communicate with SWI-
Prolog. Functions and macros can be divided into the following categories:

• Analysing Prolog terms
• Constructing new terms
• Unifying terms
• Returning control information to Prolog
• Registering foreign predicates with Prolog
• Calling Prolog from C
• Recorded database interactions
• Global actions on Prolog (halt, break, abort, etc.)

9.2 Linking Foreign Modules

Foreign modules may be linked to Prolog in two ways. Using static linking, the extensions, a (short)
file defining main() which attaches the extensions calls Prolog and the SWI-Prolog kernel distributed
as a C-library are linked together to form a new executable. Using dynamic linking, the extensions
are linked to a shared library (.so file on most Unix systems) or dynamic-link library (.DLL file on
Microsoft platforms) and loaded into the running Prolog process.1.

1The system also contains code to load .o files directly for some operating systems, notably Unix systems using the
BSD a.out executable format. As the number of Unix platforms supporting this gets quickly smaller and this interface is

SWI-Prolog 6.0 Reference Manual

9.2. LINKING FOREIGN MODULES 245

9.2.1 What linking is provided?

The static linking schema can be used on all versions of SWI-Prolog. Whether or not dy-
namic linking is supported can be deduced from the Prolog flag open shared object (see
current prolog flag/2). If this Prolog flag yields true, open shared object/2 and re-
lated predicates are defined. See section 9.2.3 for a suitable high-level interface to these predicates.

9.2.2 What kind of loading should I be using?

All described approaches have their advantages and disadvantages. Static linking is portable and
allows for debugging on all platforms. It is relatively cumbersome and the libraries you need to pass
to the linker may vary from system to system, though the utility program swipl-ld described in
section 9.5 often hides these problems from the user.

Loading shared objects (DLL files on Windows) provides sharing and protection and is
generally the best choice. If a saved-state is created using qsave program/[1,2], an
initialization/1 directive may be used to load the appropriate library at startup.

Note that the definition of the foreign predicates is the same, regardless of the linking type used.

9.2.3 library(shlib): Utility library for loading foreign objects (DLLs, shared objects)

This section discusses the functionality of the (autoload) library(shlib), providing an interface to man-
age shared libraries. We describe the procedure for using a foreign resource (DLL in Windows and
shared object in Unix) called mylib.

First, one must assemble the resource and make it compatible to SWI-Prolog. The details for this
vary between platforms. The plld(1) utility can be used to deal with this in a portable manner. The
typical commandline is:

plld -o mylib file.{c,o,cc,C} ...

Make sure that one of the files provides a global function install_mylib() that initialises
the module using calls to PL register foreign(). Here is a simple example file mylib.c, which creates
a Windows MessageBox:

#include <windows.h>
#include <SWI-Prolog.h>

static foreign_t
pl_say_hello(term_t to)
{ char *a;

if (PL_get_atom_chars(to, &a))
{ MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL);

PL_succeed;
}

difficult to port and slow, it is no longer described in this manual. The best alternatively would be to use the dld package on
machines do not have shared libraries

SWI-Prolog 6.0 Reference Manual

246 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL_fail;
}

install_t
install_mylib()
{ PL_register_foreign("say_hello", 1, pl_say_hello, 0);
}

Now write a file mylib.pl:

:- module(mylib, [say_hello/1]).
:- use_foreign_library(foreign(mylib)).

The file mylib.pl can be loaded as a normal Prolog file and provides the predicate defined in
C.

load foreign library(:FileSpec) [det]

load foreign library(:FileSpec, +Entry:atom) [det]

Load a shared object or DLL. After loading the Entry function is called without arguments.
The default entry function is composed from =install =, followed by the file base-name. E.g.,
the load-call below calls the function install_mylib(). If the platform prefixes extern
functions with = =, this prefix is added before calling.

...
load_foreign_library(foreign(mylib)),
...

Parameters
FileSpec is a specification for absolute file name/3. If search-

ing the file fails, the plain name is passed to the OS to try
the default method of the OS for locating foreign objects. The
default definition of file search path/2 searches <prolog
home>/lib/<arch> on Unix and <prolog home>/bin on Win-
dows.

See also use foreign library/1,2 are intended for use in directives.

use foreign library(+FileSpec) [det]

use foreign library(+FileSpec, +Entry:atom) [det]

Load and install a foreign library as load foreign library/1,2 and register the
installation using initialization/2 with the option now. This is similar to using:

:- initialization(load_foreign_library(foreign(mylib))).

SWI-Prolog 6.0 Reference Manual

9.2. LINKING FOREIGN MODULES 247

but using the initialization/1 wrapper causes the library to be loaded after loading of
the file in which it appears is completed, while use foreign library/1 loads the library
immediately. I.e. the difference is only relevant if the remainder of the file uses functionality of
the C-library.

unload foreign library(+FileSpec) [det]

unload foreign library(+FileSpec, +Exit:atom) [det]

Unload a shared object or DLL. After calling the Exit function, the shared object is removed
from the process. The default exit function is composed from =uninstall =, followed by the file
base-name.

current foreign library(?File, ?Public)
Query currently loaded shared libraries.

reload foreign libraries
Reload all foreign libraries loaded (after restore of a state created using qsave program/2.

9.2.4 Low-level operations on shared libraries

The interface defined in this section allows the user to load shared libraries (.so files on most Unix
systems, .dll files on Windows). This interface is portable to Windows as well as to Unix machines
providing dlopen(2) (Solaris, Linux, FreeBSD, Irix and many more) or shl open(2) (HP/UX).
It is advised to use the predicates from section 9.2.3 in your application.

open shared object(+File, -Handle)
File is the name of a shared object file (called dynamic load library in MS-Windows). This file
is attached to the current process and Handle is unified with a handle to the library. Equivalent
to open shared object(File, Handle, []). See also open shared object/3
and load foreign library/1.

On errors, an exception shared object(Action, Message) is raised. Message is the return
value from dlerror().

open shared object(+File, -Handle, +Options)
As open shared object/2, but allows for additional flags to be passed. Options is a list of
atoms. now implies the symbols are resolved immediately rather than lazy (default). global
implies symbols of the loaded object are visible while loading other shared objects (by default
they are local). Note that these flags may not be supported by your operating system. Check
the documentation of dlopen() or equivalent on your operating system. Unsupported flags are
silently ignored.

close shared object(+Handle)
Detach the shared object identified by Handle.

call shared object function(+Handle, +Function)
Call the named function in the loaded shared library. The function is called without arguments
and the return-value is ignored. Normally this function installs foreign language predicates
using calls to PL register foreign().

SWI-Prolog 6.0 Reference Manual

248 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

9.2.5 Static Linking

Below is an outline of the files structure required for statically linking SWI-Prolog with foreign ex-
tensions. \ldots/pl refers to the SWI-Prolog home directory (see the Prolog flag home). 〈arch〉
refers to the architecture identifier that may be obtained using the Prolog flag arch.

.../pl/runtime/〈arch〉/libswipl.a SWI-Library

.../pl/include/SWI-Prolog.h Include file

.../pl/include/SWI-Stream.h Stream I/O include file

.../pl/include/SWI-Exports Export declarations (AIX only)

.../pl/include/stub.c Extension stub

The definition of the foreign predicates is the same as for dynamic linking. Unlike with dynamic
linking however, there is no initialisation function. Instead, the file \ldots/pl/include/stub.
c may be copied to your project and modified to define the foreign extensions. Below is stub.c,
modified to link the lowercase example described later in this chapter:

#include <stdio.h>
#include <SWI-Prolog.h>

extern foreign_t pl_lowercase(term, term);

PL_extension predicates[] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/

{ "lowercase", 2 pl_lowercase, 0 },
{ NULL, 0, NULL, 0 } /* terminating line */

};

int
main(int argc, char **argv)
{ PL_register_extensions(predicates);

if (!PL_initialise(argc, argv))
PL_halt(1);

PL_install_readline(); /* delete if not required */

PL_halt(PL_toplevel() ? 0 : 1);
}

Now, a new executable may be created by compiling this file and linking it to libpl.a from the run-
time directory and the libraries required by both the extensions and the SWI-Prolog kernel. This may
be done by hand, or using the swipl-ld utility described in secrefplld. If the linking is performed
‘by hand’, the command-line option -dump-runtime-variables (see section 2.4) can be used
to obtain the required paths, libraries and linking options to link the new executable.

SWI-Prolog 6.0 Reference Manual

9.3. INTERFACE DATA TYPES 249

9.3 Interface Data types

9.3.1 Type term t: a reference to a Prolog term

The principal data-type is term t. Type term t is what Quintus calls QP term ref. This name
indicates better what the type represents: it is a handle for a term rather than the term itself. Terms
can only be represented and manipulated using this type, as this is the only safe way to ensure the
Prolog kernel is aware of all terms referenced by foreign code and thus allows the kernel to perform
garbage-collection and/or stack-shifts while foreign code is active, for example during a callback from
C.

A term reference is a C unsigned long, representing the offset of a variable on the
Prolog environment-stack. A foreign function is passed term references for the predicate-
arguments, one for each argument. If references for intermediate results are needed,
such references may be created using PL new term ref() or PL new term refs().
These references normally live till the foreign function returns control back to Pro-
log. Their scope can be explicitly limited using PL open foreign frame() and
PL close foreign frame()/PL discard foreign frame().

A term t always refers to a valid Prolog term (variable, atom, integer, float or compound term). A
term lives either until backtracking takes us back to a point before the term was created, the garbage
collector has collected the term or the term was created after a PL open foreign frame() and
PL discard foreign frame() has been called.

The foreign-interface functions can either read, unify or write to term-references. In the this
document we use the following notation for arguments of type term t:

term t +t Accessed in read-mode. The ‘+’ indicates the argument is
‘input’.

term t -t Accessed in write-mode.
term t ?t Accessed in unify-mode.

Term references are obtained in any of the following ways.

• Passed as argument
The C-functions implementing foreign predicates are passed their arguments as term-references.
These references may be read or unified. Writing to these variables causes undefined behaviour.

• Created by PL new term ref()
A term created by PL new term ref() is normally used to build temporary terms or be
written by one of the interface functions. For example, PL get arg() writes a reference to
the term-argument in its last argument.

• Created by PL new term refs(int n)
This function returns a set of term refs with the same characteristics as PL new term ref().
See PL open query().

• Created by PL copy term ref(term t t)
Creates a new term-reference to the same term as the argument. The term may be written to.
See figure 9.2.

Term-references can safely be copied to other C-variables of type term t, but all copies will always
refer to the same term.

SWI-Prolog 6.0 Reference Manual

250 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

term t PL new term ref()
Return a fresh reference to a term. The reference is allocated on the local stack. Allocating
a term-reference may trigger a stack-shift on machines that cannot use sparse-memory
management for allocation the Prolog stacks. The returned reference describes a variable.

term t PL new term refs(int n)
Return n new term references. The first term-reference is returned. The others are t + 1, t + 2,
etc. There are two reasons for using this function. PL open query() expects the arguments
as a set of consecutive term references and very time-critical code requiring a number of
term-references can be written as:

pl_mypredicate(term_t a0, term_t a1)
{ term_t t0 = PL_new_term_refs(2);

term_t t1 = t0+1;

...
}

term t PL copy term ref(term t from)
Create a new term reference and make it point initially to the same term as from. This function
is commonly used to copy a predicate argument to a term reference that may be written.

void PL reset term refs(term t after)
Destroy all term references that have been created after after, including after itself. Any refer-
ence to the invalidated term references after this call results in undefined behaviour.

Note that returning from the foreign context to Prolog will reclaim all references used in the
foreign context. This call is only necessary if references are created inside a loop that never exits
back to Prolog. See also PL open foreign frame(), PL close foreign frame()
and PL discard foreign frame().

Interaction with the garbage collector and stack-shifter

Prolog implements two mechanisms for avoiding stack overflow: garbage collection and stack ex-
pansion. On machines that allow for it, Prolog will use virtual memory management to detect stack
overflow and expand the runtime stacks. On other machines Prolog will reallocate the stacks and up-
date all pointers to them. To do so, Prolog needs to know which data is referenced by C-code. As all
Prolog data known by C is referenced through term references (term t), Prolog has all information
necessary to perform its memory management without special precautions from the C-programmer.

9.3.2 Other foreign interface types

atom t An atom in Prologs internal representation. Atoms are pointers to an opaque structure. They
are a unique representation for represented text, which implies that atom A represents the same
text as atom B if-and-only-if A and B are the same pointer.

Atoms are the central representation for textual constants in Prolog The transformation of C a
character string to an atom implies a hash-table lookup. If the same atom is needed often, it is
advised to store its reference in a global variable to avoid repeated lookup.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 251

functor t A functor is the internal representation of a name/arity pair. They are used to find the name
and arity of a compound term as well as to construct new compound terms. Like atoms they
live for the whole Prolog session and are unique.

predicate t Handle to a Prolog predicate. Predicate handles live forever (although they can loose
their definition).

qid t Query Identifier. Used by PL open query()/PL next solution()/PL close query()
to handle backtracking from C.

fid t Frame Identifier. Used by PL open foreign frame()/PL close foreign frame().

module t A module is a unique handle to a Prolog module. Modules are used only to call predicates
in a specific module.

foreign t Return type for a C-function implementing a Prolog predicate.

control t Passed as additional argument to non-deterministic foreign functions. See PL retry*() and
PL foreign context*().

install t Type for the install() and uninstall() functions of shared or dynamic link libraries. See se-
crefshlib.

int64 t Actually part of the C99 standard rather than Prolog. As of version 5.5.6, Prolog integers
are 64-bit on all hardware. The C99 type int64 t is defined in the stdint.h standard header
and provides platform independent 64-bit integers. Portable code accessing Prolog should use
this type to exchange integer values. Please note that PL get long() can return FALSE on
Prolog integers outside the long domain. Robust code should not assume any of the integer
fetching functions to succeed if the Prolog term is know to be an integer.

9.4 The Foreign Include File

9.4.1 Argument Passing and Control

If Prolog encounters a foreign predicate at run time it will call a function specified in the predicate
definition of the foreign predicate. The arguments 1, . . . , 〈arity〉 pass the Prolog arguments to the goal
as Prolog terms. Foreign functions should be declared of type foreign t. Deterministic foreign
functions have two alternatives to return control back to Prolog:

(return) foreign t PL succeed()
Succeed deterministically. PL succeed is defined as return TRUE.

(return) foreign t PL fail()
Fail and start Prolog backtracking. PL fail is defined as return FALSE.

Non-deterministic Foreign Predicates

By default foreign predicates are deterministic. Using the PL FA NONDETERMINISTIC attribute
(see PL register foreign()) it is possible to register a predicate as a non-deterministic predi-
cate. Writing non-deterministic foreign predicates is slightly more complicated as the foreign function

SWI-Prolog 6.0 Reference Manual

252 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

needs context information for generating the next solution. Note that the same foreign function should
be prepared to be simultaneously active in more than one goal. Suppose the natural number below n/2
is a non-deterministic foreign predicate, backtracking over all natural numbers lower than the first ar-
gument. Now consider the following predicate:

quotient_below_n(Q, N) :-
natural_number_below_n(N, N1),
natural_number_below_n(N, N2),
Q =:= N1 / N2, !.

In this predicate the function natural number below n/2 simultaneously generates solutions for both
its invocations.

Non-deterministic foreign functions should be prepared to handle three different calls from Prolog:

• Initial call (PL FIRST CALL)
Prolog has just created a frame for the foreign function and asks it to produce the first answer.

• Redo call (PL REDO)
The previous invocation of the foreign function associated with the current goal indicated it was
possible to backtrack. The foreign function should produce the next solution.

• Terminate call (PL PRUNED)
The choice point left by the foreign function has been destroyed by a cut. The foreign function
is given the opportunity to clean the environment.

Both the context information and the type of call is provided by an argument of type
control t appended to the argument list for deterministic foreign functions. The macro
PL foreign control() extracts the type of call from the control argument. The foreign func-
tion can pass a context handle using the PL retry*() macros and extract the handle from the extra
argument using the PL foreign context*() macro.

(return) foreign t PL retry(intptr t value)
The foreign function succeeds while leaving a choice point. On backtracking over this goal the
foreign function will be called again, but the control argument now indicates it is a ‘Redo’ call
and the macro PL foreign context() returns the handle passed via PL retry(). This
handle is a two bits smaller than a pointer (30 or 62 bits) signed value (two bits are used for
status indication). Defined as return PL retry(n). See also PL succeed().

(return) foreign t PL retry address(void *)
As PL retry(), but ensures an address as returned by malloc() is correctly recovered by
PL foreign context address(). Defined as return PL retry address(n).
See also PL succeed().

int PL foreign control(control t)
Extracts the type of call from the control argument. The return values are described above.
Note that the function should be prepared to handle the PL PRUNED case and should be aware
that the other arguments are not valid in this case.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 253

typedef struct /* define a context structure */
{ ...
} context;

foreign_t
my_function(term_t a0, term_t a1, control_t handle)
{ struct context * ctxt;

switch(PL_foreign_control(handle))
{ case PL_FIRST_CALL:

ctxt = malloc(sizeof(struct context));
...
PL_retry_address(ctxt);

case PL_REDO:
ctxt = PL_foreign_context_address(handle);
...
PL_retry_address(ctxt);

case PL_PRUNED:
ctxt = PL_foreign_context_address(handle);
...
free(ctxt);
PL_succeed;

}
}

Figure 9.1: Skeleton for non-deterministic foreign functions

intptr t PL foreign context(control t)
Extracts the context from the context argument. In the call type is PL FIRST CALL the context
value is 0L. Otherwise it is the value returned by the last PL retry() associated with this
goal (both if the call type is PL REDO as PL PRUNED).

void * PL foreign context address(control t)
Extracts an address as passed in by PL retry address().

Note: If a non-deterministic foreign function returns using PL succeed or PL fail, Prolog assumes
the foreign function has cleaned its environment. No call with control argument PL PRUNED will
follow.

The code of figure 9.1 shows a skeleton for a non-deterministic foreign predicate definition.

9.4.2 Atoms and functors

The following functions provide for communication using atoms and functors.

atom t PL new atom(const char *)
Return an atom handle for the given C-string. This function always succeeds. The returned
handle is valid as long as the atom is referenced (see section 9.4.2).

SWI-Prolog 6.0 Reference Manual

254 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

const char* PL atom chars(atom t atom)
Return a C-string for the text represented by the given atom. The returned text will not be
changed by Prolog. It is not allowed to modify the contents, not even ‘temporary’ as the
string may reside in read-only memory. The returned string becomes invalid if the atom is
garbage-collected (see section 9.4.2). Foreign functions that require the text from an atom
passed in a term t normally use PL get atom chars() or PL get atom nchars().

functor t PL new functor(atom t name, int arity)
Returns a functor identifier, a handle for the name/arity pair. The returned handle is valid for
the entire Prolog session.

atom t PL functor name(functor t f)
Return an atom representing the name of the given functor.

int PL functor arity(functor t f)
Return the arity of the given functor.

Atoms and atom-garbage collection

With the introduction of atom-garbage collection in version 3.3.0, atoms no longer live as long as the
process. Instead, their lifetime is guaranteed only as long as they are referenced. In the single-threaded
version, atom garbage collections are only invoked at the call-port. In the multi-threaded version (see
section 8), they appear asynchronously, except for the invoking thread.

For dealing with atom garbage collection, two additional functions are provided:

void PL register atom(atom t atom)
Increment the reference count of the atom by one. PL new atom() performs this automati-
cally, returning an atom with a reference count of at least one.2

void PL unregister atom(atom t atom)
Decrement the reference count of the atom. If the reference-count drops below zero, an asser-
tion error is raised.

Please note that the following two calls are different with respect to atom garbage collection:

PL_unify_atom_chars(t, "text");
PL_unify_atom(t, PL_new_atom("text"));

The latter increments the reference count of the atom text, which effectively ensures the atom will
never be collected. It is advised to use the * chars() or * nchars() functions whenever applicable.

9.4.3 Analysing Terms via the Foreign Interface

Each argument of a foreign function (except for the control argument) is of type term t, an opaque
handle to a Prolog term. Three groups of functions are available for the analysis of terms. The first
just validates the type, like the Prolog predicates var/1, atom/1, etc and are called PL is *().
The second group attempts to translate the argument into a C primitive type. These predicates take a
term t and a pointer to the appropriate C-type and return TRUE or FALSE depending on successful
or unsuccessful translation. If the translation fails, the pointed-to data is never modified.

2Otherwise asynchronous atom garbage collection might destroy the atom before it is used.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 255

Testing the type of a term

int PL term type(term t)
Obtain the type of a term, which should be a term returned by one of the other interface pred-
icates or passed as an argument. The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functions PL ge t*() also validate the
type and thus the two sections below are equivalent.

if (PL_is_atom(t))
{ char *s;

PL_get_atom_chars(t, &s);
...;

}

or

char *s;
if (PL_get_atom_chars(t, &s))
{ ...;
}

PL VARIABLE An unbound variable. The value of term as such is a
unique identifier for the variable.

PL ATOM A Prolog atom.
PL STRING A Prolog string.
PL INTEGER A Prolog integer.
PL FLOAT A Prolog floating point number.
PL TERM A compound term. Note that a list is a compound term

./2.

The functions PL is 〈type〉 are an alternative to PL term type(). The test
PL is variable(term) is equivalent to PL term type(term) == PL VARIABLE, but
the first is considerably faster. On the other hand, using a switch over PL term type() is faster
and more readable then using an if-then-else using the functions below. All these functions return
either TRUE or FALSE.

int PL is variable(term t)
Returns non-zero if term is a variable.

int PL is ground(term t)
Returns non-zero if term is a ground term. See also ground/1. This function is cycle-safe.

int PL is atom(term t)
Returns non-zero if term is an atom.

int PL is string(term t)
Returns non-zero if term is a string.

SWI-Prolog 6.0 Reference Manual

256 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL is integer(term t)
Returns non-zero if term is an integer.

int PL is float(term t)
Returns non-zero if term is a float.

int PL is compound(term t)
Returns non-zero if term is a compound term.

int PL is functor(term t, functor t)
Returns non-zero if term is compound and its functor is functor. This test is equivalent to
PL get functor(), followed by testing the functor, but easier to write and faster.

int PL is list(term t)
Returns non-zero if term is a compound term with functor ./2 or the atom []. See also
PL is pair() and PL skip list().

int PL is pair(term t)
Returns non-zero if term is a compound term with functor ./2. See also PL is list() and
PL skip list().

int PL is atomic(term t)
Returns non-zero if term is atomic (not variable or compound).

int PL is number(term t)
Returns non-zero if term is an integer or float.

int PL is acyclic(term t)
Returns non-zero if term is acyclic (i.e. a finite tree).

Reading data from a term

The functions PL get *() read information from a Prolog term. Most of them take two arguments.
The first is the input term and the second is a pointer to the output value or a term-reference.

int PL get atom(term t +t, atom t *a)
If t is an atom, store the unique atom identifier over a. See also PL atom chars() and
PL new atom(). If there is no need to access the data (characters) of an atom, it is
advised to manipulate atoms using their handle. As the atom is referenced by t, it will live
at least as long as t does. If longer live-time is required, the atom should be locked using
PL register atom().

int PL get atom chars(term t +t, char **s)
If t is an atom, store a pointer to a 0-terminated C-string in s. It is explicitly not allowed
to modify the contents of this string. Some built-in atoms may have the string allocated in
read-only memory, so ‘temporary manipulation’ can cause an error.

int PL get string chars(term t +t, char **s, int *len)
If t is a string object, store a pointer to a 0-terminated C-string in s and the length of the string
in len. Note that this pointer is invalidated by backtracking, garbage-collection and stack-shifts,
so generally the only save operations are to pass it immediately to a C-function that doesn’t
involve Prolog.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 257

int PL get chars(term t +t, char **s, unsigned flags)
Convert the argument term t to a 0-terminated C-string. flags is a bitwise disjunction from
two groups of constants. The first specifies which term-types should converted and the second
how the argument is stored. Below is a specification of these constants. BUF RING implies,
if the data is not static (as from an atom), the data is copied to the next buffer from a ring of
16 buffers. This is a convenient way of converting multiple arguments passed to a foreign
predicate to C-strings. If BUF MALLOC is used, the data must be freed using PL free()
when not needed any longer.

With the introduction of wide-characters (see section 2.18.1), not all atoms can be converted into
a char*. This function fails if t is of the wrong type, but also if the text cannot be represented.
See the REP * flags below for details.

CVT ATOM Convert if term is an atom
CVT STRING Convert if term is a string
CVT LIST Convert if term is a list of integers between 1 and 255
CVT INTEGER Convert if term is an integer (using %d)
CVT FLOAT Convert if term is a float (using %f)
CVT NUMBER Convert if term is a integer or float
CVT ATOMIC Convert if term is atomic
CVT VARIABLE Convert variable to print-name
CVT WRITE Convert any term that is not converted by any of the

other flags using write/1. If no BUF * is provided,
BUF RING is implied.

CVT WRITE CANINICAL As CVT WRITE, but use write canonical/2.
CVT ALL Convert if term is any of the above, except for

CVT VARIABLE and CVT WRITE
CVT EXCEPTION If conversion fails due to a type error, raise a Prolog type

error exception in addition to failure
BUF DISCARDABLE Data must copied immediately
BUF RING Data is stored in a ring of buffers
BUF MALLOC Data is copied to a new buffer returned by

PL malloc(3). When no longer needed the user
must call PL free() on the data.

REP ISO LATIN 1 (0, default). Text is in ISO Latin-1 encoding and the call
fails if text cannot be represented.

REP UTF8 Convert the text to a UTF-8 string. This works for all text.
REP MB Convert to default locale-defined 8-bit string. Success de-

pends on the locale. Conversion is done using the wcr-
tomb() C-library function.

int PL get list chars(+term t l, char **s, unsigned flags)
Same as PL get chars(l, s, CVT LIST—flags), provided flags contains no of the CVT *
flags.

int PL get integer(+term t t, int *i)
If t is a Prolog integer, assign its value over i. On 32-bit machines, this is the same as
PL get long(), but avoids a warning from the compiler. See also PL get long().

SWI-Prolog 6.0 Reference Manual

258 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL get long(term t +t, long *i)
If t is a Prolog integer that can be represented as a long, assign its value over i. If t is an
integer that cannot be represented by a C long, this function returns FALSE. If t is a floating
point number that can be represented as a long, this function succeeds as well. See also
PL get int64()

int PL get int64(term t +t, int64 t *i)
If t is a Prolog integer or float that can be represented as a int64 t, assign its value over
i. Currently all Prolog integers can be represented using this type, but this might change if
SWI-Prolog introduces unbounded integers.

int PL get intptr(term t +t, intptr t *i)
Get an integer that is at least as wide a as a pointer. On most platforms this is the
same as PL get long(), but on Win64 pointers are 8 bytes and longs only 4. Unlike
PL get pointer(), the value is not modified.

int PL get bool(term t +t, int *val)
If t has the value true or false, set val to the C constant TRUE or FALSE and return success.
otherwise return failure.

int PL get pointer(term t +t, void **ptr)
In the current system, pointers are represented by Prolog integers, but need some manipu-
lation to make sure they do not get truncated due to the limited Prolog integer range.
PL put pointer()/PL get pointer() guarantees pointers in the range of malloc() are
handled without truncating.

int PL get float(term t +t, double *f)
If t is a float or integer, its value is assigned over f.

int PL get functor(term t +t, functor t *f)
If t is compound or an atom, the Prolog representation of the name-arity pair will be assigned
over f. See also PL get name arity() and PL is functor().

int PL get name arity(term t +t, atom t *name, int *arity)
If t is compound or an atom, the functor-name will be assigned over name and the arity over
arity. See also PL get functor() and PL is functor().

int PL get module(term t +t, module t *module)
If t is an atom, the system will lookup or create the corresponding module and assign an opaque
pointer to it over module,.

int PL get arg(int index, term t +t, term t -a)
If t is compound and index is between 1 and arity (including), assign a with a term-reference to
the argument.

int PL get arg(int index, term t +t, term t -a)
Same as PL get arg(), but no checking is performed, nor whether t is actually a term, nor
whether index is a valid argument-index.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 259

Exchanging text using length and string

All internal text-representation of SWI-Prolog is represented using char * plus length and allow
for 0-bytes in them. The foreign library supports this by implementing a * nchars() function for each
applicable * chars() function. Below we briefly present the signatures of these functions. For full
documentation consult the * chars() function.

int PL get atom nchars(term t t, size t *len, char **s)
See PL get atom chars().

int PL get list nchars(term t t, size t *len, char **s)
See PL get list chars().

int PL get nchars(term t t, size t *len, char **s, unsigned int flags)
See PL get chars().

int PL put atom nchars(term t t, size t len, const char *s)
See PL put atom chars().

int PL put string nchars(term t t, size t len, const char *s)
See PL put string chars().

int PL put list ncodes(term t t, size t len, const char *s)
See PL put list codes().

int PL put list nchars(term t t, size t len, const char *s)
See PL put list chars().

int PL unify atom nchars(term t t, size t len, const char *s)
See PL unify atom chars().

int PL unify string nchars(term t t, size t len, const char *s)
See PL unify string chars().

int PL unify list ncodes(term t t, size t len, const char *s)
See PL unify codes().

int PL unify list nchars(term t t, size t len, const char *s)
See PL unify list chars().

In addition, the following functions are available for creating and inspecting atoms:

atom t PL new atom nchars(size t len, const char *s)
Create a new atom as PL new atom(), but from length and characters.

const char * PL atom nchars(atom t a, size t *len)
Extract text and length of an atom.

SWI-Prolog 6.0 Reference Manual

260 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

Wide character versions

Support for exchange of wide character strings is still under consideration. The functions dealing
with 8-bit character strings return failure when operating on a wide character atom or Prolog string
object. The functions below can extract and unify both 8-bit and wide atoms and string objects. Wide
character strings are represented as C arrays of objects of the type pl wchar t, which is guaranteed
to be the same as wchar t on platforms supporting this type. For example, on MS-Windows, this
represents 16-bit UCS2 characters, while using the GNU C library (glibc) this represents 32-bit UCS4
characters.

atom t PL new atom wchars(size t len, const pl wchar t *s)
Create atom from wide-character string as PL new atom nchars() does for ISO-Latin-1
strings. If s only contains ISO-Latin-1 characters a normal byte-array atom is created.

pl wchar t* PL atom wchars(atom t atom, int *len)
Extract characters from a wide-character atom. Fails (returns NULL) if atom is not a wide-
character atom. This is the wide-character version of PL atom nchars(). Note that only
one of these functions succeeds on a particular atom. Especially, after creating an atom with
PL new atom wchars(), extracting the text using PL atom wchars() will fail if the
atom only contains ISO-Latin-1 characters.

int PL get wchars(term t t, size t *len, pl wchar t **s, unsigned flags)
Wide-character version of PL get chars(). The flags argument is the same as for
PL get chars().

int PL unify wchars(term t t, int type, size t len, const pl wchar t *s)
Unify t with a textual representation of the C wide character array s. The argtype argument
defines the Prolog representation and is one of PL ATOM, PL STRING, PL CODE LIST or
PL CHAR LIST.

int PL unify wchars diff(term t +t, term t -tail, int type, size t len, const pl wchar t *s)
Difference list version of PL unify wchars(), only supporting the types PL CODE LIST
and PL CHAR LIST. It serves two purposes. It allows for returning very long lists from
data read from a stream without the need for a resizing buffer in C. Also, the use of dif-
ference lists is often practical for further processing in Prolog. Examples can be found in
packages/clib/readutil.c from the source distribution.

Reading a list

The functions from this section are intended to read a Prolog list from C. Suppose we expect a list of
atoms, the following code will print the atoms, each on a line:

foreign_t
pl_write_atoms(term_t l)
{ term_t head = PL_new_term_ref(); /* variable for the elements */
term_t list = PL_copy_term_ref(l); /* copy as we need to write */

while(PL_get_list(list, head, list))
{ char *s;

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 261

if (PL_get_atom_chars(head, &s))
Sprintf("%s\n", s);

else
PL_fail;

}

return PL_get_nil(list); /* test end for [] */
}

int PL get list(term t +l, term t -h, term t -t)
If l is a list and not [] assign a term-reference to the head to h and to the tail to t.

int PL get head(term t +l, term t -h)
If l is a list and not [] assign a term-reference to the head to h.

int PL get tail(term t +l, term t -t)
If l is a list and not [] assign a term-reference to the tail to t.

int PL get nil(term t +l)
Succeeds if represents the atom [].

int PL skip list(term t +list, term t -tail, size t *len)
This is a multi-purpose function to deal with lists. It allows for finding the length of a list,
checking whether something is a list, etc. The reference tail is set to point to the end of the list,
len is filled with the number of list-cells skipped and the return-value indicates the status of the
list:

PL LIST
The list is a ‘proper’ list: one that ends in [] and tail is filled with []

PL PARTIAL LIST
The list is ‘partial’ list: one that ends in a variable and tail is a reference to this variable.

PL CYCLIC TERM
The list is cyclic (e.g. X = [a—X]). tail points to an arbitrary cell of the list and len is at
most twice the cycle-length of the list.

PL NOT A LIST
The term list is not a list at all. tail is bound to the non-list term and len is set to the
number of list-cells skipped.

It is allowed to pass 0 for tail and NULL for len.

An example: defining write/1 in C

Figure 9.2 shows a simplified definition of write/1 to illustrate the described functions. This sim-
plified version does not deal with operators. It is called display/1, because it mimics closely the
behaviour of this Edinburgh predicate.

SWI-Prolog 6.0 Reference Manual

262 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

foreign_t
pl_display(term_t t)
{ functor_t functor;
int arity, len, n;
char *s;

switch(PL_term_type(t))
{ case PL_VARIABLE:

case PL_ATOM:
case PL_INTEGER:
case PL_FLOAT:
PL_get_chars(t, &s, CVT_ALL);
Sprintf("%s", s);
break;

case PL_STRING:
PL_get_string_chars(t, &s, &len);
Sprintf("\"%s\"", s);
break;

case PL_TERM:
{ term_t a = PL_new_term_ref();

PL_get_name_arity(t, &name, &arity);
Sprintf("%s(", PL_atom_chars(name));
for(n=1; n<=arity; n++)
{ PL_get_arg(n, t, a);

if (n > 1)
Sprintf(", ");

pl_display(a);
}
Sprintf(")");
break;

default:
PL_fail; /* should not happen */

}
}

PL_succeed;
}

Figure 9.2: A Foreign definition of display/1

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 263

9.4.4 Constructing Terms

Terms can be constructed using functions from the PL put *() and PL cons *() families. This
approach builds the term ‘inside-out’, starting at the leaves and subsequently creating compound
terms. Alternatively, terms may be created ‘top-down’, first creating a compound holding only vari-
ables and subsequently unifying the arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments for PL call() and PL open query.

void PL put variable(term t -t)
Put a fresh variable in the term, resetting the term-reference to its initial state.3

void PL put atom(term t -t, atom t a)
Put an atom in the term reference from a handle. See also PL new atom() and
PL atom chars().

void PL put bool(term t -t, int val)
Put one of the atoms true or false in the term reference See also PL put atom(),
PL unify bool() and PL get bool().

int PL put atom chars(term t -t, const char *chars)
Put an atom in the term-reference constructed from the 0-terminated string. The string itself
will never be referenced by Prolog after this function.

int PL put string chars(term t -t, const char *chars)
Put a zero-terminated string in the term-reference. The data will be copied. See also
PL put string nchars().

int PL put string nchars(term t -t, size t len, const char *chars)
Put a string, represented by a length/start pointer pair in the term-reference. The data will be
copied. This interface can deal with 0-bytes in the string. See also section 9.4.20.

int PL put list chars(term t -t, const char *chars)
Put a list of ASCII values in the term-reference.

int PL put integer(term t -t, long i)
Put a Prolog integer in the term reference.

int PL put int64(term t -t, int64 t i)
Put a Prolog integer in the term reference.

int PL put pointer(term t -t, void *ptr)
Put a Prolog integer in the term-reference. Provided ptr is in the ‘malloc()-area’,
PL get pointer() will get the pointer back.

int PL put float(term t -t, double f)
Put a floating-point value in the term-reference.

int PL put functor(term t -t, functor t functor)
Create a new compound term from functor and bind t to this term. All arguments of the term
will be variables. To create a term with instantiated arguments, either instantiate the arguments
using the PL unify *() functions or use PL cons functor().

3Older versions created a variable on the global stack.

SWI-Prolog 6.0 Reference Manual

264 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL put list(term t -l)
Same as PL put functor(l, PL new functor(PL new atom(”.”), 2)).

void PL put nil(term t -l)
Same as PL put atom chars(”[]”).

void PL put term(term t -t1, term t +t2)
Make t1 point to the same term as t2.

int PL cons functor(term t -h, functor t f, . . .)
Create a term, whose arguments are filled from variable argument list holding the same number
of term t objects as the arity of the functor. To create the term animal(gnu, 50), use:

{ term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
term_t t = PL_new_term_ref();
functor_t animal2;

/* animal2 is a constant that may be bound to a global
variable and re-used

*/
animal2 = PL_new_functor(PL_new_atom("animal"), 2);

PL_put_atom_chars(a1, "gnu");
PL_put_integer(a2, 50);
PL_cons_functor(t, animal2, a1, a2);

}

After this sequence, the term-references a1 and a2 may be used for other purposes.

int PL cons functor v(term t -h, functor t f, term t a0)
Creates a compound term like PL cons functor(), but a0 is an array of term references
as returned by PL new term refs(). The length of this array should match the number of
arguments required by the functor.

int PL cons list(term t -l, term t +h, term t +t)
Create a list (cons-) cell in l from the head and tail. The code below creates a list of atoms from
a char **. The list is built tail-to-head. The PL unify *() functions can be used to build
a list head-to-tail.

void
put_list(term_t l, int n, char **words)
{ term_t a = PL_new_term_ref();

PL_put_nil(l);
while(--n >= 0)
{ PL_put_atom_chars(a, words[n]);

PL_cons_list(l, a, l);

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 265

}
}

Note that l can be redefined within a PL cons list call as shown here because operationally
its old value is consumed before its new value is set.

9.4.5 Unifying data

The functions of this sections unify terms with other terms or translated C-data structures. Except for
PL unify(), the functions of this section are specific to SWI-Prolog. They have been introduced
because they shorten the code for returning data to Prolog and at the same time make this more
efficient by avoiding the need to allocate temporary term-references and reduce the number of calls
to the Prolog API. Consider the case where we want a foreign function to return the host name of
the machine Prolog is running on. Using the PL get *() and PL put *() functions, the code
becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof(buf)))
{ term_t tmp = PL_new_term_ref();

PL_put_atom_chars(tmp, buf);
return PL_unify(name, tmp);

}

PL_fail;
}

Using PL unify atom chars(), this becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof(buf)))
return PL_unify_atom_chars(name, buf);

PL_fail;
}

Note that unification functions that perform multiple bindings may leave part of the bindings in case
of failure. See PL unify() for details.

int PL unify(term t ?t1, term t ?t2)
Unify two Prolog terms and return TRUE on success.

SWI-Prolog 6.0 Reference Manual

266 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

Care is needed if PL unify() returns FAIL and the foreign function does not immediately
return to Prolog with FAIL. Unification may perform multiple changes to either t1 or t2. A
failing unification may have created bindings before failure is detected. Already created bind-
ings are not undone. For example, calling PL unify() on a(X, a) and a(c,b) binds X to c and
fails when trying to unify a to b. If control remains in C or even if we want to return success to
Prolog, we must undo such bindings. This is achieved using PL open foreign frame()
and PL rewind foreign frame(), as show in the snippid below.

{ fid_t fid = PL_open_foreign_frame();

...
if (!PL_unify(t1, t2))

PL_rewind_foreign_frame(fid);
...

PL_close_foreign_frame(fid);
}

In addition, PL unify() may have failed on an exception, typically a resource (stack) over-
flow. This can be tested using PL exception(), passing 0 (zero) for the query-id argument.
Foreign functions that encounter an exception must return FAIL to Prolog as soon as possible
or call PL clear exception() if they wish to ignore the exception.

int PL unify atom(term t ?t, atom t a)
Unify t with the atom a and return non-zero on success.

int PL unify bool(term t ?t, int a)
Unify t with either true or false.

int PL unify chars(term t ?t, int flags, size t len, const char *chars)
New function to deal with unification of char* with various encodings to a Prolog repre-
sentation. The flags argument is a bitwise or specifying the Prolog target type and the
encoding of chars. Prolog types is one of PL ATOM, PL STRING, PL CODE LIST or
PL CHAR LIST. Representations is one of REP ISO LATIN 1, REP UTF8 or REP MB. See
PL get chars() for a definition of the representation types. If len is -1 chars must be
0-terminated and the length is computed from chars using strlen().

If flags includes PL DIFF LIST and type is one of PL CODE LIST or PL CHAR LIST, the
text is converted to a difference list. The tail of the difference list is t+ 1.

int PL unify atom chars(term t ?t, const char *chars)
Unify t with an atom created from chars and return non-zero on success.

int PL unify list chars(term t ?t, const char *chars)
Unify t with a list of ASCII characters constructed from chars.

void PL unify string chars(term t ?t, const char *chars)
Unify t with a Prolog string object created from the zero-terminated string chars. The data will
be copied. See also PL unify string nchars().

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 267

void PL unify string nchars(term t ?t, size t len, const char *chars)
Unify t with a Prolog string object created from the string created from the len/chars pair. The
data will be copied. This interface can deal with 0-bytes in the string. See also section 9.4.20.

int PL unify integer(term t ?t, intptr t n)
Unify t with a Prolog integer from n.

int PL unify int64(term t ?t, int64 t n)
Unify t with a Prolog integer from n.

int PL unify float(term t ?t, double f)
Unify t with a Prolog float from f.

int PL unify pointer(term t ?t, void *ptr)
Unify t with a Prolog integer describing the pointer. See also PL put pointer() and
PL get pointer().

int PL unify functor(term t ?t, functor t f)
If t is a compound term with the given functor, just succeed. If it is unbound, create a term and
bind the variable, else fails. Note that this function does not create a term if the argument is
already instantiated.

int PL unify list(term t ?l, term t -h, term t -t)
Unify l with a list-cell (./2). If successful, write a reference to the head of the list to h and
a reference to the tail of the list into t. This reference may be used for subsequent calls to
this function. Suppose we want to return a list of atoms from a char **. We could use the
example described by PL put list(), followed by a call to PL unify(), or we can use
the code below. If the predicate argument is unbound, the difference is minimal (the code based
on PL put list() is probably slightly faster). If the argument is bound, the code below
may fail before reaching the end of the word-list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.

foreign_t
pl_get_environ(term_t env)
{ term_t l = PL_copy_term_ref(env);

term_t a = PL_new_term_ref();
extern char **environ;
char **e;

for(e = environ; *e; e++)
{ if (!PL_unify_list(l, a, l) ||

!PL_unify_atom_chars(a, *e))
PL_fail;

}

return PL_unify_nil(l);
}

SWI-Prolog 6.0 Reference Manual

268 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL unify nil(term t ?l)
Unify l with the atom [].

int PL unify arg(int index, term t ?t, term t ?a)
Unifies the index-th argument (1-based) of t with a.

int PL unify term(term t ?t, . . .)
Unify t with a (normally) compound term. The remaining arguments is a sequence of a type
identifier, followed by the required arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign interface has been derived,
but has proved to be a powerful and comfortable way to create compound terms from C. Due to
the vararg packing/unpacking and the required type-switching this interface is slightly slower
than using the primitives. Please note that some bad C-compilers have fairly low limits on the
number of arguments that may be passed to a function.

Special attention is required when passing numbers. C ‘promotes’ any integral smaller than
int to int. I.e. the types char, short and int are all passed as int. In addition, on most
32-bit platforms int and long are the same. Up-to version 4.0.5, only PL INTEGER could be
specified which was taken from the stack as long. Such code fails when passing small integral
types on machines where int is smaller than long. It is advised to use PL SHORT, PL INT
or PL LONG as appropriate. Similar, C compilers promote float to double and therefore
PL FLOAT and PL DOUBLE are synonyms.

The type identifiers are:

PL VARIABLE none
No op. Used in arguments of PL FUNCTOR.

PL BOOL int
Unify the argument with true or false.

PL ATOM atom t
Unify the argument with an atom, as in PL unify atom().

PL CHARS const char *
Unify the argument with an atom, constructed from the C char *, as in
PL unify atom chars().

PL NCHARS size t, const char *
Unify the argument with an atom, constructed from length and char* as in
PL unify atom nchars().

PL UTF8 CHARS const char *
Create an atom from a UTF-8 string.

PL UTF8 STRING const char *
Create a packed string object from a UTF-8 string.

PL MBCHARS const char *
Create an atom from a multi-byte string in the current locale.

PL MBCODES const char *
Create a list of character codes from a multi-byte string in the current locale.

PL MBSTRING const char *
Create a packed string object from a multi-byte string in the current locale.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 269

PL NWCHARS size t, const wchar t *
Create an atom from a length and a wide character pointer.

PL NWCODES size t, const wchar t *
Create an list of character codes from a length and a wide character pointer.

PL NWSTRING size t, const wchar t *
Create a packed string object from a length and a wide character pointer.

PL SHORT short
Unify the argument with an integer, as in PL unify integer(). As short is pro-
moted to int, PL SHORT is a synonym for PL INT.

PL INTEGER long
Unify the argument with an integer, as in PL unify integer().

PL INT int
Unify the argument with an integer, as in PL unify integer().

PL LONG long
Unify the argument with an integer, as in PL unify integer().

PL INT64 int64 t
Unify the argument with a 64-bit integer, as in PL unify int64().

PL INTPTR intptr t
Unify the argument with an integer with the same width as a pointer. On most machines
this is the same as PL LONG. but on 64-bit MS-Windows pointers are 64-bit while longs
are only 32-bits.

PL DOUBLE double
Unify the argument with a float, as in PL unify float(). Note that, as the argument
is passed using the C vararg conventions, a float must be casted to a double explicitly.

PL FLOAT double
Unify the argument with a float, as in PL unify float().

PL POINTER void *
Unify the argument with a pointer, as in PL unify pointer().

PL STRING const char *
Unify the argument with a string object, as in PL unify string chars().

PL TERM term t
Unify a subterm. Note this may the return value of a PL new term ref() call to get
access to a variable.

PL FUNCTOR functor t, . . .
Unify the argument with a compound term. This specification should be followed by
exactly as many specifications as the number of arguments of the compound term.

PL FUNCTOR CHARS const char *name, int arity, . . .
Create a functor from the given name and arity and then behave as PL FUNCTOR.

PL LIST int length, . . .
Create a list of the indicated length. The following arguments contain the elements of the
list.

SWI-Prolog 6.0 Reference Manual

270 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

For example, to unify an argument with the term language(dutch), the following skeleton
may be used:

static functor_t FUNCTOR_language1;

static void
init_constants()
{ FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"), 1);
}

foreign_t
pl_get_lang(term_t r)
{ return PL_unify_term(r,

PL_FUNCTOR, FUNCTOR_language1,
PL_CHARS, "dutch");

}

install_t
install()
{ PL_register_foreign("get_lang", 1, pl_get_lang, 0);

init_constants();
}

int PL chars to term(const char *chars, term t -t)
Parse the string chars and put the resulting Prolog term into t. chars may or may not be closed
using a Prolog full-stop (i.e., a dot followed by a blank). Returns FALSE if a syntax error
was encountered and TRUE after successful completion. In addition to returning FALSE, the
exception-term is returned in t on a syntax error. See also term to atom/2.

The following example build a goal-term from a string and calls it.

int
call_chars(const char *goal)
{ fid_t fid = PL_open_foreign_frame();

term_t g = PL_new_term_ref();
BOOL rval;

if (PL_chars_to_term(goal, g))
rval = PL_call(goal, NULL);

else
rval = FALSE;

PL_discard_foreign_frame(fid);
return rval;

}

...

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 271

call_chars("consult(load)");
...

char * PL quote(int chr, const char *string)
Return a quoted version of string. If chr is ’\’’, the result is a quoted atom. If chr is ’"’, the
result is a string. The result string is stored in the same ring of buffers as described with the
BUF RING argument of PL get chars();

In the current implementation, the string is surrounded by chr and any occurrence of chr is
doubled. In the future the behaviour will depend on the character escapes Prolog flag.

9.4.6 Convience functions to generate Prolog exceptions

The typical implementation of a foreign predicate first uses the PL get *() functions to extract C
datatypes from the Prolog terms. Failure of any of these functions is normally because the Prolog
term is of the wrong type. The * ex() family of functions are wrappers around (mostly) the PL get *()
functions, such that we can write code in the style below and get proper exceptions if an argument is
uninstantiated or of the wrong type.

/** set_size(+Name:atom, +Width:int, +Height:int) is det.

static foreign_t
set_size(term_t name, term_t width, term_t height)
{ char *n;
int w, h;

if (!PL_get_chars(name, &n, CVT_ATOM|CVT_EXCEPTION) ||
!PL_get_integer_ex(with, &w) ||
!PL_get_integer_ex(height, &h))

return FALSE;

...

}

int PL get atom ex(term t t, atom t *a)
As PL get atom(), but raises a type or instantiation error if t is not an atom.

int PL get integer ex(term t t, int *i)
As PL get integer(), but raises a type or instantiation error if t is not an integer or a
representation error if the Prolog integer does not fit in a C int.

int PL get long ex(term t t, long *i)
As PL get long(), but raises a type or instantiation error if t is not an atom or a representa-
tion error if the Prolog integer does not fit in a C long.

SWI-Prolog 6.0 Reference Manual

272 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL get int64 ex(term t t, int64 t *i)
As PL get int64(), but raises a type or instantiation error if t is not an atom or a representation
error if the Prolog integer does not fit in a C int64 t.

int PL get intptr ex(term t t, intptr t *i)
As PL get intptr(), but raises a type or instantiation error if t is not an atom or a repre-
sentation error if the Prolog integer does not fit in a C intptr t.

int PL get size ex(term t t, size t *i)
As PL get size(), but raises a type or instantiation error if t is not an atom or a representa-
tion error if the Prolog integer does not fit in a C size t.

int PL get bool ex(term t t, int *i)
As PL get atom ex(), but raises a type or instantiation error if t is not an atom.

int PL get float ex(term t t, double *f)
As PL get atom ex(), but raises a type or instantiation error if t is not an atom.

int PL get char ex(term t t, int *p, int eof)
Get a character code from t, where t is either an integer or an atom with length one. If eof
is TRUE and t is -1, p is filled with -1. Raises an appropriate error if the conversion is not
possible.

int PL get pointer ex(term t t, void **addrp)
As PL get pointer(), but raises a type or instantiation error if t is not a pointer.

int PL get list ex(term t l, term t h, term t t)
As PL get list(), but raises a type or instantiation error if t is not a list.

int PL get nil ex(term t l)
As PL get nil(), but raises a type or instantiation error if t is not the empty list.

int PL unify list ex(term t l, term t h, term t t)
As PL unify list(), but raises a type error if t is not a variable, list-cell or the empty list.

int PL unify nil ex(term t l)
As PL unify nil(), but raises a type error if t is not a variable, list-cell or the empty list.

int PL unify bool ex(term t t, int val)
As PL unify bool(), but raises a type error if t is not a variable, or a boolean.

The second family of functions in this section simplifies the generation of ISO compatible error
terms. Any foreign function that calls this function must return to Prolog with the return code of the
error function or the constant FALSE. If available, these error functions add the name of the calling
predicate to the error context. See also PL raise exception().

int PL instantiation error(term t culprit)
Raise instantiation error. Culprit is ignored, but should be bound to the term that is
not a variable. See instantiation error/1.

int PL representation error(const char *resource)
Raise representation error(resource). See representation error/1.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 273

int PL type error(const char *expected, term t culprit)
Raise type error(expected, culprit). See type error/2.

int PL domain error(const char *expected, term t culprit)
Raise domain error(expected, culprit). See domain error/2.

int PL existence error(const char *type, term t culprit)
Raise existence error(type, culprit). See type error/2.

int PL permission error(const char *operation, const char *type, term t culprit)
Raise permission error(operation, type, culprit). See
permission error/3.

int PL resource error(const char *resource)
Raise resource error(resource). See resource error/1.

9.4.7 BLOBS: Using atoms to store arbitrary binary data

SWI-Prolog atoms as well as strings can represent arbitrary binary data of arbitrary length. This
facility is attractive for storing foreign data such as images in an atom. An atom is a unique handle to
this data and the atom garbage collector is able to destroy atoms that are no longer referenced by the
Prolog engine. This property of atoms makes them attractive as a handle to foreign resources, such as
Java atoms, Microsoft’s COM objects, etc., providing safe combined garbage collection.

To exploit these features safely and in an organised manner the SWI-Prolog foreign interface
allows for creating ‘atoms’ with additional type information. The type is represented by a structure
holding C function pointers that tell Prolog how to handle releasing the atom, writing it, sorting it,
etc. Two atoms created with different types can represent the same sequence of bytes. Atoms are first
ordered on the rank number of the type and then on the result of the compare() function. Rank
numbers are assigned when the type is registered.

Defining a BLOB type

The type PL blob t represents a structure with the layout displayed above. The structure contains
additional fields at the . . . for internal bookkeeping as well as future extension.

typedef struct PL_blob_t
{ unsigned long magic; /* PL_BLOB_MAGIC */
unsigned long flags; /* Bitwise or of PL_BLOB_* */
char * name; /* name of the type */
int (*release)(atom_t a);
int (*compare)(atom_t a, atom_t b);
int (*write)(IOSTREAM *s, atom_t a, int flags);
void (*acquire)(atom_t a);
...

} PL_blob_t;

For each type exactly one such structure should be allocated. Its first field must be initialised to
PL BLOB MAGIC. The flags is a bitwise or of the following constants:

SWI-Prolog 6.0 Reference Manual

274 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL BLOB TEXT
If specified the blob is assumed to contain text and is considered a normal Prolog atom.

PL BLOB UNIQUE
If specified the system ensures that the blob-handle is a unique reference for a blob with the
given type, length and content. If this flag is not specified each lookup creates a new blob.

PL BLOB NOCOPY
By default the content of the blob is copied. Using this flag the blob references the external
data directly. The user must ensure the provided pointer is valid as long as the atom lives. If
PL BLOB UNIQUE is also specified uniqueness is determined by comparing the pointer rather
than the data pointed at.

The name field represents the type name as available to Prolog. See also current blob/2.
The other field are function pointers that must be initialised to proper functions or NULL to get the
default behaviour of built-in atoms. Below are the defined member functions:

void acquire(atom t a)
Called if a new blob of this type is created through PL put blob() or PL unify blob().
This callback may be used together with the release hook to deal with reference counted
external objects.

int release(atom t a)
The blob (atom) a is about to be released. This function can retrieve the data of the blob using
PL blob data(). If it returns FALSE the atom garbage collector will not reclaim the atom.

int compare(atom t a, atom t b)
Compare the blobs a and b, both of which are of the type associated to this blob-type. Return
values are, as memcmp(), < 0 if a is less then b, = 0 if both are equal and > 0 otherwise.

int write(IOSTREAM *s, atom t a, int flags)
Write the content of the blob a to the stream s and respecting the flags. The flags are a bitwise
or of zero or more of the PL WRT * flags defined in SWI-Prolog.h. This prototype is
available if the undocumented SWI-Stream.h is included before SWI-Prolog.h.

If this function is not provided, write/1 emits the content of the blob for blobs of type
PL BLOB TEXT or a string of the format <#hex data> for binary blobs.

If a blob type is registered from a loadable object (shared object or DLL) the blob-type must be
deregistered before the object may be released.

int PL unregister blob type(PL blob t *type)
Unlink the blob type from the registered type and transform the type of possible living blobs
to unregistered, avoiding further reference to the type structure, functions referred by it
as well as the data. This function returns TRUE if no blobs of this type existed and FALSE
otherwise. PL unregister blob type() is intended for the uninstall() hook of foreign
modules, avoiding further references to the module.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 275

Accessing blobs

The blob access functions are similar to the atom accessing functions. Blobs being atoms, the atom
functions operate on blobs and visa versa. For clarity and possible future compatibility issues however
it is not advised to rely on this.

int PL is blob(term t t, PL blob t **type)
Succeeds if t refers to a blob, in which case type is filled with the type of the blob.

int PL unify blob(term t t, void *blob, size t len, PL blob t *type)
Unify t to a new blob constructed from the given data and associated to the given type. See also
PL unify atom nchars().

int PL put blob(term t t, void *blob, size t len, PL blob t *type)
Store the described blob in t. The return value indicates whether a new blob was allocated
(FALSE) or the blob is a reference to an existing blob (TRUE). Reporting new/existing can be
used to deal with external objects having their own reference counts. If the return is TRUE this
reference count must be incremented and it must be decremented on blob destruction callback.
See also PL put atom nchars().

int PL get blob(term t t, void **blob, size t *len, PL blob t **type)
If t holds a blob or atom get the data and type and return TRUE. Otherwise return FALSE. Each
result pointer may be NULL, in which case the requested information is ignored.

void * PL blob data(atom t a, size t *len, PL blob t **type)
Get the data and type associated to a blob. This function is mainly used from the callback
functions described in section 9.4.7.

9.4.8 Exchanging GMP numbers

If SWI-Prolog is linked with the GNU Multiple Precision Arithmetic Library (GMP, used by default),
the foreign interface provides functions for exchanging numeric values to GMP types. To access these
functions the header <gmp.h> must be included before <SWI-Prolog.h>. Foreign code using
GMP linked to SWI-Prolog asks for some considerations.

• SWI-Prolog normally rebinds the GMP allocation functions using mp set memory functions().
This means SWI-Prolog must be initialised before the foreign code touches any GMP function.
You can call \cfuncref{PL_action}{PL_GMP_SET_ALLOC_FUNCTIONS, TRUE}
to force Prolog’s GMP initialization without doing the rest of the Prolog ini-
tialization. If you do not want Prolog rebinding the GMP allocation, call
\cfuncref{PL_action}{PL_GMP_SET_ALLOC_FUNCTIONS, FALSE} before
initializing Prolog.

• On Windows, each DLL has its own memory pool. To make exchange of GMP numbers be-
tween Prolog and foreign code possible you must either let Prolog rebind the allocation func-
tions (default) or you must recompile SWI-Prolog to link to a DLL version of the GMP library.

Here is an example exploiting the function mpz nextprime():

SWI-Prolog 6.0 Reference Manual

276 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

#include <gmp.h>
#include <SWI-Prolog.h>

static foreign_t
next_prime(term_t n, term_t prime)
{ mpz_t mpz;
int rc;

mpz_init(mpz);
if (PL_get_mpz(n, mpz))
{ mpz_nextprime(mpz, mpz);

rc = PL_unify_mpz(prime, mpz);
} else

rc = FALSE;

mpz_clear(mpz);
return rc;

}

install_t
install()
{ PL_register_foreign("next_prime", 2, next_prime, 0);
}

int PL get mpz(term t t, mpz t mpz)
If t represents an integer mpz is filled with the value and the function returns TRUE. Otherwise
mpz is untouched and the function returns FALSE. Note that mpz must have been initialised
before calling this function and must be cleared using mpz clear() to reclaim any storage
associated with it.

int PL get mpq(term t t, mpq t mpq)
If t is an integer or rational number (term rdiv/2) mpq is filled with the normalise rational
number and the function returns TRUE. Otherwise mpq is untouched and the function returns
FALSE. Note that mpq must have been initialised before calling this function and must be
cleared using mpq clear() to reclaim any storage associated with it.

int PL unify mpz(term t t, mpz t mpz)
Unify t with the integer value represented by mpz and return TRUE on success. The mpz
argument is not changed.

int PL unify mpq(term t t, mpq t mpq)
Unify t with a rational number represented by mpq and return TRUE on success. Note that t is
unified with an integer if the denominator is 1. The mpq argument is not changed.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 277

9.4.9 Calling Prolog from C

The Prolog engine can be called from C. There are two interfaces for this. For the first, a term is
created that could be used as an argument to call/1 and next PL call() is used to call Prolog.
This system is simple, but does not allow to inspect the different answers to a non-deterministic goal
and is relatively slow as the runtime system needs to find the predicate. The other interface is based on
PL open query(), PL next solution() and PL cut query() or PL close query().
This mechanism is more powerful, but also more complicated to use.

Predicate references

This section discusses the functions used to communicate about predicates. Though a Prolog predicate
may defined or not, redefined, etc., a Prolog predicate has a handle that is not destroyed, nor moved.
This handle is known by the type predicate t.

predicate t PL pred(functor t f, module t m)
Return a handle to a predicate for the specified name/arity in the given module. This function
always succeeds, creating a handle for an undefined predicate if no handle was available. If the
module argument m is NULL, the current context module is used.

predicate t PL predicate(const char *name, int arity, const char* module)
Same a PL pred(), but provides a more convenient interface to the C-programmer.

void PL predicate info(predicate t p, atom t *n, int *a, module t *m)
Return information on the predicate p. The name is stored over n, the arity over a, while m
receives the definition module. Note that the latter need not be the same as specified with
PL predicate(). If the predicate is imported into the module given to PL predicate(),
this function will return the module where the predicate is defined. Any of the arguments n, a
and m can be NULL.

Initiating a query from C

This section discusses the functions for creating and manipulating queries from C. Note that a foreign
context can have at most one active query. This implies it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc., but it is not allowed to open multiple
queries and start generating solutions for each of them by calling PL next solution(). Be sure
to call PL cut query() or PL close query() on any query you opened before opening the
next or returning control back to Prolog.

qid t PL open query(module t ctx, int flags, predicate t p, term t +t0)
Opens a query and returns an identifier for it. ctx is the context module of the goal. When
NULL, the context module of the calling context will be used, or user if there is no
calling context (as may happen in embedded systems). Note that the context module
only matters for meta-predicates. See meta predicate/1, context module/1 and
module transparent/1. The p argument specifies the predicate, and should be the result
of a call to PL pred() or PL predicate(). Note that it is allowed to store this handle
as global data and reuse it for future queries. The term-reference t0 is the first of a vector of
term-references as returned by PL new term refs(n).

SWI-Prolog 6.0 Reference Manual

278 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

The flags arguments provides some additional options concerning debugging and exception
handling. It is a bitwise or of the following values:

PL Q NORMAL
Normal operation. The debugger inherits its settings from the environment. If an excep-
tion occurs that is not handled in Prolog, a message is printed and the tracer is started to
debug the error.4

PL Q NODEBUG
Switch off the debugger while executing the goal. This option is used by many calls
to hook-predicates to avoid tracing the hooks. An example is print/1 calling
portray/1 from foreign code.

PL Q CATCH EXCEPTION
If an exception is raised while executing the goal, do not report it, but make it available
for PL exception().

PL Q PASS EXCEPTION
As PL Q CATCH EXCEPTION, but do not invalidate the exception-term while calling
PL close query(). This option is experimental.

PL open query() can return a query-identifier ‘0’ if there is not enough space on the en-
vironment stack. This function succeeds, even if the referenced predicate is not defined. In
this case, running the query using PL next solution() will return an existence error. See
PL exception().

The example below opens a query to the predicate is a/2 to find the ancestor of ‘me’. The
reference to the predicate is valid for the duration of the process and may be cached by the
client.

char *
ancestor(const char *me)
{ term_t a0 = PL_new_term_refs(2);

static predicate_t p;

if (!p)
p = PL_predicate("is_a", 2, "database");

PL_put_atom_chars(a0, me);
PL_open_query(NULL, PL_Q_NORMAL, p, a0);
...

}

int PL next solution(qid t qid)
Generate the first (next) solution for the given query. The return value is TRUE if a solution
was found, or FALSE to indicate the query could not be proven. This function may be called
repeatedly until it fails to generate all solutions to the query.

4Do not pass the integer 0 for normal operation, as this is interpreted as PL Q NODEBUG for backward compatibility
reasons.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 279

void PL cut query(qid)
Discards the query, but does not delete any of the data created by the query. It just invalidate
qid, allowing for a new call to PL open query() in this context.

void PL close query(qid)
As PL cut query(), but all data and bindings created by the query are destroyed.

int PL call predicate(module t m, int flags, predicate t pred, term t +t0)
Shorthand for PL open query(), PL next solution(), PL cut query(), generat-
ing a single solution. The arguments are the same as for PL open query(), the return value
is the same as PL next solution().

int PL call(term t, module t)
Call term just like the Prolog predicate once/1. Term is called in the specified module, or in
the context module if module t = NULL. Returns TRUE if the call succeeds, FALSE otherwise.
Figure 9.3 shows an example to obtain the number of defined atoms. All checks are omitted to
improve readability.

9.4.10 Discarding Data

The Prolog data created and term-references needed to setup the call and/or analyse the result can in
most cases be discarded right after the call. PL close query() allows for destructing the data,
while leaving the term-references. The calls below may be used to destroy term-references and data.
See figure 9.3 for an example.

fid t PL open foreign frame()
Created a foreign frame, holding a mark that allows the system to undo bindings and destroy
data created after it as well as providing the environment for creating term-references. This
function is called by the kernel before calling a foreign predicate.

void PL close foreign frame(fid t id)
Discard all term-references created after the frame was opened. All other Prolog data is re-
tained. This function is called by the kernel whenever a foreign function returns control back
to Prolog.

void PL discard foreign frame(fid t id)
Same as PL close foreign frame(), but also undo all bindings made since the open and
destroy all Prolog data.

void PL rewind foreign frame(fid t id)
Undo all bindings and discard all term-references created since the frame was created, but does
not pop the frame. I.e. the same frame can be rewinded multiple times, and must eventually be
closed or discarded.

It is obligatory to call either of the two closing functions to discard a foreign frame. Foreign
frames may be nested.

SWI-Prolog 6.0 Reference Manual

280 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int
count_atoms()
{ fid_t fid = PL_open_foreign_frame();
term_t goal = PL_new_term_ref();
term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2);
int atoms;

PL_put_atom_chars(a1, "atoms");
PL_cons_functor(goal, s2, a1, a2);
PL_call(goal, NULL); /* call it in current module */

PL_get_integer(a2, &atoms);
PL_discard_foreign_frame(fid);

return atoms;
}

Figure 9.3: Calling Prolog

9.4.11 Foreign Code and Modules

Modules are identified via a unique handle. The following functions are available to query and ma-
nipulate modules.

module t PL context()
Return the module identifier of the context module of the currently active foreign predicate.

int PL strip module(term t +raw, module t *m, term t -plain)
Utility function. If raw is a term, possibly holding the module construct 〈module〉:〈rest〉 this
function will make plain a reference to 〈rest〉 and fill module * with 〈module〉. For further
nested module constructs the inner most module is returned via module *. If raw is not a
module construct arg will simply be put in plain. If module * is NULL it will be set to the
context module. Otherwise it will be left untouched. The following example shows how to
obtain the plain term and module if the default module is the user module:

{ module m = PL_new_module(PL_new_atom("user"));
term_t plain = PL_new_term_ref();

PL_strip_module(term, &m, plain);
...

}

atom t PL module name(module t)
Return the name of module as an atom.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 281

module t PL new module(atom t name)
Find an existing or create a new module with name specified by the atom name.

9.4.12 Prolog exceptions in foreign code

This section discusses PL exception(), PL throw() and PL raise exception(), the
interface functions to detect and generate Prolog exceptions from C-code. PL throw()
and PL raise exception() from the C-interface to raise an exception from foreign
code. PL throw() exploits the C-function longjmp() to return immediately to the innermost
PL next solution(). PL raise exception() registers the exception term and returns
FALSE. If a foreign predicate returns FALSE, while and exception-term is registered a Prolog ex-
ception will be raised by the virtual machine.

Calling these functions outside the context of a function implementing a foreign predicate results
in undefined behaviour.

PL exception() may be used after a call to PL next solution() fails, and returns a term
reference to an exception term if an exception was raised, and 0 otherwise.

If a C-function, implementing a predicate calls Prolog and detects an exception us-
ing PL exception(), it can handle this exception, or return with the exception.
Some caution is required though. It is not allowed to call PL close query() or
PL discard foreign frame() afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog defined arithmetic function (see arithmetic function/1).

If PL next solution() succeeds, the result is analysed and translated to a number, after
which the query is closed and all Prolog data created after PL open foreign frame() is de-
stroyed. On the other hand, if PL next solution() fails and if an exception was raised, just
pass it. Otherwise generate an exception (PL error() is an internal call for building the standard
error terms and calling PL raise exception()). After this, the Prolog environment should be
discarded using PL cut query() and PL close foreign frame() to avoid invalidating the
exception term.

static int
prologFunction(ArithFunction f, term_t av, Number r)
{ int arity = f->proc->definition->functor->arity;
fid_t fid = PL_open_foreign_frame();
qid_t qid;
int rval;

qid = PL_open_query(NULL, PL_Q_NORMAL, f->proc, av);

if (PL_next_solution(qid))
{ rval = valueExpression(av+arity-1, r);

PL_close_query(qid);
PL_discard_foreign_frame(fid);

} else
{ term_t except;

if ((except = PL_exception(qid)))
{ rval = PL_throw(except); /* pass exception */

SWI-Prolog 6.0 Reference Manual

282 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

} else
{ char *name = stringAtom(f->proc->definition->functor->name);

/* generate exception */
rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc);

}

PL_cut_query(qid); /* donot destroy data */
PL_close_foreign_frame(fid); /* same */

}

return rval;
}

int PL raise exception(term t exception)
Generate an exception (as throw/1) and return FALSE. Below is an example returning an
exception from foreign predicate:

foreign_t
pl_hello(term_t to)
{ char *s;

if (PL_get_atom_chars(to, &s))
{ Sprintf("Hello \"%s\"\n", s);

PL_succeed;
} else
{ term_t except = PL_new_term_ref();

PL_unify_term(except,
PL_FUNCTOR_CHARS, "type_error", 2,
PL_CHARS, "atom",
PL_TERM, to);

return PL_raise_exception(except);
}

}

int PL throw(term t exception)
Similar to PL raise exception(), but returns using the C longjmp() function to the
innermost PL next solution().

term t PL exception(qid t qid)
If PL next solution() fails, this can be due to normal failure of the Prolog call, or because
an exception was raised using throw/1. This function returns a handle to the exception

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 283

term if an exception was raised, or 0 if the Prolog goal simply failed. If there is an exception,
PL exception() allocates a term-handle using PL new term ref() that is used to return
the exception term.5

Additionally, \cfuncref{PL_exception}{0} returns the pending exception in the cur-
rent query or 0 if no exception is pending. This can be used to check the error-status after a
failing call to e.g., one of the unification functions.

PL clear exception void(T)
ells Prolog that the encountered exception must be ignored. This function must be called if
control remains in C after an previous API calls fails with an exception.6.

9.4.13 Catching Signals (Software Interrupts)

SWI-Prolog offers both a C and Prolog interface to deal with software interrupts (signals). The Prolog
mapping is defined in section 4.10. This subsection deals with handling signals from C.

If a signal is not used by Prolog and the handler does not call Prolog in any way, the native signal
interface routines may be used.

Some versions of SWI-Prolog, notably running on popular Unix platforms, handle SIG SEGV
for guarding the Prolog stacks. If the application wishes to handle this signal too, it should use
PL signal() to install its handler after initialising Prolog. SWI-Prolog will pass SIG SEGV to the
user code if it detected the signal is not related to a Prolog stack overflow.

Any handler that wishes to call one of the Prolog interface functions should call PL signal()
for its installation.

void (*)() PL signal(sig, func)
This function is equivalent to the BSD-Unix signal() function, regardless of the platform used.
The signal handler is blocked while the signal routine is active, and automatically reactivated
after the handler returns.

After a signal handler is registered using this function, the native signal interface redirects the
signal to a generic signal handler inside SWI-Prolog. This generic handler validates the en-
vironment, creates a suitable environment for calling the interface functions described in this
chapter and finally calls the registered user-handler.

By default, signals are handled asynchronously (i.e. at the time they arrive). It is inherently
dangerous to call extensive code fragments, and especially exception related code from asyn-
chronous handlers. The interface allows for synchronous handling of signals. In this case
the native OS handler just schedules the signal using PL raise(), which is checked by
PL handle signals() at the call- and redo-port. This behaviour is realised by or-ing sig
with the constant PL SIGSYNC.7

Signal handling routines may raise exceptions using PL raise exception(). The use of
PL throw() is not safe. If a synchronous handler raises an exception, the exception is delayed
to the next call to PL handle signals();

5This interface differs in two ways from Quintus. The calling predicates simply signal failure if an exception was raised,
and a term referenced is returned, rather passed and filled with the error term. Exceptions can only be handled using the
PL next solution() interface, as a handle to the query is required.

6This feature is non-portable. Other Prolog systems (e.g., YAP) has no facilities to ignore raised exceptions and the
design of YAP’s exception handling does not support such a facility

7A better default would be to use synchronous handling, but this interface preserves backward compatibility.

SWI-Prolog 6.0 Reference Manual

284 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL raise(int sig)
Register sig for synchronous handling by Prolog. Synchronous signals are handled at the
call-port or if foreign code calls PL handle signals(). See also thread signal/2.

int PL handle signals(void)
Handle any signals pending from PL raise(). PL handle signals() is called at each
pass through the call- and redo-port at a safe point. Exceptions raised by the handler using
PL raise exception() are properly passed to the environment.

The user may call this function inside long-running foreign functions to handle scheduled inter-
rupts. This routine returns the number of signals handled. If a handler raises an exception, the
return value is -1 and the calling routine should return with FALSE as soon as possible.

int PL get signum ex(term t t, int *sig)
Extract a signal specification from a Prolog term and store as integer signal number in sig. The
specification is an integer, lowercase signal name without SIG or the full signal name. These
refer to the same: 9, kill and SIGKILL. Leaves a typed, domain or instantiation error if the
conversion fails.

9.4.14 Miscellaneous

Term Comparison

int PL compare(term t t1, term t t2)
Compares two terms using the standard order of terms and returns -1, 0 or 1. See also
compare/3.

int PL same compound(term t t1, term t t2)
Yields TRUE if t1 and t2 refer to physically the same compound term and FALSE otherwise.

Recorded database

In some applications it is useful to store and retrieve Prolog terms from C-code. For example, the
XPCE graphical environment does this for storing arbitrary Prolog data as slot-data of XPCE objects.

Please note that the returned handles have no meaning at the Prolog level and the recorded terms
are not visible from Prolog. The functions PL recorded() and PL erase() are the only func-
tions that can operate on the stored term.

Two groups of functions are provided. The first group (PL record() and friends) store Prolog
terms on the Prolog heap for retrieval during the same session. These functions are also used by
recorda/3 and friends. The recorded database may be used to communicate Prolog terms between
threads.

record t PL record(term t +t)
Record the term t into the Prolog database as recorda/3 and return an opaque handle to the
term. The returned handle remains valid until PL erase() is called on it. PL recorded()
is used to copy recorded terms back to the Prolog stack.

int PL recorded(record t record, term t -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy multiple
instances at any time to the Prolog stack. Returns TRUE on success, and FALSE if there

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 285

is not enough space on the stack to accomodate the term. See also PL record() and
PL erase().

void PL erase(record t record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

The second group (headed by PL record external()) provides the same functionality, but
the returned data has properties that enable storing the data on an external device. It has been designed
to make it possible to store Prolog terms fast an compact in an external database. Here are the main
features:

• Independent of session
Records can be communicated to another Prolog session and made visible using
PL recorded external().

• Binary
The representation is binary for maximum performance. The returned data may contain 0-bytes.

• Byte-order independent
The representation can be transferred between machines with different byte-order.

• No alignment restrictions
There are no memory alignment restrictions and copies of the record can thus be moved freely.
For example, it is possible to use this representation to exchange terms using shared memory
between different Prolog processes.

• Compact
It is assumed that a smaller memory footprint will eventually outperform slightly faster repre-
sentations.

• Stable
The format is designed for future enhancements without breaking compatibility with older
records.

char * PL record external(term t +t, size t *len)
Record the term t into the Prolog database as recorda/3 and return an opaque handle to the
term. The returned handle remains valid until PL erase external() is called on it.

It is allowed to copy the data and use PL recorded external() on the copy. The user
is responsible for the memory management of the copy. After copying, the original may be
discarded using PL erase external().

PL recorded external() is used to copy such recorded terms back to the Prolog stack.

int PL recorded external(const char *record, term t -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy mul-
tiple instances at any time to the Prolog stack. See also PL record external() and
PL erase external().

int PL erase external(char *record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

SWI-Prolog 6.0 Reference Manual

286 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

Getting file names

The function PL get file name() provides access to Prolog filenames and its file-search mech-
anism described with absolute file name/3. Its existence is motivated to realise a uniform
interface to deal with file-properties, search, naming conventions etc. from foreign code.

int PL get file name(term t spec, char **name, int flags)
Translate a Prolog term into a file name. The name is stored in the static buffer ring described
with PL get chars() option BUF RING. Conversion from the internal UNICODE encod-
ing is done using standard C library functions. flags is a bit-mask controlling the conversion
process. Options are:

PL FILE ABSOLUTE
Return an absolute path to the requested file.

PL FILE OSPATH
Return a the name using the hosting OS conventions. On MS-Windows, \ is used to
separate directories rather than the canonical /.

PL FILE SEARCH
Invoke absolute file name/3. This implies rules from file search path/2
are used.

PL FILE EXIST
Demand the path to refer to an existing entity.

PL FILE READ
Demand read-access on the result.

PL FILE WRITE
Demand write-access on the result.

PL FILE EXECUTE
Demand execute-access on the result.

PL FILE NOERRORS
Do not raise any exceptions.

int PL get file nameW(term t spec, wchar t **name, int flags)
Same as PL get file name(), but returns the filename as a wide-character string. This
is intended for Windows to access the Unicode version of the Win32 API. Note that the
flag PL FILE OSPATH must be provided to fetch a file name in OS native (e.g., C:\x\y)
notation.

9.4.15 Errors and warnings

PL warning() prints a standard Prolog warning message to the standard error (user error)
stream. Please note that new code should consider using PL raise exception() to raise a Prolog
exception. See also section 4.9.

int PL warning(format, a1, . . .)
Print an error message starting with ‘[WARNING: ’, followed by the output from format,
followed by a ‘]’ and a newline. Then start the tracer. format and the arguments are the same
as for printf(2). Always returns FALSE.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 287

9.4.16 Environment Control from Foreign Code

int PL action(int, ...)
Perform some action on the Prolog system. int describes the action, Remaining arguments
depend on the requested action. The actions are listed in table 9.1.

9.4.17 Querying Prolog

long PL query(int)
Obtain status information on the Prolog system. The actual argument type depends on the
information required. int describes what information is wanted.8 The options are given in
table 9.2.

9.4.18 Registering Foreign Predicates

int PL register foreign in module(const char *module, const char *name, int arity, foreign t (*function)(), int flags, ...)
Register a C-function to implement a Prolog predicate. After this call returns successfully a
predicate with name name (a char *) and arity arity (a C int) is created in module module. If
module is NULL, the predicate is created in the module of the calling context or if no context is
present in the module user.

When called in Prolog, Prolog will call function. flags forms bitwise or’ed list of options for
the installation. These are:

PL FA META Provide meta-predicate info (see below)
PL FA TRANSPARENT Predicate is module transparent (deprecated)
PL FA NONDETERMINISTIC Predicate is non-deterministic. See also PL retry().
PL FA NOTRACE Predicate cannot be seen in the tracer
PL FA VARARGS Use alternative calling convention.

If PL FA META is provided, PL register foreign in module() takes one extra ar-
gument. This argument is of type const char*. This string must be exactly as long as
the number of arguments of the predicate and filled with characters from the set 0-9:ˆ-+?.
See meta predicate/1 for details. PL FA TRANSPARENT is implied if at least one
meta-argument is provided (0-9:ˆ). Note that meta-arguments are not always passed as
〈module〉:〈term〉. Always use PL strip module() to extract the module and plain term
from a meta-argument.9

Predicates may be registered either before or after PL initialise(). When registered be-
fore initialisation the registration is recorded and executed after installing the system predicates
and before loading the saved state.

Default calling (i.e. without PL FA VARARGS) function is passed the same number of term t
arguments as the arity of the predicate and, if the predicate is non-deterministic, an extra ar-
gument of type control t (see section 9.4.1). If PL FA VARARGS is provided, function is
called with three arguments. The first argument is a term t handle to the first argument. Fur-
ther arguments can be reached by adding the offset (see also PL new term refs()). The
second argument is the arity, which defines the number of valid term-references in the argument

8Returning pointers and integers as a long is bad style. The signature of this function should be changed.
9It is encouraged to pass an additional NULL pointer for non-meta-predicates.

SWI-Prolog 6.0 Reference Manual

288 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL ACTION TRACE Start Prolog tracer (trace/0). Requires no arguments.
PL ACTION DEBUG Switch on Prolog debug mode (debug/0). Requires no

arguments.
PL ACTION BACKTRACE Print backtrace on current output stream. The argument

(an int) is the number of frames printed.
PL ACTION HALT Halt Prolog execution. This action should be called rather

than Unix exit() to give Prolog the opportunity to clean up.
This call does not return. The argument (an int) is the exit
code. See halt/1.

PL ACTION ABORT Generate a Prolog abort (abort/0). This call does not
return. Requires no arguments.

PL ACTION BREAK Create a standard Prolog break environment (break/0).
Returns after the user types the end-of-file character. Re-
quires no arguments.

PL ACTION GUIAPP Win32: Used to indicate the kernel that the application is
a GUI application if the argument is not 0 and a console
application if the argument is 0. If a fatal error occurs,
the system uses a windows messagebox to report this on
a GUI application and simply prints the error and exits
otherwise.

PL ACTION WRITE Write the argument, a char * to the current output
stream.

PL ACTION FLUSH Flush the current output stream. Requires no arguments.
PL ACTION ATTACH CONSOLEAttach a console to a thread if it does not have one. See

attach console/0.
PL GMP SET ALLOC FUNCTIONSTakes and integer argument. If TRUE, the GMP allocation

are immediately bound to the Prolog functions. If FALSE,
SWI-Prolog will never rebind the GMP allocation func-
tions. See mp set memory functions() in the GMP docu-
mentation. The action returns FALSE if there is no GMP
support or GMP is already initialised.

Table 9.1: PL action() options

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 289

PL QUERY ARGC Return an integer holding the number of arguments given
to Prolog from Unix.

PL QUERY ARGV Return a char ** holding the argument vector given to Pro-
log from Unix.

PL QUERY SYMBOLFILE Return a char * holding the current symbol file of the run-
ning process.

PL MAX INTEGER Return a long, representing the maximal integer value rep-
resented by a Prolog integer.

PL MIN INTEGER Return a long, representing the minimal integer value.
PL QUERY VERSION Return a long, representing the version as 10, 000×M +

100×m+ p, where M is the major, m the minor version
number and p the patch-level. For example, 20717means
2.7.17.

PL QUERY ENCODING Return the default stream encoding of Prolog (of type
IOENC).

PL QUERY USER CPU Get amount of user CPU time of the process in millisec-
onds.

Table 9.2: PL query() options

vector. The last argument is used for non-deterministic calls. It is currently undocumented and
should be defined of type void*. Here is an example:

static foreign_t
atom_checksum(term_t a0, int arity, void* context)
{ char *s;

if (PL_get_atom_chars(a0, &s))
{ int sum;

for(sum=0; *s; s++)
sum += *s&0xff;

return PL_unify_integer(a0+1, sum&0xff);
}

return FALSE;
}

install_t
install()
{ PL_register_foreign("atom_checksum", 2, atom_checksum, PL_FA_VARARGS);
}

int PL register foreign(const char *name, int arity, foreign t (*function)(), int flags, ...)
Same as PL register foreign in module(), passing NULL for the module.

SWI-Prolog 6.0 Reference Manual

290 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

void PL register extensions in module(const char *module, PL extension *e)
Register a series of predicates from an array of definitions of the type PL extension in the
given module. If module is NULL, the predicate is created in the module of the calling context
or if no context is present in the module user. The PL extension type is defined as

typedef struct PL_extension
{ char *predicate_name; /* Name of the predicate */

short arity; /* Arity of the predicate */
pl_function_t function; /* Implementing functions */
short flags; /* Or of PL_FA_... */

} PL_extension;

For details, see PL register foreign in module(). Here is an example of its usage:

static PL_extension predicates[] = {
{ "foo", 1, pl_foo, 0 },
{ "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC },
{ NULL, 0, NULL, 0 }
};

main(int argc, char **argv)
{ PL_register_extensions_in_module("user", predicates);

if (!PL_initialise(argc, argv))
PL_halt(1);

...
}

void PL register extensions(PL extension *e)
Same as PL register extensions in module() using NULL for the module argu-
ment.

9.4.19 Foreign Code Hooks

For various specific applications some hooks re provided.

PL dispatch hook t PL dispatch hook(PL dispatch hook t)
If this hook is not NULL, this function is called when reading from the terminal. It is supposed
to dispatch events when SWI-Prolog is connected to a window environment. It can return
two values: PL DISPATCH INPUT indicates Prolog input is available on file descriptor 0
or PL DISPATCH TIMEOUT to indicate a timeout. The old hook is returned. The type
PL dispatch hook t is defined as:

typedef int (*PL_dispatch_hook_t)(void);

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 291

void PL abort hook(PL abort hook t)
Install a hook when abort/0 is executed. SWI-Prolog abort/0 is implemented using C
setjmp()/longjmp() construct. The hooks are executed in the reverse order of their registra-
tion after the longjmp() took place and before the Prolog top-level is reinvoked. The type
PL abort hook t is defined as:

typedef void (*PL_abort_hook_t)(void);

int PL abort unhook(PL abort hook t)
Remove a hook installed with PL abort hook(). Returns FALSE if no such hook is found,
TRUE otherwise.

void PL on halt(void (*f)(int, void *), void *closure)
Register the function f to be called if SWI-Prolog is halted. The function is called with two
arguments: the exit code of the process (0 if this cannot be determined on your operating
system) and the closure argument passed to the PL on halt() call. See also at halt/1.

PL agc hook t PL agc hook(PL agc hook t new)
Register a hook with the atom-garbage collector (see garbage collect atoms/0 that is
called on any atom that is reclaimed. The old hook is returned. If no hook is currently defined,
NULL is returned. The argument of the called hook is the atom that is to be garbage collected.
The return value is an int. If the return value is zero, the atom is not reclaimed. The hook
may invoke any Prolog predicate.

The example below defines a foreign library for printing the garbage collected atoms for debug-
ging purposes.

#include <SWI-Stream.h>
#include <SWI-Prolog.h>

static int
atom_hook(atom_t a)
{ Sdprintf("AGC: deleting %s\n", PL_atom_chars(a));

return TRUE;
}

static PL_agc_hook_t old;

install_t
install()
{ old = PL_agc_hook(atom_hook);
}

install_t
uninstall()
{ PL_agc_hook(old);
}

SWI-Prolog 6.0 Reference Manual

292 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

9.4.20 Storing foreign data

This section provides some hints for handling foreign data in Prolog. With foreign data, we refer to
data that is used by foreign language predicates and needs to be passed around in Prolog. Excluding
combinations, there are three principal options for storing such data

• Natural Prolog data
E.i. using the representation one would choose if there was no foreign interface required.

• Opaque packed Prolog data
Data can also be represented in a foreign structure and stored on the Prolog stacks using
PL put string nchars() and retrieved using PL get string chars(). It is gener-
ally good practice to wrap the string in a compound term with arity 1, so Prolog can identify the
type. portray/1 rules may be used to streamline printing such terms during development.

• Natural foreign data, passing a pointer
An alternative is to pass a pointer to the foreign data. Again, this functor may be wrapped in a
compound term.

The choice may be guided using the following distinctions

• Is the data opaque to Prolog
With ‘opaque’ data, we refer to data handled in foreign functions, passed around in Prolog, but
of which Prolog never examines the contents of the data itself. If the data is opaque to Prolog,
the chosen representation does not depend on simple analysis by Prolog, and the selection will
be driven solely by simplicity of the interface and performance (both in time and space).

• How big is the data
Is efficient encoding required? For examine, a boolean array may be expressed as a compound
term, holding integers each of which contains a number of bits, or as a list of true and false.

• What is the nature of the data
For examples in C, constants are often expressed using ‘enum’ or #define’d integer values. If
prolog needs to handle this data, atoms are a more logical choice. Whether or not this mapping
is used depends on whether Prolog needs to interpret the data, how important debugging is and
how important performance is.

• What is the lifetime of the data
We can distinguish three cases.

1. The lifetime is dictated by the accessibility of the data on the Prolog stacks. Their is no
way by which the foreign code when the data becomes ‘garbage’, and the data thus needs
to be represented on the Prolog stacks using Prolog data-types. (2),

2. The data lives on the ‘heap’ and is explicitly allocated and deallocated. In this case,
representing the data using native foreign representation and passing a pointer to it is a
sensible choice.

3. The data lives as during the lifetime of a foreign predicate. If the predicate is deterministic,
foreign automatic variables are suitable. if the predicate is non-deterministic, the data may
be allocated using malloc() and a pointer may be passed. See section 9.4.1.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 293

Examples for storing foreign data

In this section, we will outline some examples, covering typical cases. In the first example, we will
deal with extending Prolog’s data representation with integer-sets, represented as bit-vectors. Finally,
we discuss the outline of the DDE interface.

Integer sets with not-too-far-apart upper- and lower-bounds can be represented using bit-vectors.
Common set operations, such as union, intersection, etc. are reduced to simple and’ing and or’ing the
bit-vectors. This can be done using Prolog’s unbounded integers.

For really demanding applications, foreign representation will perform better, especially time-
wise. Bit-vectors are naturally expressed using string objects. If the string is wrapped in
bitvector/1, lower-bound of the vector is 0, and the upper-bound is not defined, an implementa-
tion for getting and putting the sets as well as the union predicate for it is below.

#include <SWI-Prolog.h>

#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

static functor_t FUNCTOR_bitvector1;

static int
get_bitvector(term_t in, int *len, unsigned char **data)
{ if (PL_is_functor(in, FUNCTOR_bitvector1))
{ term_t a = PL_new_term_ref();

PL_get_arg(1, in, a);
return PL_get_string(a, (char **)data, len);

}

PL_fail;
}

static int
unify_bitvector(term_t out, int len, const unsigned char *data)
{ if (PL_unify_functor(out, FUNCTOR_bitvector1))
{ term_t a = PL_new_term_ref();

PL_get_arg(1, out, a);

return PL_unify_string_nchars(a, len, (const char *)data);
}

PL_fail;
}

static foreign_t

SWI-Prolog 6.0 Reference Manual

294 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

pl_bitvector_union(term_t t1, term_t t2, term_t u)
{ unsigned char *s1, *s2;
int l1, l2;

if (get_bitvector(t1, &l1, &s1) &&
get_bitvector(t2, &l2, &s2))

{ int l = max(l1, l2);
unsigned char *s3 = alloca(l);

if (s3)
{ int n;
int ml = min(l1, l2);

for(n=0; n<ml; n++)
s3[n] = s1[n] | s2[n];

for(; n < l1; n++)
s3[n] = s1[n];

for(; n < l2; n++)
s3[n] = s2[n];

return unify_bitvector(u, l, s3);
}

return PL_warning("Not enough memory");
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0);

FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1);
}

The DDE interface (see section 4.40) represents another common usage of the foreign interface:
providing communication to new operating system features. The DDE interface requires knowledge
about active DDE server and client channels. These channels contains various foreign data-types.
Such an interface is normally achieved using an open/close protocol that creates and destroys a handle.
The handle is a reference to a foreign data-structure containing the relevant information.

There are a couple of possibilities for representing the handle. The choice depends on respon-
sibilities and debugging facilities. The simplest approach is to using PL unify pointer() and
PL get pointer(). This approach is fast and easy, but has the drawbacks of (untyped) point-

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 295

ers: there is no reliable way to detect the validity of the pointer, not to verify it is pointing to a
structure of the desired type. The pointer may be wrapped into a compound term with arity 1 (i.e.,
dde channel(〈Pointer〉)), making the type-problem less serious.

Alternatively (used in the DDE interface), the interface code can maintain a (preferably variable
length) array of pointers and return the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good suggestion.

9.4.21 Embedding SWI-Prolog in other applications

With embedded Prolog we refer to the situation where the ‘main’ program is not the Prolog applica-
tion. Prolog is sometimes embedded in C, C++, Java or other languages to provide logic based services
in a larger application. Embedding loads the Prolog engine as a library to the external language. Pro-
log itself only provides for embedding in the C-language (compatible with C++). Embedding in Java
is achieved using JPL using a C-glue between the Java and Prolog C-interfaces.

The most simple embedded program is below. The interface function PL initialise()
must be called before any of the other SWI-Prolog foreign language functions described in
this chapter, except for PL initialise hook(), PL new atom(), PL new functor() and
PL register foreign(). PL initialise() interprets all the command-line arguments, ex-
cept for the -t toplevel flag that is interpreted by PL toplevel().

int
main(int argc, char **argv)
{
#ifdef READLINE /* Remove if you don’t want readline */
PL_initialise_hook(install_readline);

#endif

if (!PL_initialise(argc, argv))
PL_halt(1);

PL_halt(PL_toplevel() ? 0 : 1);
}

int PL initialise(int argc, char **argv)
Initialises the SWI-Prolog heap and stacks, restores the Prolog state, loads the system and
personal initialisation files, runs the at initialization/1 hooks and finally runs the
-g goal hook.

Special consideration is required for argv[0]. On Unix, this argument passes the part of the
command-line that is used to locate the executable. Prolog uses this to find the file holding the
running executable. The Windows version uses this to find a module of the running executable.
If the specified module cannot be found, it tries the module libpl.dll, containing the Prolog
runtime kernel. In all these cases, the resulting file is used for two purposes

• See whether a Prolog saved-state is appended to the file. If this is the case, this state will
be loaded instead of the default boot.prc file from the SWI-Prolog home directory. See
also qsave program/[1,2] and section 9.5.

SWI-Prolog 6.0 Reference Manual

296 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

• Find the Prolog home directory. This process is described in detail in section 9.6.

PL initialise() returns 1 if all initialisation succeeded and 0 otherwise.10

In most cases, argc and argv will be passed from the main program. It is allowed to create
your own argument vector, provided argv[0] is constructed according to the rules above. For
example:

int
main(int argc, char **argv)
{ char *av[10];

int ac = 0;

av[ac++] = argv[0];
av[ac++] = "-x";
av[ac++] = "mystate";
av[ac] = NULL;

if (!PL_initialise(ac, av))
PL_halt(1);

...
}

Please note that the passed argument vector may be referred from Prolog at any time and should
therefore be valid as long as the Prolog engine is used.

A good setup in Windows is to add SWI-Prolog’s bin directory to your PATH and either pass a
module holding a saved-state, or "libpl.dll" as argv[0]. If the Prolog state is attached
to a DLL (see the -dll option of swipl-ld, pass the name of this DLL.

int PL is initialised(int *argc, char ***argv)
Test whether the Prolog engine is already initialised. Returns FALSE if Prolog is not initialised
and TRUE otherwise. If the engine is initialised and argc is not NULL, the argument count used
with PL initialise() is stored in argc. Same for the argument vector argv.

void PL install readline()
Installs the GNU-readline line-editor. Embedded applications that do not use the Prolog top-
level should normally delete this line, shrinking the Prolog kernel significantly. Note that the
Windows version does not use GNU readline.

int PL toplevel()
Runs the goal of the -t toplevel switch (default prolog/0) and returns 1 if successful,
0 otherwise.

int PL cleanup(int status)
This function performs the reverse of PL initialise(). It runs the PL on halt() and
at halt/1 handlers, closes all streams (except for the ‘standard I/O’ streams which are

10BUG: Various fatal errors may cause PL initialise to call PL halt(1), preventing it from returning at all.

SWI-Prolog 6.0 Reference Manual

9.4. THE FOREIGN INCLUDE FILE 297

flushed only), deallocates all memory and restores all signal handlers. The status argument is
passed to the various termination hooks and indicates the exit-status.

The function returns TRUE if successful and FALSE otherwise. Currently, FALSE is returned
when an attempt is made to call PL cleanup() recursively or if PL cleanup() is not
called from the main-thread.

In theory, this function allows deleting and restarting the Prolog system in the same process.
In practice, SWI-Prolog’s cleanup process is far from complete and trying to revive the system
using PL initialise() will leak memory in the best case. It can also crash the appliction.

In this state, there is little practical use for this function. If you want to use Prolog temporary
consider running it in a separate process. If you want to be able to reset Prolog your options are
(again) a separate process, modules or threads.

void PL cleanup fork()
Close file descriptors associated to Prolog streams except for 0,1 and 2. Stop intervaltimer that
may be running on behalf of profile/1. The call is intended to be used in combination with
fork():

if ((pid=fork()) == 0)
{ PL_cleanup_fork();
<some exec variation>

}

The call behaves the same on Windows, though there is probably no meaningful application.

int PL halt(int status)
Cleanup the Prolog environment using PL cleanup() and calls exit() with the status ar-
gument. As PL cleanup() can only be called from the main thread, this function returns
FALSE when called from another thread as the main one.11

Threading, Signals and embedded Prolog

This section applies to Unix-based environments that have signals or multi-threading. The Windows
version is compiled for multi-threading and Windows lacks proper signals.

We can distinguish two classes of embedded executables. There are small C/C++-programs that
act as an interfacing layer around Prolog. Most of these programs can be replaced using the normal
Prolog executable extended with a dynamically loaded foreign extension and in most cases this is
the preferred route. In other cases, Prolog is embedded in a complex application that—like Prolog—
wants to control the process environment. A good example is Java. Embedding Prolog is generally
the only way to get these environments together in one process image. Java applications however are
by nature multi-threaded and appear to do signal-handling (software interrupts).

On Unix systems, SWI-Prolog uses three signals:

SIGUSR1 is used to sychronise atom- and clause garbage collection. The handler is installed at the
start of GC and reverted to the old setting after completing.

11BUG: Eventually it may become possible to call PL halt() from any thread.

SWI-Prolog 6.0 Reference Manual

298 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

SIGUSR2 has an empty signal handler. This signal is sent to a thread after sending a thread-signal
(see thread signal/2). It causes blocking system calls to return with EINTR, which gives
them to opportunity to react on thread-signals.

SIGINT is used by the toplevel to activate the tracer (typically bound to control-C). The first control-
C posts a request for starting the tracer in a safe synchronous fashion. If control-C is hit again
before the safe route is executed, it prompts the user whether or not a forced interrupt is desired.

The --nosignals option can be used to inhibit processing of SIGINT. The other signals are
vital for the functioning of SWI-Prolog. If they conflict with other applications, signal handling of
either component must be modified. The SWI-Prolog signals are defined in pl-thread.h of the
source-distribution.

9.5 Linking embedded applications using swipl-ld

The utility program swipl-ld (Win32: swipl-ld.exe) may be used to link a combination of C-files
and Prolog files into a stand-alone executable. swipl-ld automates most of what is described in the
previous sections.

In the normal usage, a copy is made of the default embedding template \ldots/pl/include/
stub.c. The main() routine is modified to suit your application. PL initialise() must be
passed the program-name (argv[0]) (Win32: the executing program can be obtained using GetMod-
uleFileName()). The other elements of the command-line may be modified. Next, swipl-ld is
typically invoked as:

swipl-ld -o output stubfile.c [other-c-or-o-files] [plfiles]

swipl-ld will first split the options into various groups for both the C-compiler and the Prolog
compiler. Next, it will add various default options to the C-compiler and call it to create an executable
holding the user’s C-code and the Prolog kernel. Then, it will call the SWI-Prolog compiler to create
a saved state from the provided Prolog files and finally, it will attach this saved state to the created
emulator to create the requested executable.

Below, it is described how the options are split and which additional options are passed.

-help
Print brief synopsis.

-pl prolog
Select the prolog to use. This prolog is used for two purposes: get the home-directory as well
as the compiler/linker options and create a saved state of the Prolog code.

-ld linker
Linker used to link the raw executable. Default is to use the C-compiler (Win32: link.exe).

-cc C-compiler
Compiler for .c files found on the command-line. Default is the compiler used to build SWI-
Prolog accessible through the Prolog flag c cc (Win32: cl.exe)..

SWI-Prolog 6.0 Reference Manual

9.5. LINKING EMBEDDED APPLICATIONS USING SWIPL-LD 299

-c++ C++-compiler
Compiler for C++ sources (extensions .cpp, .cxx, .cc or .C) files found on the command-
line. Default is c++ or g++ if the C-compiler is gcc) (Win32: cl.exe).

-nostate
Just relink the kernel, do not add any Prolog code to the new kernel. This is used to create a new
kernel holding additional foreign predicates on machines that do not support the shared-library
(DLL) interface, or if building the state cannot be handled by the default procedure used by
swipl-ld. In the latter case the state is created separately and appended to the kernel using
cat 〈kernel〉 〈state〉 > 〈out〉 (Win32: copy /b 〈kernel〉+〈state〉 〈out〉)

-shared
Link C, C++ or object files into a shared object (DLL) that can be loaded by the
load foreign library/1 predicate. If used with -c it sets the proper options to
compile a C or C++ file ready for linking into a shared object

-dll
Windows only. Embed SWI-Prolog into a DLL rather than an executable.

-c
Compile C or C++ source-files into object files. This turns swipl-ld into a replacement for
the C or C++ compiler where proper options such as the location of the include directory are
passed automatically to the compiler.

-E
Invoke the C preprocessor. Used to make swipl-ld a replacement for the C or C++ compiler.

-pl-options ,. . .
Additional options passed to Prolog when creating the saved state. The first character immedi-
ately following pl-options is used as separator and translated to spaces when the argument
is built. Example: -pl-options,-F,xpce passed -F xpce as additional flags to Prolog.

-ld-options ,. . .
Passes options to the linker, similar to -pl-options.

-cc-options ,. . .
Passes options to the C/C++ compiler, similar to -pl-options.

-v
Select verbose operation, showing the various programs and their options.

-o outfile
Reserved to specify the final output file.

-llibrary
Specifies a library for the C-compiler. By default, -lswipl (Win32: libpl.lib) and the libraries
needed by the Prolog kernel are given.

-Llibrary-directory
Specifies a library directory for the C-compiler. By default the directory containing the Prolog
C-library for the current architecture is passed.

SWI-Prolog 6.0 Reference Manual

300 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

-g | -Iinclude-directory | -Ddefinition
These options are passed to the C-compiler. By default, the include directory containing
SWI-Prolog.h is passed. swipl-ld adds two additional * -Ddef flags:

-D SWI PROLOG
Indicates the code is to be connected to SWI-Prolog.

-D SWI EMBEDDED
Indicates the creation of an embedded program.

*.o | *.c | *.C | *.cxx | *.cpp
Passed as input files to the C-compiler

.pl |.qlf
Passed as input files to the Prolog compiler to create the saved-state.

*
I.e. all other options. These are passed as linker options to the C-compiler.

9.5.1 A simple example

The following is a very simple example going through all the steps outlined above. It provides an
arithmetic expression evaluator. We will call the application calc and define it in the files calc.c
and calc.pl. The Prolog file is simple:

calc(Atom) :-
term_to_atom(Expr, Atom),
A is Expr,
write(A),
nl.

The C-part of the application parses the command-line options, initialises the Prolog engine, locates
the calc/1 predicate and calls it. The coder is in figure 9.4.
The application is now created using the following command-line:

% swipl-ld -o calc calc.c calc.pl

The following indicates the usage of the application:

% calc pi/2
1.5708

9.6 The Prolog ‘home’ directory

Executables embedding SWI-Prolog should be able to find the ‘home’ directory of the devel-
opment environment unless a self-contained saved-state has been added to the executable (see
qsave program/[1,2] and section 9.5).

If Prolog starts up, it will try to locate the development environment. To do so, it will try the
following steps until one succeeds.

SWI-Prolog 6.0 Reference Manual

9.6. THE PROLOG ‘HOME’ DIRECTORY 301

#include <stdio.h>
#include <SWI-Prolog.h>

#define MAXLINE 1024

int
main(int argc, char **argv)
{ char expression[MAXLINE];
char *e = expression;
char *program = argv[0];
char *plav[2];
int n;

/* combine all the arguments in a single string */

for(n=1; n<argc; n++)
{ if (n != 1)

*e++ = ’ ’;
strcpy(e, argv[n]);
e += strlen(e);

}

/* make the argument vector for Prolog */

plav[0] = program;
plav[1] = NULL;

/* initialise Prolog */

if (!PL_initialise(1, plav))
PL_halt(1);

/* Lookup calc/1 and make the arguments and call */

{ predicate_t pred = PL_predicate("calc", 1, "user");
term_t h0 = PL_new_term_refs(1);
int rval;

PL_put_atom_chars(h0, expression);
rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0);

PL_halt(rval ? 0 : 1);
}

return 0;
}

Figure 9.4: C-source for the calc application SWI-Prolog 6.0 Reference Manual

302 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

1. If the --home=DIR is provided, use this.

2. If the environment variable SWI HOME DIR is defined and points to an existing directory, use
this.

3. If the environment variable SWIPL is defined and points to an existing directory, use this.

4. Locate the primary executable or (Windows only) a component (module) thereof and check
whether the parent directory of the directory holding this file contains the file swipl. If so,
this file contains the (relative) path to the home directory. If this directory exists, use this. This
is the normal mechanism used by the binary distribution.

5. If the precompiled path exists, use it. This is only useful for a source installation.

If all fails and there is no state attached to the executable or provided Windows module (see
PL initialise()), SWI-Prolog gives up. If a state is attached, the current working directory is
used.

The file search path/2 alias swi is set to point to the home directory located.

9.7 Example of Using the Foreign Interface

Below is an example showing all stages of the declaration of a foreign predicate that transforms atoms
possibly holding uppercase letters into an atom only holding lower case letters. Figure 9.5 shows the
C-source file, figure 9.6 illustrates compiling and loading of foreign code.

SWI-Prolog 6.0 Reference Manual

9.7. EXAMPLE OF USING THE FOREIGN INTERFACE 303

/* Include file depends on local installation */
#include <SWI-Prolog.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

foreign_t
pl_lowercase(term_t u, term_t l)
{ char *copy;
char *s, *q;
int rval;

if (!PL_get_atom_chars(u, &s))
return PL_warning("lowercase/2: instantiation fault");

copy = malloc(strlen(s)+1);

for(q=copy; *s; q++, s++)

*q = (isupper(*s) ? tolower(*s) : *s);

*q = ’\0’;

rval = PL_unify_atom_chars(l, copy);
free(copy);

return rval;
}

install_t
install()
{ PL_register_foreign("lowercase", 2, pl_lowercase, 0);
}

Figure 9.5: Lowercase source file

SWI-Prolog 6.0 Reference Manual

304 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

% gcc -I/usr/local/lib/pl-\plversion/include -fpic -c lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% swipl
Welcome to SWI-Prolog (Version \plversion)
...

1 ?- load_foreign_library(lowercase).

Yes
2 ?- lowercase(’Hello World!’, L).

L = ’hello world!’

Yes

Figure 9.6: Compiling the C-source and loading the object file

SWI-Prolog 6.0 Reference Manual

9.8. NOTES ON USING FOREIGN CODE 305

9.8 Notes on Using Foreign Code

9.8.1 Memory Allocation

SWI-Prolog’s heap memory allocation is based on the malloc(3) library routines. SWI-Prolog
provides the functions below as a wrapper around malloc(). Allocation errors in these functions trap
SWI-Prolog’s fatal-error handler, in which case PL malloc() or PL realloc() do not return.

Portable applications must use PL free() to release strings returned by PL get chars()
using the BUF MALLOC argument. Portable applications may use both PL malloc() and friends or
malloc() and friends but should not mix these two sets of functions on the same memory.

void * PL malloc(size t bytes)
Allocate bytes of memory. On failure SWI-Prolog’s fatal error handler is called and
PL malloc() does not return. Memory allocated using these functions must use
PL realloc() and PL free() rather than realloc() and free().

void * PL realloc(void *mem, size t size)
Change the size of the allocated chunk, possibly moving it. The mem argument must be ob-
tained from a previous PL malloc() or PL realloc() call.

void PL free(void *mem)
Release memory. The mem argument must be obtained from a previous PL malloc() or
PL realloc() call.

Boehm-GC support

To accomodate for future use of the Boehm garbage collector12 for heap memory allocation, the
interface provides the functions described below. Foreign extensions that wish to use the Boehm-GC
facilities can use these wrappers. Please be noted that if SWI-Prolog is not compiled to use Boehm-GC
(default), the user is responsible of calling PL free() to reclaim memory.

void* PL malloc atomic(size t bytes)
void* PL malloc uncollectable(size t bytes)
void* PL malloc atomic uncollectable(size t bytes)

If Boehm-GC is not used, these are all the same as PL malloc(). With Boehm-GC, these
map to the corresponding Boehm-GC functions. Atomic means that the content should not be
scanned for pointers and uncollectable means that the object should never be garbage collected.

void* PL malloc stubborn(size t bytes)
void PL end stubborn change(void *memory)

These functions allow creating objects, promising GC that the content will not change after
PL end stubborn change().

9.8.2 Compatibility between Prolog versions

Great care is taken to ensure binary compatibility of foreign extensions between different Prolog
versions. Only much less frequently used stream interface has been responsible for binary incompati-
bilities.

12http://www.hpl.hp.com/personal/Hans Boehm/gc/

SWI-Prolog 6.0 Reference Manual

306 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

Source-code that relies on new features of the foreign interface can use the macro PLVERSION
to find the version of SWI-Prolog.h and PL query() using the option PL QUERY VERSION to
find the version of the attached Prolog system. Both follow the same numbering schema explained
with PL query().

9.8.3 Debugging and profiling foreign code (valgrind)

This section is only relevant for Unix users on platforms supported by valgrind. Valgrind is an excel-
lent binary intrumentation platform. Unlike many other instrumentation platforms, valgrind can deal
with code loaded through dlopen().

The callgrind tool can be used to profile foreign code loaded under SWI-Prolog. Compile
the foreign library adding -g option to gcc or swipl-ld. By setting the environment variable
VALGRIND to yes, SWI-Prolog will not release loaded shared objects using dlclose(). This trick
is required to get source information on the loaded library. Without, valgrind claims that the shared
object has no debugging information.13 Here is the complete sequence using bash as login shell:

% VALGRIND=yes valgrind --tool=callgrind pl <args>
<prolog interaction>
% kcachegrind callgrind.out.<pid>

9.8.4 Name Conflicts in C modules

In the current version of the system all public C functions of SWI-Prolog are in the symbol table.
This can lead to name clashes with foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now I can only suggest to give
your function another name. You can do this using the C preprocessor. If—for example—your foreign
package uses a function warning(), which happens to exist in SWI-Prolog as well, the following macro
should fix the problem.

#define warning warning_

Note that shared libraries do not have this problem as the shared library loader will only look for
symbols in the main executable for symbols that are not defined in the library itself.

9.8.5 Compatibility of the Foreign Interface

The term-reference mechanism was first used by Quintus Prolog version 3. SICStus Prolog version 3
is strongly based on the Quintus interface. The described SWI-Prolog interface is similar to using the
Quintus or SICStus interfaces, defining all foreign-predicate arguments of type +term. SWI-Prolog
explicitly uses type functor t, while Quintus and SICStus uses 〈name〉 and 〈arity〉. As the names
of the functions differ from Prolog to Prolog, a simple macro layer dealing with the names can also
deal with this detail. For example:

#define QP_put_functor(t, n, a) PL_put_functor(t, PL_new_functor(n, a))

13Tested using valgrind version 3.2.3 on x64.

SWI-Prolog 6.0 Reference Manual

9.8. NOTES ON USING FOREIGN CODE 307

The PL unify *() functions are lacking from the Quintus and SICStus interface. They can easily
be emulated or the put/unify approach should be used to write compatible code.

The PL open foreign frame()/PL close foreign frame() combination is
lacking from both other Prologs. SICStus has PL new term refs(0), followed by
PL reset term refs() that allows for discarding term references.

The Prolog interface for the graphical user interface package XPCE shares about 90% of the code
using a simple macro layer to deal with different naming and calling conventions of the interfaces.

SWI-Prolog 6.0 Reference Manual

Generating Runtime
Applications 10
This chapter describes the features of SWI-Prolog for delivering applications that can run without the
development version of the system installed.

A SWI-Prolog runtime executable is a file consisting of two parts. The first part is the emulator,
which is machine dependent. The second part is the resource archive, which contains the compiled
program in a machine-independent format, startup options and possibly user-defined resources, see
resource/3 and open resource/3.

These two parts can be connected in various different ways. The most common way for distributed
runtime applications is to concatenate the two parts. This can be achieved using external commands
(Unix: cat, Windows: copy), or using the stand alone option to qsave program/2. The
second option is to attach a startup script in front of the resource that starts the emulator with the
proper options. This is the default under Unix. Finally, an emulator can be told to use a specified
resource file using the -x command-line switch.

qsave program(+File, +Options)
Saves the current state of the program to the file File. The result is a resource archive containing
a saved-state that expresses all Prolog data from the running program and all user-defined
resources. Depending on the stand alone option, the resource is headed by the emulator, a
Unix shell-script or nothing. Options is a list of additional options:

local(+KBytes)
Limit for the local stack. See section 2.4.1.

global(+KBytes)
Limit for the global stack. See section 2.4.1.

trail(+KBytes)
Limit for the trail stack. See section 2.4.1.

goal(:Callable)
Initialization goal for the new executable (see -g).

toplevel(:Callable)
Toplevel goal for the new executable (see -t).

init file(+Atom)
Default initialization file for the new executable. See -f.

class(+Class)
If runtime, only read resources from the state (default). If kernel, lock all predicates
as system predicates If development, save the predicates in their current state and
keep reading resources from their source (if present). See also resource/3.

autoload(+Boolean)
If true (default), run autoload/0 first.

SWI-Prolog 6.0 Reference Manual

309

map(+File)
Deump a human-readable trace of what has been saved in File.

op(+Action)
One of save (default) to save the current operator table or standard to use the initial
table of the emulator.

stand alone(+Boolean)
If true, the emulator is the first part of the state. If the emulator is started it will test
whether a boot-file (state) is attached to the emulator itself and load this state. Provided
the application has all libraries loaded, the resulting executable is completely independent
of the runtime environment or location where it was build. See also section 2.10.2.

emulator(+File)
File to use for the emulator. Default is the running Prolog image.

foreign(+Action)
If save, include shared objects (DLLs) into the saved-state. See
current foreign library/2. If the program strip is available, this is first used
to reduce the size of the shared object. If a state is started, use foreign library/1
first tries to locate the foreign resource in the executable. When found it copies the
content of the resource to a temporary file and loads it. If possible (Unix), the temporary
object is deleted immediately after opening.1

qsave program(+File)
Equivalent to qsave program(File, []).

autoload
Check the current Prolog program for predicates that are referred to, are undefined and have a
definition in the Prolog library. Load the appropriate libraries.

This predicate is used by qsave program/[1,2] to ensure the saved state does not depend
on availability of the libraries. The predicate autoload/0 examines all clauses of the loaded
program (obtained with clause/2) and analyses the body for referenced goals. Such an
analysis cannot be complete in Prolog, which allows the create arbitrary terms at runtime and
use them as a goal. The current analysis is limited to the following:

• Direct goals appearing in the body

• Arguments of declared meta-predicates that are marked with an integer (0..9). See
meta predicate/1.

The analysis of meta-predicate arguments is limited to cases where the argument appears liter-
ally in the clause or is assigned using =/2 before the meta-call. I.e., the following fragment is
processed correctly:

...,
Goal = prove(Theory),
forall(current_theory(Theory),

Goal)),

1This option is experimental and currently disabled by default. It will become the default if it proves robust.

SWI-Prolog 6.0 Reference Manual

310 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

But, the calls to prove simple/1 and prove complex/1 in the example below are not
discovered by the analysis and therefore the modules that define these predicates must be loaded
explicitly using use module/1,2.

...,
member(Goal, [prove_simple(Theory),

prove_complex(Theory)
]),

forall(current_theory(Theory),
Goal)),

It is good practice to use gxref/0 to make sure that the program has sufficient declarations
such that the analaysis tools can verify that all required predicates can be resolved and that all
code is called. See meta predicate/1, dynamic/1, public/1 and prolog:called by/2.

volatile +Name/Arity, . . .
Declare that the clauses of specified predicates should not be saved to the program. The volatile
declaration is normally used to avoid that the clauses of dynamic predicates that represent data
for the current session is saved in the state file.

10.1 Limitations of qsave program

There are three areas that require special attention when using qsave program/[1,2].

• If the program is an embedded Prolog application or uses the foreign language interface, care
has to be taken to restore the appropriate foreign context. See section 10.2 for details.

• If the program uses directives (:- goal. lines) that perform other actions then setting predi-
cate attributes (dynamic, volatile, etc.) or loading files (consult, etc.), the directive may need to
be prefixed with initialization/1.

• Database references as returned by clause/3, recorded/3, etc. are not preserved and may
thus not be part of the database when saved.

10.2 Runtimes and Foreign Code

Some applications may need to use the foreign language interface. Object code is by definition
machine-dependent and thus cannot be part of the saved program file.

To complicate the matter even further there are various ways of loading foreign code:

• Using the library(shlib) predicates
This is the preferred way of dealing with foreign code. It loads quickly and ensures an accept-
able level of independence between the versions of the emulator and the foreign code loaded. It
works on Unix machines supporting shared libraries and library functions to load them. Most
modern Unixes, as well as Win32 (Windows 95/NT) satisfy this constraint.

SWI-Prolog 6.0 Reference Manual

10.3. USING PROGRAM RESOURCES 311

• Static linking
This mechanism works on all machines, but generally requires the same C-compiler and linker
to be used for the external code as is used to build SWI-Prolog itself.

To make a runtime executable that can run on multiple platforms one must make runtime checks
to find the correct way of linking. Suppose we have a source-file myextension.c defining the
installation function install().

If this file is compiled into a shared library, load foreign library/1 will load this library
and call the installation function to initialise the foreign code. If it is loaded as a static extension,
define install() as the predicate install/0:

static foreign_t
pl_install()
{ install();

PL_succeed;
}

PL_extension PL_extensions [] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/

{ "install", 0, pl_install, 0 },
{ NULL, 0, NULL, 0 } /* terminating line */

};

Now, use the following Prolog code to load the foreign library:

load_foreign_extensions :-
current_predicate(install, install), !, % static loaded
install.

load_foreign_extensions :- % shared library
load_foreign_library(foreign(myextension)).

:- initialization load_foreign_extensions.

The path alias foreign is defined by file search path/2. By default it searches the di-
rectories 〈home〉/lib/〈arch〉 and 〈home〉/lib. The application can specify additional rules for
file search path/2.

10.3 Using program resources

A resource is very similar to a file. Resources however can be represented in two different formats:
on files, as well as part of the resource archive of a saved-state (see qsave program/2).

A resource has a name and a class. The source data of the resource is a file. Resources
are declared by declaring the predicate resource/3. They are accessed using the predicate
open resource/3.

SWI-Prolog 6.0 Reference Manual

312 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

Before going into details, let us start with an example. Short texts can easily be expressed in Prolog
source code, but long texts are cumbersome. Assume our application defines a command ‘help’ that
prints a helptext to the screen. We put the content of the helptext into a file called help.txt. The
following code implements our help command such that help.txt is incorporated into the runtime
executable.

resource(help, text, ’help.txt’).

help :-
open_resource(help, text, In),
call_cleanup(copy_stream_data(In, user_output),

close(In)).

The predicate help/0 opens the resource as a Prolog stream. If we are executing this from the devel-
opment environment, this will actually return a stream to the file help.txt itself. When executed
from the saved-state, the stream will actually be a stream opened on the program resource file, taking
care of the offset and length of the resource.

10.3.1 Predicates Definitions

resource(+Name, +Class, +FileSpec)
This predicate is defined as a dynamic predicate in the module user. Clauses for it may be
defined in any module, including the user module. Name is the name of the resource (an atom).
A resource name may contain any character, except for $ and :, which are reserved for internal
usage by the resource library. Class describes the what kind of object is stored in the resource.
In the current implementation, it is just an atom. FileSpec is a file specification that may exploit
file search path/2 (see absolute file name/2).

Normally, resources are defined as unit clauses (facts), but the definition of this predicate also
allows for rules. For proper generation of the saved state, it must be possible to enumerate the
available resources by calling this predicate with all its arguments unbound.

Dynamic rules are useful to turn all files in a certain directory into resources, without specifying
a resources for each file. For example, assume the file search path/2 icons refers to
the resource directory containing icon-files. The following definition makes all these images
available as resources:

resource(Name, image, icons(XpmName)) :-
atom(Name), !,
file_name_extension(Name, xpm, XpmName).

resource(Name, image, XpmFile) :-
var(Name),
absolute_file_name(icons(.), [type(directory)], Dir)
concat(Dir, ’/*.xpm’, Pattern),
expand_file_name(Pattern, XpmFiles),
member(XpmFile, XpmFiles).

SWI-Prolog 6.0 Reference Manual

10.4. FINDING APPLICATION FILES 313

open resource(+Name, ?Class, -Stream)
Opens the resource specified by Name and Class. If the latter is a variable, it will be unified to
the class of the first resource found that has the specified Name. If successful, Stream becomes
a handle to a binary input stream, providing access to the content of the resource.

The predicate open resource/3 first checks resource/3. When successful it will open
the returned resource source-file. Otherwise it will look in the programs resource database.
When creating a saved-state, the system normally saves the resource contents into the resource
archive, but does not save the resource clauses.

This way, the development environment uses the files (and modifications to the resource/3
declarations and/or files containing resource info thus immediately affect the running environ-
ment, while the runtime system quickly accesses the system resources.

10.3.2 The swipl-rc program

The utility program swipl-rc can be used to examine and manipulate the contents of a SWI-Prolog
resource file. The options are inspired by the Unix ar program. The basic command is:

% swipl-rc option resource-file member ...

The options are described below.

l
List contents of the archive.

x
Extract named (or all) members of the archive into the current directory.

a
Add files to the archive. If the archive already contains a member with the same name, the
contents is replaced. Anywhere in the sequence of members, the options --class=class and
--encoding=encoding may appear. They affect the class and encoding of subsequent files.
The initial class is data and encoding none.

d
Delete named members from the archive.

This command is also described in the pl(1) Unix manual page.

10.4 Finding Application files

If your application uses files that are not part of the saved program such as database files, configuration
files, etc., the runtime version has to be able to locate these files. The file search path/2
mechanism in combination with the -palias command-line argument is the preferred way to locate
runtime files. The first step is to define an alias for the top-level directory of your application. We will
call this directory gnatdir in our examples.

A good place for storing data associated with SWI-Prolog runtime systems is below the emulator’s
home-directory. swi is a predefined alias for this directory. The following is a useful default definition
for the search path.

SWI-Prolog 6.0 Reference Manual

314 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

user:file_search_path(gnatdir, swi(gnat)).

The application should locate all files using absolute file name. Suppose gnatdir contains a file
config.pl to define local configuration. Then use the code below to load this file:

configure_gnat :-
(absolute_file_name(gnatdir(’config.pl’), ConfigFile)

-> consult(ConfigFile)
; format(user_error, ’gnat: Cannot locate config.pl˜n’),
halt(1)
).

10.4.1 Passing a path to the application

Suppose the system administrator has installed the SWI-Prolog runtime environment in /usr/
local/lib/rt-pl-3.2.0. A user wants to install gnat, but gnat will look for its configuration
in /usr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.

The user decides to install the gnat runtime files in /users/bob/lib/gnat. For one-time
usage, the user may decide to start gnat using the command:

% gnat -p gnatdir=/users/bob/lib/gnat

SWI-Prolog 6.0 Reference Manual

The SWI-Prolog library A
This chapter documents the SWI-Prolog library. As SWI-Prolog provides auto-loading, there is little
difference between library predicates and built-in predicates. Part of the library is therefore docu-
mented in the rest of the manual. Library predicates differ from built-in predicates in the following
ways.

• User-definition of a built-in leads to a permission-error, while using the name of a library pred-
icate is allowed.

• If autoloading is disabled explicitely or because trapping unknown predicates is disabled (see
unknown/2 and current prolog flag/2), library predicates must be loaded explicitely.

• Using libraries reduce the footprint of applications that don’t need them.

The documentation of the library is just started. Material from the standard packages
should be moved here, some material from other parts of the manual should be moved
too and various libraries are not documented at all.

A.1 library(aggregate): Aggregation operators on backtrackable pred-
icates

Compatibility Quintus, SICStus 4. The forall/2 is a SWI-Prolog built-in and term variables/3
is a SWI-Prolog with a different definition.

To be done
- Analysing the aggregation template and compiling a predicate for the list aggregation can be done at
compile time.
- aggregate all/3 can be rewritten to run in constant space using non-backtrackable assignment
on a term.

This library provides aggregating operators over the solutions of a predicate. The operations
are a generalisation of the bagof/3, setof/3 and findall/3 built-in predicates. The defined
aggregation operations are counting, computing the sum, minimum, maximum, a bag of solutions and
a set of solutions. We first give a simple example, computing the country with the smallest area:

smallest_country(Name, Area) :-
aggregate(min(A, N), country(N, A), min(Area, Name)).

There are four aggregation predicates, distinguished on two properties.

SWI-Prolog 6.0 Reference Manual

316 APPENDIX A. THE SWI-PROLOG LIBRARY

aggregate vs. aggregate all The aggregate predicates use setof/3 (aggregate/4) or
bagof/3 (aggregate/3), dealing with existential qualified variables (VarˆGoal) and pro-
viding multiple solutions for the remaining free variables in Goal. The aggregate all/3
predicate uses findall/3, implicitly qualifying all free variables and providing exactly one
solution, while aggregate all/4 uses sort/2 over solutions and Distinguish (see below)
generated using findall/3.

The Distinguish argument The versions with 4 arguments provide a Distinguish argument that allow
for keeping duplicate bindings of a variable in the result. For example, if we wish to compute
the total population of all countries we do not want to lose results because two countries have
the same population. Therefore we use:

aggregate(sum(P), Name, country(Name, P), Total)

All aggregation predicates support the following operator below in Template. In addition, they
allow for an arbitrary named compound term where each of the arguments is a term from the list
below. I.e. the term r(min(X), max(X)) computes both the minimum and maximum binding for X.

count
Count number of solutions. Same as sum(1).

sum(Expr)
Sum of Expr for all solutions.

min(Expr)
Minimum of Expr for all solutions.

min(Expr, Witness)
A term min(Min, Witness), where Min is the minimal version of Expr over all Solution and
Witness is any other template applied to Solution that produced Min. If multiple solutions
provide the same minimum, Witness corresponds to the first solution.

max(Expr)
Maximum of Expr for all solutions.

max(Expr, Witness)
As min(Expr, Witness), but producing the maximum result.

set(X)
An ordered set with all solutions for X.

bag(X)
A list of all solutions for X.

Acknowledgements

The development of this library was sponsored by SecuritEase,
http://www.securitease.com

SWI-Prolog 6.0 Reference Manual

A.1. LIBRARY(AGGREGATE): AGGREGATION OPERATORS ON BACKTRACKABLE
PREDICATES 317

aggregate(+Template, :Goal, -Result) [nondet]

Aggregate bindings in Goal according to Template. The aggregate/3 version performs
bagof/3 on Goal.

aggregate(+Template, +Discriminator, :Goal, -Result) [nondet]

Aggregate bindings in Goal according to Template. The aggregate/3 version performs
setof/3 on Goal.

aggregate all(+Template, :Goal, -Result) [semidet]

Aggregate bindings in Goal according to Template. The aggregate all/3 version performs
findall/3 on Goal.

aggregate all(+Template, +Discriminator, :Goal, -Result) [semidet]

Aggregate bindings in Goal according to Template. The aggregate all/3 version performs
findall/3 followed by sort/2 on Goal.

foreach(:Generator, :Goal)
True if the conjunction of instances of Goal using the bindings from Generator is true. Unlike
forall/2, which runs a failure-driven loop that proves Goal for each solution of Generator,
foreach creates a conjunction. Each member of the conjunction is a copy of Goal, where the
variables it shares with Generator are filled with the values from the corresponding solution.

The implementation executes forall/2 if Goal does not contain any variables that are not
shared with Generator.

Here is an example:

?- foreach(between(1,4,X), dif(X,Y)), Y = 5.
Y = 5
?- foreach(between(1,4,X), dif(X,Y)), Y = 3.
No

bug Goal is copied repeatetly, which may cause problems if attributed variables are involved.

free variables(:Generator, +Template, +VarList0, -VarList) [det]

In order to handle variables properly, we have to find all the universally quantified variables in
the Generator. All variables as yet unbound are universally quantified, unless

1. they occur in the template

2. they are bound by XˆP, setof, or bagof

free variables(Generator, Template, OldList, NewList) finds this set, using OldList as an accu-
mulator.

author
- Richard O’Keefe
- Jan Wielemaker (made some SWI-Prolog enhancements)

license Public domain (from DEC10 library).
To be done

- Distinguish between control-structures and data terms.
- Exploit our built-in term variables/2 at some places?

SWI-Prolog 6.0 Reference Manual

318 APPENDIX A. THE SWI-PROLOG LIBRARY

A.2 library(apply): Apply predicates on a list
See also

- apply_macros.pl provides compile-time expansion for part of this library.
- http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

To be done Add include/4, include/5, exclude/4, exclude/5

This module defines meta-predicates that apply a predicate on all members of a list.

include(:Goal, +List1, ?List2) [det]

Filter elements for which Goal succeed. True if List2 contains those elements Xi of List1 for
which call(Goal, Xi) succeeds.

See also Older versions of SWI-Prolog had sublist/3 with the same arguments and semantics.

exclude(:Goal, +List1, ?List2) [det]

Filter elements for which Goal fails. True if List2 contains those elements Xi of List1 for which
call(Goal, Xi) fails.

partition(:Pred, +List, ?Included, ?Excluded) [det]

Filter elements of List according to Pred. True if Included contains all elements for which
call(Pred, X) succeeds and Excluded contains the remaining elements.

partition(:Pred, +List, ?Less, ?Equal, ?Greater) [semidet]

Filter list according to Pred in three sets. For each element Xi of List, its destination is deter-
mined by call(Pred, Xi, Place), where Place must be unified to one of <, = or >. Pred must be
deterministic.

maplist(:Goal, ?List)
True if Goal can succesfully be applied on all elements of List. Arguments are reordered to
gain performance as well as to make the predicate deterministic under normal circumstances.

maplist(:Goal, ?List1, ?List2)
True if Goal can succesfully be applied to all succesive pairs of elements of List1 and List2.

maplist(:Goal, ?List1, ?List2, ?List3)
True if Goal can succesfully be applied to all succesive triples of elements of List1..List3.

maplist(:Goal, ?List1, ?List2, ?List3, List4)
True if Goal can succesfully be applied to all succesive quadruples of elements of List1..List4

A.3 assoc: Association lists

Authors: Richard A. O’Keefe, L.Damas, V.S.Costa and Markus Triska

Elements of an association list have 2 components: A (unique) key and a value. Keys should be
ground, values need not be. An association list can be used to fetch elements via their keys and to
enumerate its elements in ascending order of their keys. The assoc module uses AVL trees to im-
plement association lists. This makes inserting, changing and fetching a single element an O(log(N))
(where N denotes the number of elements in the list) expected time (and worst-case time) operation.

SWI-Prolog 6.0 Reference Manual

A.4. BROADCAST: BROADCAST AND RECEIVE EVENT NOTIFICATIONS 319

assoc to list(+Assoc, -List)
List is a list of Key-Value pairs corresponding to the associations in Assoc in ascending order
of keys.

assoc to keys(+Assoc, -List)
List is a list of Keys corresponding to the associations in Assoc in ascending order.

assoc to values(+Assoc, -List)
List is a list of Values corresponding to the associations in Assoc in ascending order of the keys
they are associated to.

empty assoc(-Assoc)
Assoc is unified with an empty association list.

gen assoc(?Key, +Assoc, ?Value)
Enumerate matching elements of Assoc in ascending order of their keys via backtracking.

get assoc(+Key, +Assoc, ?Value)
Value is the value associated with Key in the association list Assoc.

get assoc(+Key, +Assoc, ?Old, ?NewAssoc, ?New)
NewAssoc is an association list identical to Assoc except that the value associated with Key is
New instead of Old.

list to assoc(+List, ?Assoc)
Assoc is an association list corresponding to the Key-Value pairs in List.

map assoc(:Goal, +Assoc)
Goal(V) is true for every value V in Assoc.

map assoc(:Goal, +AssocIn, ?AssocOut)
AssocOut is AssocIn with Goal applied to all corresponding pairs of values.

max assoc(+Assoc, ?Key, ?Value)
Key and Value are key and value of the element with the largest key in Assoc.

min assoc(+Assoc, ?Key, ?Value)
Key and Value are key and value of the element with the smallest key in Assoc.

ord list to assoc(+List, ?Assoc)
Assoc is an association list correpsond to the Key-Value pairs in List, which must occur in
ascending order of their keys.

put assoc(+Key, +Assoc, +Value, ?NewAssoc)
NewAssoc is an association list identical to Assoc except that Key is associated with Value. This
can be used to insert and change associations.

SWI-Prolog 6.0 Reference Manual

320 APPENDIX A. THE SWI-PROLOG LIBRARY

Interface
component

Database
manipulation

Prolog database

Broadcast

‘Ether’
Interface

component

listen

broadcast

assert/retract

Querying

Changed-messages

Figure A.1: Information-flow using broadcasting service

A.4 broadcast: Broadcast and receive event notifications

The broadcast library was invented to realise GUI applications consisting of stand-alone compo-
nents that use the Prolog database for storing the application data. Figure A.1 illustrates the flow of
information using this design

The broadcasting service provides two services. Using the ‘shout’ service, an unknown number of
agents may listen to the message and act. The broadcaster is not (directly) aware of the implications.
Using the ‘request’ service, listening agents are asked for an answer one-by-one and the broadcaster
is allowed to reject answers using normal Prolog failure.

Shouting is often used to inform about changes made to a common database. Other messages can
be “save yourself” or “show this”.

Requesting is used to get information while the broadcaster is not aware who might be able to
answer the question. For example “who is showing X?”.

broadcast(+Term)
Broadcast Term. There are no limitations to Term, though being a global service, it is good
practice to use a descriptive and unique principal functor. All associated goals are started and
regardless of their success or failure, broadcast/1 always succeeds. Exceptions are passed.

broadcast request(+Term)
Unlike broadcast/1, this predicate stops if an associated goal succeeds. Backtracking
causes it to try other listeners. A broadcast request is used to fetch information without
knowing the identity of the agent providing it. C.f. “Is there someone who knows the age of
John?” could be asked using

...,
broadcast_request(age_of(’John’, Age)),

If there is an agent (listener) that registered an ‘age-of’ service and knows about the age of
‘John’ this question will be answered.

SWI-Prolog 6.0 Reference Manual

A.4. BROADCAST: BROADCAST AND RECEIVE EVENT NOTIFICATIONS 321

listen(+Template, :Goal)
Register a listen channel. Whenever a term unifying Template is broadcasted, call Goal. The
following example traps all broadcasted messages as a variable unifies to any message. It is
commonly used to debug usage of the library.

?- listen(Term, (writeln(Term),fail)).
?- broadcast(hello(world)).
hello(world)

Yes

listen(+Listener, +Template, :Goal)
Declare Listener as the owner of the channel. Unlike a channel opened using listen/2,
channels that have an owner can terminate the channel. This is commonly used if an object is
listening to broadcast messages. In the example below we define a ‘name-item’ displaying the
name of an identifier represented by the predicate name of/2.

:- pce_begin_class(name_item, text_item).

variable(id, any, get, "Id visualised").

initialise(NI, Id:any) :->
name_of(Id, Name),
send_super(NI, initialise, name, Name,

message(NI, set_name, @arg1)),
send(NI, slot, id, Id),
listen(NI, name_of(Id, Name),

send(NI, selection, Name)).

unlink(NI) :->
unlisten(NI),
send_super(NI, unlink).

set_name(NI, Name:name) :->
get(NI, id, Id),
retractall(name_of(Id, _)),
assert(name_of(Id, Name)),
broadcast(name_of(Id, Name)).

:- pce_end_class.

unlisten(+Listener)
Deregister all entries created with listen/3 whose Listener unify.

unlisten(+Listener, +Template)
Deregister all entries created with listen/3 whose Listener and Template unify.

SWI-Prolog 6.0 Reference Manual

322 APPENDIX A. THE SWI-PROLOG LIBRARY

unlisten(+Listener, +Template, :Goal)
Deregister all entries created with listen/3 whose Listener, Template and Goal unify.

listening(?Listener, ?Template, ?Goal)
Examine the current listeners. This predicate is useful for debugging purposes.

A.5 library(charsio): I/O on Lists of Character Codes
Compatibility The naming of this library is not in line with the ISO standard. We believe that the SWI-

Prolog native predicates form a more elegant alternative for this library.

This module emulates the Quintus/SICStus library charsio.pl for reading and writing from/to
lists of character codes. Most of these predicates are straight calls into similar SWI-Prolog primitives.
Some can even be replaced by ISO standard predicates.

format to chars(+Format, +Args, -Codes) [det]

Use format/2 to write to a list of character codes.

format to chars(+Format, +Args, -Codes) [det]

Use format/2 to write to a difference list of character codes.

write to chars(+Term, -Codes)
Codes is a list of character codes produced by write/1 on Term.

write to chars(+Term, -Codes, ?Tail)
Codes is a difference-list of character codes produced by write/1 on Term.

atom to chars(+Atom, -Codes) [det]

Convert Atom into a list of character codes.

deprecated Use ISO atom codes/2.

atom to chars(+Atom, -Codes, ?Tail) [det]

Convert Atom into a difference-list of character codes.

number to chars(+Number, -Codes) [det]

Convert Atom into a list of character codes.

deprecated Use ISO number codes/2.

number to chars(+Atom, -Codes, ?Tail) [det]

Convert Number into a difference-list of character codes.

read from chars(+Codes, -Term) [det]

Read Codes into Term.

Compatibility The SWI-Prolog version does not require Codes to end in a full-stop.

read term from chars(+Codes, -Term, +Options) [det]

Read Codes into Term. Options are processed by read term/3.

SWI-Prolog 6.0 Reference Manual

A.6. CHECK: ELEMENTARY COMPLETENESS CHECKS 323

Compatibility sicstus

open chars stream(+Codes, -Stream) [det]

Open Codes as an input stream.

bug Depends on autoloading library(memfile). As many applications do not need this predicate we
do not want to make the entire library dependent on autoloading.

with output to chars(:Goal, Codes) [det]

Run Goal with as once/1. Output written to current_output is collected in Codes.

with output to chars(:Goal, -Codes, ?Tail) [det]

Run Goal with as once/1. Output written to current_output is collected in Codes\Tail.

with output to chars(:Goal, -Stream, -Codes, ?Tail) [det]

As with output to chars/2, but Stream is unified with the temporary stream.

A.6 check: Elementary completeness checks

This library defines the predicate check/0 and a few friends that allow for a quick-and-dirty cross-
referencing.

check
Performs the three checking passes implemented by list undefined/0,
list autoload/0 and list redefined/0. Please check the definition of these
predicates for details.

The typical usage of this predicate is right after loading your program to get a quick overview
on the completeness and possible conflicts in your program.

list undefined
Scans the database for predicates that have no definition. A predicate is considered defined if
it has clauses, is declared using dynamic/1 or multifile/1. As a program is compiled
calls are translated to predicates. If the called predicate is not yet defined it is created as a
predicate without definition. The same happens with runtime generated calls. This predicate
lists all such undefined predicates that are referenced and not defined in the library. See also
list autoload/0. Below is an example from a real program and an illustration how to edit
the referencing predicate using edit/1.

?- list_undefined.
Warning: The predicates below are not defined. If these are defined
Warning: at runtime using assert/1, use :- dynamic Name/Arity.
Warning:
Warning: rdf_edit:rdfe_retract/4, which is referenced by
Warning: 1-st clause of rdf_edit:undo/4
Warning: rdf_edit:rdfe_retract/3, which is referenced by
Warning: 1-st clause of rdf_edit:delete_object/1
Warning: 1-st clause of rdf_edit:delete_subject/1
Warning: 1-st clause of rdf_edit:delete_predicate/1

SWI-Prolog 6.0 Reference Manual

324 APPENDIX A. THE SWI-PROLOG LIBRARY

?- edit(rdf_edit:undo/4).

list autoload
Lists all undefined (see list undefined/0) predicates that have a definition in the library
along with the file from which they will be autoloaded when accessed. See also autoload/0.

list redefined
Lists predicates that are defined in the global module user as well as in a normal module. I.e.
predicates for which the local definition overrules the global default definition.

A.7 library(clpfd): Constraint Logic Programming over Finite Do-
mains

author Markus Triska

Constraint programming is a declarative formalism that lets you describe conditions a solution
must satisfy. This library provides CLP(FD), Constraint Logic Programming over Finite Domains.
It can be used to model and solve various combinatorial problems such as planning, scheduling and
allocation tasks.

Most predicates of this library are finite domain constraints, which are relations over integers.
They generalise arithmetic evaluation of integer expressions in that propagation can proceed in all
directions. This library also provides enumeration predicates, which let you systematically search for
solutions on variables whose domains have become finite. A finite domain expression is one of:

an integer Given value
a variable Unknown value
-Expr Unary minus
Expr + Expr Addition
Expr * Expr Multiplication
Expr - Expr Subtraction
Expr ˆ Expr Exponentiation
min(Expr,Expr) Minimum of two expressions
max(Expr,Expr) Maximum of two expressions
Expr mod Expr Modulo induced by floored division
Expr rem Expr Modulo induced by truncated division
abs(Expr) Absolute value
Expr / Expr Truncated integer division

The most important finite domain constraints are:

Expr1 #>= Expr2 Expr1 is larger than or equal to Expr2
Expr1 #=< Expr2 Expr1 is smaller than or equal to Expr2
Expr1 #= Expr2 Expr1 equals Expr2
Expr1 #\= Expr2 Expr1 is not equal to Expr2
Expr1 #> Expr2 Expr1 is strictly larger than Expr2
Expr1 #< Expr2 Expr1 is strictly smaller than Expr2

SWI-Prolog 6.0 Reference Manual

A.7. LIBRARY(CLPFD): CONSTRAINT LOGIC PROGRAMMING OVER FINITE
DOMAINS 325

The constraints in/2, #=/2, #\=/2, #</2, #>/2, #=</2, and #>=/2 can be reified, which
means reflecting their truth values into Boolean values represented by the integers 0 and 1. Let P and
Q denote reifiable constraints or Boolean variables, then:

#\ Q True iff Q is false
P #\/ Q True iff either P or Q
P #/\ Q True iff both P and Q
P #<==> Q True iff P and Q are equivalent
P #==> Q True iff P implies Q
P #<== Q True iff Q implies P

The constraints of this table are reifiable as well. If a variable occurs at the place of a constraint
that is being reified, it is implicitly constrained to the Boolean values 0 and 1. Therefore, the following
queries all fail: ?- #\ 2., ?- #\ #\ 2. etc.

Here is an example session with a few queries and their answers:

?- [library(clpfd)].
% library(clpfd) compiled into clpfd 0.06 sec, 3,308 bytes
true.

?- X #> 3.
X in 4..sup.

?- X #\= 20.
X in inf..19\/21..sup.

?- 2*X #= 10.
X = 5.

?- X*X #= 144.
X in -12\/12.

?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.

?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), X = 1, Y #\= 2.
Vs = [1, 3, 2],
X = 1,
Y = 3,
Z = 2.

?- X #= Y #<==> B, X in 0..3, Y in 4..5.
B = 0,
X in 0..3,
Y in 4..5.

SWI-Prolog 6.0 Reference Manual

326 APPENDIX A. THE SWI-PROLOG LIBRARY

In each case (and as for all pure programs), the answer is declaratively equivalent to the original
query, and in many cases the constraint solver has deduced additional domain restrictions.

A common usage of this library is to first post the desired constraints among the variables of
a model, and then to use enumeration predicates to search for solutions. As an example of a con-
straint satisfaction problem, consider the cryptoarithmetic puzzle SEND + MORE = MONEY, where
different letters denote distinct integers between 0 and 9. It can be modeled in CLP(FD) as follows:

:- use_module(library(clpfd)).

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),

S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E #=

M*10000 + O*1000 + N*100 + E*10 + Y,
M #\= 0, S #\= 0.

Sample query and its result:

?- puzzle(As+Bs=Cs).
As = [9, _G10107, _G10110, _G10113],
Bs = [1, 0, _G10128, _G10107],
Cs = [1, 0, _G10110, _G10107, _G10152],
_G10107 in 4..7,
1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ -1*_G10152#=0,
all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),
_G10110 in 5..8,
_G10113 in 2..8,
_G10128 in 2..8,
_G10152 in 2..8.

Here, the constraint solver has deduced more stringent bounds for all variables. Keeping the
modeling part separate from the search lets you view these residual goals, observe termination and
determinism properties of the modeling part in isolation from the search, and more easily experiment
with different search strategies. Labeling can then be used to search for solutions:

?- puzzle(As+Bs=Cs), label(As).
As = [9, 5, 6, 7],
Bs = [1, 0, 8, 5],
Cs = [1, 0, 6, 5, 2] ;
false.

In this case, it suffices to label a subset of variables to find the puzzle’s unique solution, since the
constraint solver is strong enough to reduce the domains of remaining variables to singleton sets. In
general though, it is necessary to label all variables to obtain ground solutions.

SWI-Prolog 6.0 Reference Manual

A.7. LIBRARY(CLPFD): CONSTRAINT LOGIC PROGRAMMING OVER FINITE
DOMAINS 327

You can also use CLP(FD) constraints as a more declarative alternative for ordinary integer arith-
metic with is/2, >/2 etc. For example:

:- use_module(library(clpfd)).

n_factorial(0, 1).
n_factorial(N, F) :- N #> 0, N1 #= N - 1, F #= N * F1, n_factorial(N1, F1).

This predicate can be used in all directions. For example:

?- n_factorial(47, F).
F = 258623241511168180642964355153611979969197632389120000000000 ;
false.

?- n_factorial(N, 1).
N = 0 ;
N = 1 ;
false.

?- n_factorial(N, 3).
false.

To make the predicate terminate if any argument is instantiated, add the (implied) constraint F
#\= 0 before the recursive call. Otherwise, the query n factorial(N, 0) is the only non-terminating
case of this kind.

This library uses goal expansion/2 to rewrite constraints at compilation time. The expan-
sion’s aim is to transparently bring the performance of CLP(FD) constraints close to that of conven-
tional arithmetic predicates (</2, =:=/2, is/2 etc.) when the constraints are used in modes that
can also be handled by built-in arithmetic. To disable the expansion, set the flag clpfd goal expansion
to false.

Use call residue vars/2 and copy term/3 to inspect residual goals and the constraints
in which a variable is involved. This library also provides reflection predicates (like fd dom/2,
fd size/2 etc.) with which you can inspect a variable’s current domain. These predicates can be
useful if you want to implement your own labeling strategies.

You can also define custom constraints. The mechanism to do this is not yet finalised, and we
welcome suggestions and descriptions of use cases that are important to you. As an example of how
it can be done currently, let us define a new custom constraint ”oneground(X,Y,Z)”, where Z shall be
1 if at least one of X and Y is instantiated:

:- use_module(library(clpfd)).

:- multifile clpfd:run_propagator/2.

oneground(X, Y, Z) :-
clpfd:make_propagator(oneground(X, Y, Z), Prop),
clpfd:init_propagator(X, Prop),

SWI-Prolog 6.0 Reference Manual

328 APPENDIX A. THE SWI-PROLOG LIBRARY

clpfd:init_propagator(Y, Prop),
clpfd:trigger_once(Prop).

clpfd:run_propagator(oneground(X, Y, Z), MState) :-
(integer(X) -> clpfd:kill(MState), Z = 1
; integer(Y) -> clpfd:kill(MState), Z = 1
; true
).

First, clpfd:make propagator/2 is used to transform a user-defined representation of the
new constraint to an internal form. With clpfd:init propagator/2, this internal form is
then attached to X and Y. From now on, the propagator will be invoked whenever the domains
of X or Y are changed. Then, clpfd:trigger once/1 is used to give the propagator its
first chance for propagation even though the variables’ domains have not yet changed. Finally,
clpfd:run propagator/2 is extended to define the actual propagator. As explained, this pred-
icate is automatically called by the constraint solver. The first argument is the user-defined represen-
tation of the constraint as used in clpfd:make propagator/2, and the second argument is a
mutable state that can be used to prevent further invocations of the propagator when the constraint has
become entailed, by using clpfd:kill/1. An example of using the new constraint:

?- oneground(X, Y, Z), Y = 5.
Y = 5,
Z = 1,
X in inf..sup.

You can cite this library in your publications as:

@inproceedings{Triska08,
author = {Markus Triska},
title = {Generalising Constraint Solving over Finite Domains},
booktitle = {ICLP},
year = {2008},
pages = {820-821}

}

?Var in +Domain
Var is an element of Domain. Domain is one of:

Integer
Singleton set consisting only of Integer.

Lower .. Upper
All integers I such that Lower =< I =< Upper. Lower must be an integer or the atom inf,
which denotes negative infinity. Upper must be an integer or the atom sup, which denotes
positive infinity.

SWI-Prolog 6.0 Reference Manual

A.7. LIBRARY(CLPFD): CONSTRAINT LOGIC PROGRAMMING OVER FINITE
DOMAINS 329

Domain1 \/ Domain2
The union of Domain1 and Domain2.

+Vars ins +Domain
The variables in the list Vars are elements of Domain.

indomain(?Var)
Bind Var to all feasible values of its domain on backtracking. The domain of Var must be finite.

label(+Vars)
Equivalent to labeling([], Vars).

labeling(+Options, +Vars)
Labeling means systematically trying out values for the finite domain variables Vars until all
of them are ground. The domain of each variable in Vars must be finite. Options is a list of
options that let you exhibit some control over the search process. Several categories of options
exist:

The variable selection strategy lets you specify which variable of Vars is labeled next and is one
of:

leftmost
Label the variables in the order they occur in Vars. This is the default.

ff
First fail. Label the leftmost variable with smallest domain next, in order to detect infea-
sibility early. This is often a good strategy.

ffc
Of the variables with smallest domains, the leftmost one participating in most constraints
is labeled next.

min
Label the leftmost variable whose lower bound is the lowest next.

max
Label the leftmost variable whose upper bound is the highest next.

The value order is one of:

up
Try the elements of the chosen variable’s domain in ascending order. This is the default.

down
Try the domain elements in descending order.

The branching strategy is one of:

step
For each variable X, a choice is made between X = V and X #\=V, where V is determined
by the value ordering options. This is the default.

SWI-Prolog 6.0 Reference Manual

330 APPENDIX A. THE SWI-PROLOG LIBRARY

enum
For each variable X, a choice is made between X = V 1, X = V 2 etc., for all values V i
of the domain of X. The order is determined by the value ordering options.

bisect
For each variable X, a choice is made between X #=< M and X #> M, where M is the
midpoint of the domain of X.

At most one option of each category can be specified, and an option must not occur repeatedly.

The order of solutions can be influenced with:

min(Expr)

max(Expr)

This generates solutions in ascending/descending order with respect to the evaluation of the
arithmetic expression Expr. Labeling Vars must make Expr ground. If several such options are
specified, they are interpreted from left to right, e.g.:

?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).

This generates solutions in descending order of X, and for each binding of X, solutions are
generated in ascending order of Y. To obtain the incomplete behaviour that other systems exhibit
with ”maximize(Expr)” and ”minimize(Expr)”, use once/1, e.g.:

once(labeling([max(Expr)], Vars))

Labeling is always complete, always terminates, and yields no redundant solutions.

all different(+Vars)
Vars are pairwise distinct.

all distinct(+Ls)
Like all different/1, with stronger propagation. For example, all distinct/1 can
detect that not all variables can assume distinct values given the following domains:

?- maplist(in, Vs, [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]), all_distinct(Vs).
false.

sum(+Vars, +Rel, ?Expr)
The sum of elements of the list Vars is in relation Rel to Expr, where Rel is #=, #\=, #<, #>,
#=< or #>=. For example:

?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100).
A in 0..100,
A+B+C#=100,

SWI-Prolog 6.0 Reference Manual

A.7. LIBRARY(CLPFD): CONSTRAINT LOGIC PROGRAMMING OVER FINITE
DOMAINS 331

B in 0..100,
C in 0..100.

scalar product(+Cs, +Vs, +Rel, ?Expr)
Cs is a list of integers, Vs is a list of variables and integers. True if the scalar product of Cs and
Vs is in relation Rel to Expr, where Rel is #=, #\=, #<, #>, #=< or #>=.

?X #>= ?Y
X is greater than or equal to Y.

?X #=< ?Y
X is less than or equal to Y.

?X #= ?Y
X equals Y.

?X #\= ?Y
X is not Y.

?X #> ?Y
X is greater than Y.

?X #< ?Y
X is less than Y. In addition to its regular use in problems that require it, this constraint can
also be useful to eliminate uninteresting symmetries from a problem. For example, all possible
matches between pairs built from four players in total:

?- Vs = [A,B,C,D], Vs ins 1..4, all_different(Vs), A #< B, C #< D, A #< C,
findall(pair(A,B)-pair(C,D), label(Vs), Ms).

Ms = [pair(1, 2)-pair(3, 4), pair(1, 3)-pair(2, 4), pair(1, 4)-pair(2, 3)]

#\ +Q
The reifiable constraint Q does not hold. For example, to obtain the complement of a domain:

?- #\ X in -3..0\/10..80.
X in inf.. -4\/1..9\/81..sup.

?P #<==> ?Q
P and Q are equivalent. For example:

?- X #= 4 #<==> B, X #\= 4.
B = 0,
X in inf..3\/5..sup.

The following example uses reified constraints to relate a list of finite domain variables to the
number of occurrences of a given value:

SWI-Prolog 6.0 Reference Manual

332 APPENDIX A. THE SWI-PROLOG LIBRARY

:- use_module(library(clpfd)).

vs_n_num(Vs, N, Num) :-
maplist(eq_b(N), Vs, Bs),
sum(Bs, #=, Num).

eq_b(X, Y, B) :- X #= Y #<==> B.

Sample queries and their results:

?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num).
Vs = [X, Y, Z],
Num = 0,
X in 0..1,
Y in 0..1,
Z in 0..1.

?- vs_n_num([X,Y,Z], 2, 3).
X = 2,
Y = 2,
Z = 2.

?P #==> ?Q
P implies Q.

?P #<== ?Q
Q implies P.

?P #/\ ?Q
P and Q hold.

?P #\/ ?Q
P or Q holds. For example, the sum of natural numbers below 1000 that are multiples of 3 or 5:

?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999, indomain(N)), Ns), sum(Ns, #=, Sum).
Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...],
Sum = 233168.

lex chain(+Lists)
Lists are lexicographically non-decreasing.

tuples in(+Tuples, +Relation)
Relation must be a list of lists of integers. The elements of the list Tuples are constrained to be
elements of Relation. Arbitrary finite relations, such as compatibility tables, can be modeled in
this way. For example, if 1 is compatible with 2 and 5, and 4 is compatible with 0 and 3:

SWI-Prolog 6.0 Reference Manual

A.7. LIBRARY(CLPFD): CONSTRAINT LOGIC PROGRAMMING OVER FINITE
DOMAINS 333

?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4.
X = 4,
Y in 0\/3.

As another example, consider a train schedule represented as a list of quadruples, denoting
departure and arrival places and times for each train. In the following program, Ps is a feasible
journey of length 3 from A to D via trains that are part of the given schedule.

:- use_module(library(clpfd)).

trains([[1,2,0,1],[2,3,4,5],[2,3,0,1],[3,4,5,6],[3,4,2,3],[3,4,8,9]]).

threepath(A, D, Ps) :-
Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]],
T2 #> T1,
T4 #> T3,
trains(Ts),
tuples_in(Ps, Ts).

In this example, the unique solution is found without labeling:

?- threepath(1, 4, Ps).
Ps = [[1, 2, 0, 1], [2, 3, 4, 5], [3, 4, 8, 9]].

serialized(+Starts, +Durations)
Constrain a set of intervals to a non-overlapping sequence. Starts = [S 1,...,S n], is a list of
variables or integers, Durations = [D 1,...,D n] is a list of non-negative integers. Constrains
Starts and Durations to denote a set of non-overlapping tasks, i.e.: S i + D i =< S j or S j +
D j =< S i for all 1 =< i < j =< n. Example:

?- length(Vs, 3), Vs ins 0..3, serialized(Vs, [1,2,3]), label(Vs).
Vs = [0, 1, 3] ;
Vs = [2, 0, 3] ;
false.

See also Dorndorf et al. 2000, ”Constraint Propagation Techniques for the Disjunctive Scheduling
Problem”

element(?N, +Vs, ?V)
The N-th element of the list of finite domain variables Vs is V. Analogous to nth1/3.

global cardinality(+Vs, +Pairs)
Equivalent to global cardinality(Vs, Pairs, []). Example:

SWI-Prolog 6.0 Reference Manual

334 APPENDIX A. THE SWI-PROLOG LIBRARY

?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs).
Vs = [1, 1, 3] ;
Vs = [1, 3, 1] ;
Vs = [3, 1, 1].

global cardinality(+Vs, +Pairs, +Options)
Vs is a list of finite domain variables, Pairs is a list of Key-Num pairs, where Key is an integer
and Num is a finite domain variable. The constraint holds iff each V in Vs is equal to some key,
and for each Key-Num pair in Pairs, the number of occurrences of Key in Vs is Num. Options
is a list of options. Supported options are:

consistency(value)
A weaker form of consistency is used.

cost(Cost, Matrix)
Matrix is a list of rows, one for each variable, in the order they occur in Vs. Each of these
rows is a list of integers, one for each key, in the order these keys occur in Pairs. When
variable v i is assigned the value of key k j, then the associated cost is Matrix {ij}. Cost
is the sum of all costs.

circuit(+Vs)
True if the list Vs of finite domain variables induces a Hamiltonian circuit, where the k-th
element of Vs denotes the successor of node k. Node indexing starts with 1. Examples:

?- length(Vs, _), circuit(Vs), label(Vs).
Vs = [] ;
Vs = [1] ;
Vs = [2, 1] ;
Vs = [2, 3, 1] ;
Vs = [3, 1, 2] ;
Vs = [2, 3, 4, 1] .

cumulative(+Tasks)
Equivalent to cumulative(Tasks, [limit(1)]).

cumulative(+Tasks, +Options)
Tasks is a list of tasks, each of the form task(S i, D i, E i, C i, T i). S i denotes the start time,
D i the positive duration, E i the end time, C i the non-negative resource consumption, and
T i the task identifier. Each of these arguments must be a finite domain variable with bounded
domain, or an integer. The constraint holds if at any time during the start and end of each task,
the total resource consumption of all tasks running at that time does not exceed the global
resource limit (which is 1 by default). Options is a list of options. Currently, the only supported
option is:

limit(L)
The integer L is the global resource limit.

SWI-Prolog 6.0 Reference Manual

A.7. LIBRARY(CLPFD): CONSTRAINT LOGIC PROGRAMMING OVER FINITE
DOMAINS 335

automaton(+Signature, +Nodes, +Arcs)
Equivalent to automaton(, , Signature, Nodes, Arcs, [], [],), a common use case of
automaton/8. In the following example, a list of binary finite domain variables is
constrained to contain at least two consecutive ones:

:- use_module(library(clpfd)).

two_consecutive_ones(Vs) :-
automaton(Vs, [source(a),sink(c)],

[arc(a,0,a), arc(a,1,b),
arc(b,0,a), arc(b,1,c),
arc(c,0,c), arc(c,1,c)]).

?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs).
Vs = [0, 1, 1] ;
Vs = [1, 1, 0] ;
Vs = [1, 1, 1].

automaton(?Sequence, ?Template, +Signature, +Nodes, +Arcs, +Counters, +Initials, ?Finals)
True if the finite automaton induced by Nodes and Arcs (extended with Counters) accepts
Signature. Sequence is a list of terms, all of the same shape. Additional constraints must link
Sequence to Signature, if necessary. Nodes is a list of source(Node) and sink(Node) terms.
Arcs is a list of arc(Node,Integer,Node) and arc(Node,Integer,Node,Exprs) terms that denote
the automaton’s transitions. Each node is represented by an arbitrary term. Transitions that are
not mentioned go to an implicit failure node. Exprs is a list of arithmetic expressions, of the
same length as Counters. In each expression, variables occurring in Counters correspond to
old counter values, and variables occurring in Template correspond to the current element of
Sequence. When a transition containing expressions is taken, counters are updated as stated.
By default, counters remain unchanged. Counters is a list of variables that must not occur
anywhere outside of the constraint goal. Initials is a list of the same length as Counters.
Counter arithmetic on the transitions relates the counter values in Initials to Finals.

The following example is taken from Beldiceanu, Carlsson, Debruyne and Petit: ”Reformu-
lation of Global Constraints Based on Constraints Checkers”, Constraints 10(4), pp 339-362
(2005). It relates a sequence of integers and finite domain variables to its number of inflexions,
which are switches between strictly ascending and strictly descending subsequences:

:- use_module(library(clpfd)).

sequence_inflexions(Vs, N) :-
variables_signature(Vs, Sigs),
automaton(_, _, Sigs,

[source(s),sink(i),sink(j),sink(s)],
[arc(s,0,s), arc(s,1,j), arc(s,2,i),
arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i),
arc(j,0,j), arc(j,1,j), arc(j,2,i,[C+1])], [C], [0], [N]).

SWI-Prolog 6.0 Reference Manual

336 APPENDIX A. THE SWI-PROLOG LIBRARY

variables_signature([], []).
variables_signature([V|Vs], Sigs) :-

variables_signature_(Vs, V, Sigs).

variables_signature_([], _, []).
variables_signature_([V|Vs], Prev, [S|Sigs]) :-

V #= Prev #<==> S #= 0,
Prev #< V #<==> S #= 1,
Prev #> V #<==> S #= 2,
variables_signature_(Vs, V, Sigs).

Example queries:

?- sequence_inflexions([1,2,3,3,2,1,3,0], N).
N = 3.

?- length(Ls, 5), Ls ins 0..1, sequence_inflexions(Ls, 3), label(Ls).
Ls = [0, 1, 0, 1, 0] ;
Ls = [1, 0, 1, 0, 1].

transpose(+Matrix, ?Transpose)
Transpose a list of lists of the same length. Example:

?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).
Ts = [[1, 4, 7], [2, 5, 8], [3, 6, 9]].

This predicate is useful in many constraint programs. Consider for instance Sudoku:

:- use_module(library(clpfd)).

sudoku(Rows) :-
length(Rows, 9), maplist(length_(9), Rows),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns), maplist(all_distinct, Columns),
Rows = [A,B,C,D,E,F,G,H,I],
blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).

length_(L, Ls) :- length(Ls, L).

blocks([], [], []).
blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-

all_distinct([A,B,C,D,E,F,G,H,I]),
blocks(Bs1, Bs2, Bs3).

problem(1, [[_,_,_,_,_,_,_,_,_],

SWI-Prolog 6.0 Reference Manual

A.7. LIBRARY(CLPFD): CONSTRAINT LOGIC PROGRAMMING OVER FINITE
DOMAINS 337

[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]).

Sample query:

?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).
[9, 8, 7, 6, 5, 4, 3, 2, 1]
[2, 4, 6, 1, 7, 3, 9, 8, 5]
[3, 5, 1, 9, 2, 8, 7, 4, 6]
[1, 2, 8, 5, 3, 7, 6, 9, 4]
[6, 3, 4, 8, 9, 2, 1, 5, 7]
[7, 9, 5, 4, 6, 1, 8, 3, 2]
[5, 1, 9, 2, 8, 6, 4, 7, 3]
[4, 7, 2, 3, 1, 9, 5, 6, 8]
[8, 6, 3, 7, 4, 5, 2, 1, 9]
Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].

zcompare(?Order, ?A, ?B)
Analogous to compare/3, with finite domain variables A and B. Example:

:- use_module(library(clpfd)).

n_factorial(N, F) :-
zcompare(C, N, 0),
n_factorial_(C, N, F).

n_factorial_(=, _, 1).
n_factorial_(>, N, F) :- F #= F0*N, N1 #= N - 1, n_factorial(N1, F0).

This version is deterministic if the first argument is instantiated:

?- n_factorial(30, F).
F = 265252859812191058636308480000000.

chain(+Zs, +Relation)
Zs is a list of finite domain variables that are a chain with respect to the partial order Relation,
in the order they appear in the list. Relation must be #=, #=<, #>=, #< or #>. For example:

SWI-Prolog 6.0 Reference Manual

338 APPENDIX A. THE SWI-PROLOG LIBRARY

?- chain([X,Y,Z], #>=).
X#>=Y,
Y#>=Z.

fd var(+Var)
True iff Var is a CLP(FD) variable.

fd inf(+Var, -Inf)
Inf is the infimum of the current domain of Var.

fd sup(+Var, -Sup)
Sup is the supremum of the current domain of Var.

fd size(+Var, -Size)
Size is the number of elements of the current domain of Var, or the atom sup if the domain is
unbounded.

fd dom(+Var, -Dom)
Dom is the current domain (see in/2) of Var. This predicate is useful if you want to reason
about domains. It is not needed if you only want to display remaining domains; instead,
separate your model from the search part and let the toplevel display this information via
residual goals.

A.8 clpqr: Constraint Logic Programming over Rationals and Reals

Author: Christian Holzbaur, ported to SWI-Prolog by Leslie De Koninck, K.U. Leuven

This CLP(Q,R) system is a port of the CLP(Q,R) system of Sicstus Prolog by Christian Holzbaur:
Holzbaur C.: OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute for Artificial Intelli-
gence, Vienna, TR-95-09, 1995.1 This manual is roughly based on the manual of the above mentioned
CLP(Q,R) implementation.

The CLP(Q,R) system consists of two components: the CLP(Q) library for handling constraints
over the rational numbers and the CLP(R) library for handling constraints over the real numbers (using
floating point numbers as representation). Both libraries offer the same predicates (with exception of
bb inf/4 in CLP(Q) and bb inf/5 in CLP(R)). It is allowed to use both libraries in one program,
but using both CLP(Q) and CLP(R) constraints on the same variable will result in an exception.

Please note that the clpqr library is not an autoload library and therefore this library must be
loaded explicitely before using it:

:- use_module(library(clpq)).

or

:- use_module(library(clpr)).

1http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09

SWI-Prolog 6.0 Reference Manual

A.8. CLPQR: CONSTRAINT LOGIC PROGRAMMING OVER RATIONALS AND REALS339

A.8.1 Solver predicates

The following predicates are provided to work with constraints:

{}(+Constraints)
Adds the constraints given by Constraints to the constraint store.

entailed(+Constraint)
Succeeds if Constraint is necessarily true within the current constraint store. This means that
adding the negation of the constraint to the store results in failure.

inf(+Expression, -Inf)
Computes the infimum of Expression within the current state of the constraint store and returns
that infimum in Inf. This predicate does not change the constraint store.

sup(+Expression, -Sup)
Computes the supremum of Expression within the current state of the constraint store and
returns that supremum in Sup. This predicate does not change the constraint store.

minimize(+Expression)
Minimizes Expression within the current constraint store. This is the same as computing the
infimum and equation the expression to that infimum.

maximize(+Expression)
Maximizes Expression within the current constraint store. This is the same as computing the
supremum and equating the expression to that supremum.

bb inf(+Ints, +Expression, -Inf, -Vertex, +Eps)
This predicate is offered in CLP(R) only. It computes the infimum of Expression within the
current constraint store, with the additional constraint that in that infimum, all variables in Ints
have integral values. Vertex will contain the values of Ints in the infimum. Eps denotes how
much a value may differ from an integer to be considered an integer. E.g. when Eps = 0.001,
then X = 4.999 will be considered as an integer (5 in this case). Eps should be between 0 and
0.5.

bb inf(+Ints, +Expression, -Inf, -Vertex)
This predicate is offered in CLP(Q) only. It behaves the same as bb inf/5 but does not use
an error margin.

bb inf(+Ints, +Expression, -Inf)
The same as bb inf/5 or bb inf/4 but without returning the values of the integers. In
CLP(R), an error margin of 0.001 is used.

dump(+Target, +Newvars, -CodedAnswer)
Returns the constraints on Target in the list CodedAnswer where all variables of Target have
veen replaced by NewVars. This operation does not change the constraint store. E.g. in

dump([X,Y,Z],[x,y,z],Cons)

Cons will contain the constraints on X, Y and Z where these variables have been replaced by
atoms x, y and z.

SWI-Prolog 6.0 Reference Manual

340 APPENDIX A. THE SWI-PROLOG LIBRARY

〈Constraints〉 ::= 〈Constraint〉 single constraint
| 〈Constraint〉 , 〈Constraints〉 conjunction
| 〈Constraint〉 ; 〈Constraints〉 disjunction

〈Constraint〉 ::= 〈Expression〉 < 〈Expression〉 less than
| 〈Expression〉 > 〈Expression〉 greater than
| 〈Expression〉 =< 〈Expression〉 less or equal
| <=(〈Expression〉, 〈Expression〉) less or equal
| 〈Expression〉 >= 〈Expression〉 greater or equal
| 〈Expression〉 =\= 〈Expression〉 not equal
| 〈Expression〉 =:= 〈Expression〉 equal
| 〈Expression〉 = 〈Expression〉 equal

〈Expression〉 ::= 〈Variable〉 Prolog variable
| 〈Number〉 Prolog number (float, integer)
| +〈Expression〉 unary plus
| -〈Expression〉 unary minus
| 〈Expression〉 + 〈Expression〉 addition
| 〈Expression〉 - 〈Expression〉 substraction
| 〈Expression〉 * 〈Expression〉 multiplication
| 〈Expression〉 / 〈Expression〉 division
| abs(〈Expression〉) absolute value
| sin(〈Expression〉) sine
| cos(〈Expression〉) cosine
| tan(〈Expression〉) tangent
| exp(〈Expression〉) exponent
| pow(〈Expression〉) exponent
| 〈Expression〉 ˆ 〈Expression〉 exponent
| min(〈Expression〉, 〈Expression〉) minimum
| max(〈Expression〉, 〈Expression〉) maximum

Table A.1: CLP(Q,R) constraint BNF

A.8.2 Syntax of the predicate arguments

The arguments of the predicates defined in the subsection above are defined in table A.1. Failing to
meet the syntax rules will result in an exception.

A.8.3 Use of unification

Instead of using the {}/1 predicate, you can also use the standard unification mechanism to store
constraints. The following code samples are equivalent:

• Unification with a variable{X =:= Y}
{X = Y}
X = Y

SWI-Prolog 6.0 Reference Manual

A.8. CLPQR: CONSTRAINT LOGIC PROGRAMMING OVER RATIONALS AND REALS341

A = B ∗ C B or C is ground A = 5 * C or A = B * 4
A and (B or C) are ground 20 = 5 * C or 20 = B * 4

A = B/C C is ground A = B / 3
A and B are ground 4 = 12 / C

X = min(Y,Z) Y and Z are ground X = min(4,3)
X = max(Y,Z) Y and Z are ground X = max(4,3)
X = abs(Y) Y is ground X = abs(-7)
X = pow(Y,Z) X and Y are ground 8 = 2 ˆ Z
X = exp(Y,Z) X and Z are ground 8 = Y ˆ 3
X = Y ˆ Z Y and Z are ground X = 2 ˆ 3
X = sin(Y) X is ground 1 = sin(Y)
X = cos(Y) Y is ground X = sin(1.5707)
X = tan(Y)

Table A.2: CLP(Q,R) isolating axioms

• Unification with a number{X =:= 5.0}
{X = 5.0}
X = 5.0

A.8.4 Non-linear constraints

The CLP(Q,R) system deals only passively with non-linear constraints. They remain in a passive
state until certain conditions are satisfied. These conditions, which are called the isolation axioms, are
given in table A.2.

A.8.5 Status and known problems

The clpq and clpr libraries are ‘orphaned’, i.e., they currently have no maintainer.

• Top-level output
The top-level output may contain variables not present in the original query:

?- {X+Y>=1}.
{Y=1-X+_G2160, _G2160>=0}.

?-

Nonetheless, for linear constraints this kind of answer means unconditional satisfiability.

• Dumping constraints
The first argument of dump/3 has to be a list of free variables at call-time:

?- {X=1},dump([X],[Y],L).
ERROR: Unhandled exception: Unknown message:

SWI-Prolog 6.0 Reference Manual

342 APPENDIX A. THE SWI-PROLOG LIBRARY

instantiation_error(dump([1],[_G11],_G6),1)
?-

A.9 library(csv): Process CSV (Comma-Separated Values) data
See also RFC 4180
To be done

- Implement immediate assert of the data to avoid possible stack overflows.
- Writing creates an intermediate code-list, possibly overflowing resources. This waits for pure output!

This library parses and generates CSV data. CSV data is represented in Prolog as a list of rows.
Each row is a compound term, where all rows have the same name and arity.

csv read file(+File, -Rows) [det]

csv read file(+File, -Rows, +Options) [det]

Read a CSV file into a list of rows. Each row is a Prolog term with the same arity. Options
is handed to csv//2. Remaining options are processed by phrase from file/3. The
default separator depends on the file name extension and is \t for .tsv files and , otherwise.

Suppose we want to create a predicate table/6 from a CSV file that we know contains 6
fields per record. This can be done using the code below. Without the option arity(6), this
would generate a predicate table/N, where N is the number of fields per record in the data.

?- csv_read_file(File, Rows, [functor(table), arity(6)]),
maplist(assert, Rows).

csv(?Rows) // [det]

csv(?Rows, +Options) // [det]

Prolog DCG to ‘read/write’ CSV data. Options:

separator(+Code)
The comma-separator. Must be a character code. Default is (of course) the comma.
Character codes can be specified using the 0’ notion. E.g., separator(0’;).

strip(+Boolean)
If true (default false), strip leading and trailing blank-space. RFC4180 says that
blank space is part of the data.

convert(+Boolean)
if true (Default), use name/2 on the field-data. This translates the field into a number
if possible.

functor(+Atom)
Functor to use for creating row-terms. Default is row.

arity(?Arity)
Number of fields in each row. This predicate raises a domain error(row arity(Expected),
Found) if a row is found with different arity.

SWI-Prolog 6.0 Reference Manual

A.10. LIBRARY(DEBUG): PRINT DEBUG MESSAGES AND TEST ASSERTIONS 343

match arity(+Boolean)
If false (default true), do not reject CSV files where lines provide a varying number
of fields (columns). This can be a work-around to use some incorrect CSV files.

csv write file(+File, +Data) [det]

csv write file(+File, +Data, +Options) [det]

Write a list of Prolog terms to a CSV file. Options are given to csv//2. Remaining options
are given to open/4. The default separator depends on the file name extension and is \t for
.tsv files and , otherwise.

A.10 library(debug): Print debug messages and test assertions
author Jan Wielemaker

This library is a replacement for format/3 for printing debug messages. Messages are assigned
a topic. By dynamically enabling or disabling topics the user can select desired messages. Debug
statements are removed when the code is compiled for optimization.

See manual for details. With XPCE, you can use the call below to start a graphical monitorring
tool.

?- prolog_ide(debug_monitor).

Using the predicate assertion/1 you can make assumptions about your program explicit,
trapping the debugger if the condition does not hold.

debugging(+Topic) [semidet]

debugging(-Topic) [nondet]

debugging(?Topic, ?Bool) [nondet]

Check whether we are debugging Topic or enumerate the topics we are debugging.

debug(+Topic) [det]

nodebug(+Topic) [det]

Add/remove a topic from being printed. nodebug() removes all topics. Gives a warning if the
topic is not defined unless it is used from a directive. The latter allows placing debug topics at
the start a a (load-)file without warnings.

For debug/1, Topic can be a term Topic > Out, where Out is either a stream or stream-alias
or a filename (atom). This redirects debug information on this topic to the given output.

list debug topics [det]

List currently known debug topics and their setting.

debug message context(What) [det]

Specify additional context for debug messages. What is one of +Context or -Context and
Context is one of thread. time or time(Format), where Format is a format-specification for
format time/3 (default is %T.%3f). Initially, debug/3 show only thread information.

SWI-Prolog 6.0 Reference Manual

344 APPENDIX A. THE SWI-PROLOG LIBRARY

debug(+Topic, +Format, :Args) [det]

Similar to format/3 to user_error, but only prints if Topic is activated through
debug/1. Args is a meta-argument to deal with goal for the @-command. Output is
first handed to the hook prolog:debug print hook/3. If this fails, Format+Args
is translated to text using the message-translation (see print message/2) for the term
debug(Format, Args) and then printed to every matching destination (controlled by debug/1)
using print message lines/3.

The message is preceeded by ’% ’ and terminated with a newline.

See also format/3.

prolog:debug print hook(+Topic, +Format, +Args) [semidet,multifile]

Hook called by debug/3. This hook is used by the graphical frontend that can be activated
using prolog ide/1:

?- prolog_ide(debug_monitor).

assertion(:Goal) [det]

Acts similar to C assert() macro. It has no effect if Goal succeeds. If Goal fails or throws and
exception, the following steps are taken:

• call prolog:assertion failed/2. If prolog:assertion failed/2 fails,
then:

– If this is an interactive toplevel thread, print a message, the stack-trace and finally
traps the debugger.

– Otherwise, throw error(assertion error(Reason, G),) where Reason is one of fail
or the exception raised.

prolog:assertion failed(+Reason, +Goal) [semidet,multifile]

This hook is called if the Goal of assertion/1 fails. Reason is unified with either fail
if Goal simply failed or an exception ball otherwise. If this hook fails, the default behaviour
is activated. If the hooks throws an exception it will be propagated into the caller of
assertion/1.

A.11 gensym: Generate unique identifiers

Gensym (Generate Symbols) is an old library for generating unique symbols (atoms). Such symbols
are generated from a base atom which gets a sequence number appended. Of course there is no
guarantee that ‘catch22’ is not an already defined atom and therefore one must be aware these atoms
are only unique in an isolated context.

The SWI-Prolog gensym library is thread-safe. The sequence numbers are global over all threads
and therefore generated atoms are unique over all threads.

gensym(+Base, -Unique)
Generate a unique atom from base Base and unify it with Unique. Base should be an atom. The
first call will return 〈base〉1, the next 〈base〉2, etc. Note that this is no warrant that the atom is
unique in the system.

SWI-Prolog 6.0 Reference Manual

A.12. LIBRARY(LISTS): LIST MANIPULATION 345

reset gensym(+Base)
Restart generation of identifiers from Base at 〈Base〉1. Used to make sure a program produces
the same results on subsequent runs. Use with care.

reset gensym
Reset gensym for all registered keys. This predicate is available for compatibility only. New
code is strongly advice to avoid the use of reset gensym or at least to reset only the keys used
by your program to avoid unexpected site-effects on other components.

A.12 library(lists): List Manipulation
Compatibility Virtually every Prolog system has library(lists), but the set of provided predicates is diverse.

There is a fair agreement on the semantics of most of these predicates, although error handling may
vary.

This library provides commonly accepted basic predicates for list manipulation in the Prolog
community. Some additional list manipulations are built-in. See e.g., memberchk/2, length/2.

The implementation of this library is copied from many places. These include: ”The Craft of
Prolog”, the DEC-10 Prolog library (LISTRO.PL) and the YAP lists library. Some predicates are
reimplemented based on their specification by Quintus and SICStus.

member(?Elem, ?List)
True if Elem is a member of List. The SWI-Prolog definition differs from the classical one.
Our definition avoids unpacking each list element twice and provides determinism on the last
element. E.g. this is deterministic:

member(X, [One]).

author Gertjan van Noord

append(?List1, ?List2, ?List1AndList2)
List1AndList2 is the concatination of List1 and List2

append(+ListOfLists, ?List)
Concatenate a list of lists. Is true if Lists is a list of lists, and List is the concatenation of these
lists.

Parameters

ListOfLists must be a list of -possibly- partial lists

prefix(?Part, ?Whole)
True iff Part is a leading substring of Whole. This is the same as append(Part, , Whole).

select(?Elem, ?List1, ?List2)
Is true when List1, with Elem removed results in List2.

selectchk(+Elem, +List, -Rest) [semidet]

Semi-deterministic removal of first element in List that unifies Elem.

SWI-Prolog 6.0 Reference Manual

346 APPENDIX A. THE SWI-PROLOG LIBRARY

select(?X, ?XList, ?Y, ?YList) [nondet]

Is true when select(X, XList) and select(Y, YList) are true, X and Y appear in the same locations
of their respective lists and same length(XList, YList) is true. A typical use for this predicate is
to replace an element:

?- select(b, [a,b,c], 2, X).
X = [a, 2, c] ;
X = [a, b, c].

selectchk(X, XList, Y, YList) [semidet]

Semi-deterministic version of select/4.

nextto(?X, ?Y, ?List)
True of Y follows X in List.

delete(?List1, ?Elem, ?List2) [det]

Is true when Lis1, with all occurences of Elem deleted results in List2.

See also select/3, subtract/3.
deprecated There are too many ways in which one might want to delete elements from a list to justify

the name. Think of matching (= vs. ==), delete first/all, be deterministic or not.

nth0(?Index, ?List, ?Elem)
True when Elem is the Index-th element of List. Counting starts at 0.

Errors type error(integer, Index) if Index is not an integer or unbound.
See also nth1/3.

nth1(?Index, ?List, ?Elem)
Is true when Elem is the Index’th element of List. Counting starts at 1.

See also nth0/3.

nth0(?N, ?List, ?Elem, ?Rest) [det]

Select/insert element at index. True when Elem is the N-th (0-based) element of List and Rest
is the remainder (as in by select/3) of List. For example:

?- nth0(I, [a,b,c], E, R).
I = 0, E = a, R = [b, c] ;
I = 1, E = b, R = [a, c] ;
I = 2, E = c, R = [a, b] ;
false.

?- nth0(1, L, a1, [a,b]).
L = [a, a1, b].

nth1(?N, ?List, ?Elem, ?Rest) [det]

As nth0/4, but counting starts at 1.

SWI-Prolog 6.0 Reference Manual

A.12. LIBRARY(LISTS): LIST MANIPULATION 347

last(?List, ?Last)
Succeeds when ‘Last’ is the last element of ‘List’. This predicate is semidet if List is a list
and multi if List is a partial list.

Compatibility There is no de-facto standard for the argument order of last/2. Be careful when
porting code or use append(, [Last], List) as a portable alternative.

proper length(@List, -Length) [semidet]

True when Length is the number of elements in the proper list List. This is equivalent to

proper_length(List, Length) :-
is_list(List),
length(List, Length).

same length(?List1, ?List2)
Is true when List1 and List2 are lists with the same number of elements. The predicate is
deterministic if at least one of the arguments is a proper list. It is non-deterministic if both
arguments are partial lists.

See also length/2

reverse(?List1, ?List2)
Is true when the elements of List2 are in reverse order compared to List1.

permutation(?Xs, ?Ys) [nondet]

permutation(Xs, Ys) is true when Xs is a permutation of Ys. This can solve for Ys given Xs
or Xs given Ys, or even enumerate Xs and Ys together. The predicate permutation/2 is
primarily intended to generate permutations. Note that a list of length N has N! permutations
and unbounded permutation generation becomes prohibitively expensive, even for rather short
lists (10! = 3,628,800).

If both Xs and Ys are provided and both lists have equal length the order is |Xs|ˆ2. Simply
testing whether Xs is a permutation of Ys can be achieved in order log(|Xs|) using msort/2
as illustrated below with the semidet predicate is permutation/2:

is_permutation(Xs, Ys) :-
msort(Xs, Sorted),
msort(Ys, Sorted).

The example below illustrate that Xs and Ys being proper lists is not a sufficient condition to use
the above replacement.

?- permutation([1,2], [X,Y]).
X = 1, Y = 2 ;
X = 2, Y = 1 ;
false.

Errors type error(list, Arg) if either argument is not a proper or partial list.

SWI-Prolog 6.0 Reference Manual

348 APPENDIX A. THE SWI-PROLOG LIBRARY

flatten(+List1, ?List2) [det]

Is true it List2 is a non nested version of List1.

See also append/2
deprecated Ending up needing flatten/3 often indicates, like append/3 for appending two lists,

a bad design. Efficient code that generates lists from generated small lists must use difference
lists, often possible through grammar rules for optimal readability.

max member(-Max, +List) [semidet]

True when Max is the largest member in the standard order of terms. Fails if List is empty.

See also
- compare/3
- max list/2 for the maximum of a list of numbers.

min member(-Min, +List) [semidet]

True when Min is the smallest member in the standard order of terms. Fails if List is empty.

See also
- compare/3
- min list/2 for the minimum of a list of numbers.

sumlist(+List, -Sum) [det]

Sum is the result of adding all numbers in List.

max list(+List:list(number), -Max:number) [semidet]

True if Max is the largest number in List. Fails if List is empty.

See also max member/2.

min list(+List:list(number), -Min:number) [semidet]

True if Min is the largest number in List. Fails if List is empty.

See also min member/2.

numlist(+Low, +High, -List) [semidet]

List is a list [Low, Low+1, ... High]. Fails if High < Low.

Errors
- type error(integer, Low)
- type error(integer, High)

is set(@Set) [det]

True if Set is a proper list without duplicates. Equivalence is based on ==/2. The implementa-
tion uses sort/2, which implies that the complexity is N*log(N) and the predicate may cause
a resource-error. There are no other error conditions.

list to set(+List, ?Set) [det]

True when Set has the same element as List in the same order. The left-most copy of the
duplicate is retained. The complexity of this operation is |List|ˆ2.

See also sort/2.

SWI-Prolog 6.0 Reference Manual

A.13. NB SET: NON-BACKTRACKABLE SET 349

intersection(+Set1, +Set2, -Set3) [det]

True if Set3 unifies with the intersection of Set1 and Set2. The complexity of this predicate is
|Set1|*|Set2|

See also ord intersection/3.

union(+Set1, +Set2, -Set3) [det]

True if Set3 unifies with the union of Set1 and Set2. The complexity of this predicate is
|Set1|*|Set2|

See also ord union/3.

subset(+SubSet, +Set) [semidet]

True if all elements of SubSet belong to Set as well. Membership test is based on
memberchk/2. The complexity is |SubSet|*|Set|.

See also ord subset/2.

subtract(+Set, +Delete, -Result) [det]

Delete all elements from ‘Set’ that occur in ‘Delete’ (a set) and unify the result with ‘Result’.
Deletion is based on unification using memberchk/2. The complexity is |Delete|*|Set|.

See also ord subtract/3.

A.13 nb set: Non-backtrackable set

The library nb set defines non-backtrackable sets, implemented as binary trees. The sets are repre-
sented as compound terms and manipulated using nb setarg/3. Non-backtrackable manipulation
of datastructures is not supported by a large number of Prolog implementation, but it it has several
advantages over using the database. It produces less garbage, is thread-safe, reentrant and deals with
exceptions without leaking data.

Similar to the assoc library keys can be any Prolog term, but it is not allowed to instantiate or
modify a term.

One of the ways to use this library is to generate unique values on backtracking without generating
all solutions first, for example to act as a filter between a generator producing many duplicates and an
expensive test routine, as outlines below.

generate_and_test(Solution) :-
empty_nb_set(Set),
generate(Solution),
add_nb_set(Solution, Set, true),
test(Solution).

empty nb set(?Set)
True if Set is a non-backtrackable emoty set.

SWI-Prolog 6.0 Reference Manual

350 APPENDIX A. THE SWI-PROLOG LIBRARY

add nb set(+Key, !Set)
Add Key to Set. If Key is already a member of Set, add nb set/3 succeeds without modifying
Set.

add nb set(+Key, !Set, ?New)
If Key is not in Set and New is unified to true Key is added to Set. If Key is in Set New is
unified to false. It can be used for many purposes:

add nb set(+, +, false) Test membership
add nb set(+, +, true) Succeed only if new member
add nb set(+, +, Var) Succeed, bindin Var

gen nb set(+Set, -Key)
Generate all members of Set on backtracking in the standard order of terms. To test member-
ship, use add nb set/3.

size nb set(+Set, -Size)
Unify Size with the number of elements in Set.

nb set to list(+Set, -List)
Unify List with a list of all elements in set in the standard order of terms (i.e. and ordered list).

A.14 www browser: Activating your Web-browser

This library deals with the very system dependent task of opening a web page in a browser. See also
url and the HTTP package.

www open url(+URL)
Open URL in an external web-browser. The reason to place this in the library is to centralise
the maintenance on this highly platform and browser specific task. It distinguishes between the
following cases:

• MS-Windows
If it detects MS-Windows it uses win shell/2 to open the URL. The behaviour and
browser started depends on the Window and Windows-shell configuration, but in general
it should be the behaviour expected by the user.

• Other platforms
On other platforms it tests the environment variable (see getenv/2) named BROWSER
or uses netscape if this variable is not set. If the browser is either mozilla or
netscape, www open url/1 first tries to open a new window on a running using the
-remote option of netscape. If this fails or the browser is not mozilla or netscape
the system simply passes the URL as first argument to the program.

A.15 library(option): Option list processing
See also

- library(record)
- Option processing capabilities may be declared using the directive predicate options/3.

SWI-Prolog 6.0 Reference Manual

A.15. LIBRARY(OPTION): OPTION LIST PROCESSING 351

To be done We should consider putting many options in an assoc or record with appropriate preprocessing
to achieve better performance.

The library(option) provides some utilities for processing option lists. Option lists are com-
monly used as an alternative for many arguments. Examples built-in predicates are open/4 and
write term/3. Naming the arguments results in more readable code and the list nature makes it
easy to extend the list of options accepted by a predicate. Option lists come in two styles, both of
which are handled by this library.

Name(Value) This is the preferred style.

Name = Value This is often used, but deprecated.

Processing options inside time critical code (loops) can cause serious overhead. One possibility
is to define a record using library(record) and initialise this using make <record>/2. In addition to
providing good performance, this also provides type-checking and central declaration of defaults.

:- record atts(width:integer=100, shape:oneof([box,circle])=box).

process(Data, Options) :-
make_atts(Options, Attributes),
action(Data, Attributes).

action(Data, Attributes) :-
atts_shape(Attributes, Shape),
...

Options typically have exactly one argument. The library does support options with 0 or more
than one arguments with the following restrictions:

• The predicate option/3 and select option/4, involving default are meaningless. They
perform an arg(1, Option, Default), causing failure without arguments and filling only the first
option-argument otherwise.

• meta options/3 can only qualify options with exactly one argument.

option(?Option, +OptionList, +Default) [semidet]

Get an option from a OptionList. OptionList can use the Name=Value as well as the
Name(Value) convention.

Parameters

Option Term of the form Name(?Value).

option(?Option, +OptionList) [semidet]

Get an option from a OptionList. OptionList can use the Name=Value as well as the
Name(Value) convention. Fails silently if the option does not appear in OptionList.

Parameters

Option Term of the form Name(?Value).

SWI-Prolog 6.0 Reference Manual

352 APPENDIX A. THE SWI-PROLOG LIBRARY

select option(?Option, +Options, -RestOptions) [semidet]

Get and remove option from an option list. As option/2, removing the matching option
from Options and unifying the remaining options with RestOptions.

select option(?Option, +Options, -RestOptions, +Default) [det]

Get and remove option with default value. As select option/3, but if Option is not in
Options, its value is unified with Default and RestOptions with Options.

merge options(+New, +Old, -Merged) [det]

Merge two option lists. Merged is a sorted list of options using the canonical format
Name(Value) holding all options from New and Old, after removing conflicting options from
Old.

Multi-values options (e.g., proxy(Host, Port)) are allowed, where both option-name and arity
define the identity of the option.

meta options(+IsMeta, :Options0, -Options) [det]

Perform meta-expansion on options that are module-sensitive. Whether an option name is
module sensitive is determined by calling call(IsMeta, Name). Here is an example:

meta_options(is_meta, OptionsIn, Options),
...

is_meta(callback).

Meta-options must have exactly one argument. This argument will be qualified.

To be done Should be integrated with declarations from predicate options/3.

A.16 library(optparse): command line parsing
author Marcus Uneson
version 0.20 (2011-04-27)
To be done : validation? e.g, numbers; file path existence; one-out-of-a-set-of-atoms

This module helps in building a command-line interface to an application. In particular, it provides
functions that take an option specification and a list of atoms, probably given to the program on the
command line, and return a parsed representation (a list of the customary Key(Val) by default; or
optionally, a list of Func(Key, Val) terms in the style of current prolog flag/2). It can also
synthesize a simple help text from the options specification.

The terminology in the following is partly borrowed from python, see
http://docs.python.org/library/optparse.html#terminology . Very briefly,
arguments is what you provide on the command line and for many prologs show up as a list of atoms
Args in current_prolog_flag(argv, Args). For a typical prolog incantation, they can be
divided into

• runtime arguments, which controls the prolog runtime; conventionally, they are ended by ’–’;

• options, which are key-value pairs (with a boolean value possibly implicit) intended to control
your program in one way or another; and

SWI-Prolog 6.0 Reference Manual

A.16. LIBRARY(OPTPARSE): COMMAND LINE PARSING 353

• positional arguments, which is what remains after all runtime arguments and options have been
removed (with implicit arguments – true/false for booleans – filled in).

Positional arguments are in particular used for mandatory arguments without which your program
won’t work and for which there are no sensible defaults (e.g,, input file names). Options, by contrast,
offer flexibility by letting you change a default setting. Options are optional not only by etymology:
this library has no notion of mandatory or required options (see the python docs for other rationales
than laziness).

The command-line arguments enter your program as a list of atoms, but the programs perhaps
expects booleans, integers, floats or even prolog terms. You tell the parser so by providing an options
specification. This is just a list of individual option specifications. One of those, in turn, is a list of
ground prolog terms in the customary Name(Value) format. The following terms are recognized (any
others raise error).

opt(Key)
Key is what the option later will be accessed by, just like for current prolog flag(Key, Value).
This term is mandatory (an error is thrown if missing).

shortflags(ListOfFlags)
ListOfFlags denotes any single-dashed, single letter args specifying the current option
(-s , -K, etc). Uppercase letters must be quoted. Usually ListOfFlags will be a singleton
list, but sometimes aliased flags may be convenient.

longflags(ListOfFlags)
ListOfFlags denotes any double-dashed arguments specifying the current option
(--verbose, --no-debug, etc). They are basically a more readable alternative to
short flags, except

1. long flags can be specified as --flag value or --flag=value (but not as
--flagvalue); short flags as -f val or -fval (but not -f=val)

2. boolean long flags can be specified as --bool-flag or --bool-flag=true
or --bool-flag true; and they can be negated as --no-bool-flag or
--bool-flag=false or --bool-flag false.

Except that shortflags must be single characters, the distinction between long and short is in
calling convention, not in namespaces. Thus, if you have shortflags([v]), you can use it as -v2
or -v 2 or --v=2 or --v 2 (but not -v=2 or --v2).

Shortflags and longflags both default to []. It can be useful to have flagless options – see
example below.

meta(Meta)
Meta is optional and only relevant for the synthesized usage message and is the name (an atom)
of the metasyntactic variable (possibly) appearing in it together with type and default value
(e.g, x:integer=3, interest:float=0.11). It may be useful to have named variables
(x, interest) in case you wish to mention them again in the help text. If not given the
Meta: part is suppressed – see example below.

SWI-Prolog 6.0 Reference Manual

354 APPENDIX A. THE SWI-PROLOG LIBRARY

type(Type)
Type is one of boolean, atom, integer, float, term. The corresponding argu-
ment will be parsed appropriately. This term is optional; if not given, defaults to term.

default(Default)
Default value. This term is optional; if not given, or if given the special value ’ ’, an uninstan-
tiated variable is created (and any type declaration is ignored).

help(Help)
Help is (usually) an atom of text describing the option in the help text. This term is optional
(but obviously strongly recommended for all options which have flags).

Long lines are subject to basic word wrapping – split on white space, reindent, rejoin. However,
you can get more control by supplying the line breaking yourself: rather than a single line of
text, you can provide a list of lines (as atoms). If you do, they will be joined with the appropriate
indent but otherwise left untouched (see the option mode in the example below).

Absence of mandatory option specs or the presence of more than one for a particular option throws
an error, as do unknown or incompatible types.

As a concrete example from a fictive application, suppose we want the following options to be
read from the command line (long flag(s), short flag(s), meta:type=default, help)

--mode -m atom=SCAN data gathering mode, one of
SCAN: do this
READ: do that
MAKE: fabricate some numbers
WAIT: don’t do anything

--rebuild-cache -r boolean=true rebuild cache in each iteration
--heisenberg-threshold -t,-h float=0.1 heisenberg threshold
--depths, --iters -i,-d K:integer=3 stop after K iterations
--distances term=[1,2,3,5] initial prolog term
--output-file -o FILE:atom=_ write output to FILE
--label -l atom=REPORT report label
--verbosity -v V:integer=2 verbosity level, 1 <= V <= 3

We may also have some configuration parameters which we currently think not needs to be con-
trolled from the command line, say path(’/some/file/path’).

This interface is described by the following options specification (order between the specifications
of a particular option is irrelevant).

ExampleOptsSpec =
[[opt(mode), type(atom), default(’SCAN’),

shortflags([m]), longflags([’mode’]),
help([’data gathering mode, one of’

, ’ SCAN: do this’
, ’ READ: do that’
, ’ MAKE: fabricate some numbers’
, ’ WAIT: don’’t do anything’])]

SWI-Prolog 6.0 Reference Manual

A.16. LIBRARY(OPTPARSE): COMMAND LINE PARSING 355

, [opt(cache), type(boolean), default(true),
shortflags([r]), longflags([’rebuild-cache’]),
help(’rebuild cache in each iteration’)]

, [opt(threshold), type(float), default(0.1),
shortflags([t,h]), longflags([’heisenberg-threshold’]),
help(’heisenberg threshold’)]

, [opt(depth), meta(’K’), type(integer), default(3),
shortflags([i,d]),longflags([depths,iters]),
help(’stop after K iterations’)]

, [opt(distances), default([1,2,3,5]),
longflags([distances]),
help(’initial prolog term’)]

, [opt(outfile), meta(’FILE’), type(atom),
shortflags([o]), longflags([’output-file’]),
help(’write output to FILE’)]

, [opt(label), type(atom), default(’REPORT’),
shortflags([l]), longflags([label]),
help(’report label’)]

, [opt(verbose), meta(’V’), type(integer), default(2),
shortflags([v]), longflags([verbosity]),
help(’verbosity level, 1 <= V <= 3’)]

, [opt(path), default(’/some/file/path/’)]
].

The help text above was accessed by opt_help(ExamplesOptsSpec, HelpText). The
options appear in the same order as in the OptsSpec.

Given ExampleOptsSpec, a command line (somewhat syntactically inconsistent, in order to
demonstrate different calling conventions) may look as follows

ExampleArgs = [’-d5’
, ’--heisenberg-threshold’, ’0.14’
, ’--distances=[1,1,2,3,5,8]’
, ’--iters’, ’7’
, ’-ooutput.txt’
, ’--rebuild-cache’, ’true’
, ’input.txt’
, ’--verbosity=2’
].

SWI-Prolog 6.0 Reference Manual

356 APPENDIX A. THE SWI-PROLOG LIBRARY

opt parse(ExampleOptsSpec, ExampleArgs, Opts, PositionalArgs) would then succeed with

Opts = [mode(’SCAN’)
, label(’REPORT’)
, path(’/some/file/path’)
, threshold(0.14)
, distances([1,1,2,3,5,8])
, depth(7)
, outfile(’output.txt’)
, cache(true)
, verbose(2)
],

PositionalArgs = [’input.txt’].

Note that path(’/some/file/path’) showing up in Opts has a default value (of the implicit type
’term’), but no corresponding flags in OptsSpec. Thus it can’t be set from the command line. The rest
of your program doesn’t need to know that, of course. This provides an alternative to the common
practice of asserting such hard-coded parameters under a single predicate (for instance setting(path,
’/some/file/path’)), with the advantage that you may seamlessly upgrade them to command-line op-
tions, should you one day find this a good idea. Just add an appropriate flag or two and a line of help
text. Similarly, suppressing an option in a cluttered interface amounts to commenting out the flags.

opt parse/5 allows more control through an additional argument list. For instance,
opt parse(ExampleOptsSpec, ExampleArgs, Opts, PositionalArgs, [output functor(appl config)])
would instead return

Opts = [appl_config(verbose, 2),
, appl_config(label, ’REPORT’)
...
]

This representation may be preferable with the empty-flag configuration parameter style above
(perhaps with asserting appl config/2).

A.16.1 Notes and tips

• In the example we were mostly explicit about the types. Since the default is term, which
subsumes integer, float, atom, it may be possible to get away cheaper (e.g., by only
giving booleans). However, it is recommended practice to always specify types: parsing be-
comes more reliable and error messages will be easier to interpret.

• Note that -sbar is taken to mean -s bar, not -s -b -a -r, that is, there is no clustering
of flags.

• -s=foo is disallowed. The rationale is that although some command-line parsers will silently
interpret this as -s =foo, this is very seldom what you want. To have an option argument start
with ’=’ (very un-recommended), say so explicitly.

SWI-Prolog 6.0 Reference Manual

A.16. LIBRARY(OPTPARSE): COMMAND LINE PARSING 357

• The example specifies the option depth twice: once as -d5 and once as --iters 7. The
default when encountering duplicated flags is to keeplast (this behaviour can be controlled,
by ParseOption duplicated flags).

• The order of the options returned by the parsing functions is the same as given on the command
line, with non-overridden defaults prepended and duplicates removed as in previous item. You
should not rely on this, however.

• Unknown flags (not appearing in OptsSpec) will throw errors. This is usually a Good Thing.
Sometimes, however, you may wish to pass along flags to an external program (say, one called
by shell/2), and it means duplicated effort and a maintenance headache to have to specify
all possible flags for the external program explicitly (if it even can be done). On the other
hand, simply taking all unknown flags as valid makes error checking much less efficient and
identification of positional arguments uncertain. A better solution is to collect all arguments
intended for passing along to an indirectly called program as a single argument, probably as an
atom (if you don’t need to inspect them first) or as a prolog term (if you do).

opt arguments(+OptsSpec, -Opts, -PositionalArgs) [det]

Convenience predicate, assuming that command-line arguments can be accessed by
current prolog flag/2 (as in swi-prolog). For other access mechanisms and/or more
control, get the args and pass them as a list of atoms to opt parse/4 or opt parse/5
instead.

Opts is a list of parsed options in the form Key(Value). Dashed args not in OptsSpec are not
permitted and will raise error (see tip on how to pass unknown flags in the module description).
PositionalArgs are the remaining non-dashed args after each flag has taken its argument (filling
in true or false for booleans). There are no restrictions on non-dashed arguments and they
may go anywhere (although it is good practice to put them last). Any leading arguments for the
runtime (up to and including ’–’) are discarded.

opt parse(+OptsSpec, +ApplArgs, -Opts, -PositionalArgs) [det]

Equivalent to opt parse(OptsSpec, ApplArgs, Opts, PositionalArgs, []).

opt parse(+OptsSpec, +ApplArgs, -Opts, -PositionalArgs, +ParseOptions) [det]

Parse the arguments Args (as list of atoms) according to OptsSpec. Any runtime arguments
(typically terminated by ’–’) are assumed to be removed already.

Opts is a list of parsed options in the form Key(Value), or (with the option functor(Func) given)
in the form Func(Key, Value). Dashed args not in OptsSpec are not permitted and will raise
error (see tip on how to pass unknown flags in the module description). PositionalArgs are the
remaining non-dashed args after each flag has taken its argument (filling in true or false
for booleans). There are no restrictions on non-dashed arguments and they may go anywhere
(although it is good practice to put them last). ParseOptions are

output functor(Func)
Set the functor Func of the returned options Func(Key,Value). Default is the special value
’OPTION’ (upper-case), which makes the returned options have form Key(Value).

SWI-Prolog 6.0 Reference Manual

358 APPENDIX A. THE SWI-PROLOG LIBRARY

duplicated flags(Keep)
Controls how to handle options given more than once on the commad line. Keep is
one of keepfirst, keeplast, keepall with the obvious meaning. Default is
keeplast.

allow empty flag spec(Bool)
If true (default), a flag specification is not required (it is allowed that both shortflags
and longflags be either [] or absent). Flagless options cannot be manipulated from the
command line and will not show up in the generated help. This is useful when you have
(also) general configuration parameters in your OptsSpec, especially if you think they
one day might need to be controlled externally. See example in the module overview.
allow empty flag spec(false) gives the more customary behaviour of raising error on
empty flags.

opt help(+OptsSpec, -Help) [det]

Returns a help string (atom), synthesized from the help descriptions in OptsSpec.

A.17 library(ordsets): Ordered set manipulation

Ordered sets are lists with unique elements sorted to the standard order of terms (see sort/2).
Exploiting ordering, many of the set operations can be expressed in order N rather than Nˆ2 when
dealing with unordered sets that may contain duplicates. The library(ordsets) is available in a number
of Prolog implementations. Our predicates are designed to be compatible with common practice in
the Prolog community. The implementation is incomplete and relies partly on library(oset), an older
ordered set library distributed with SWI-Prolog. New applications are advices to use library(ordsets).

Some of these predicates match directly to corresponding list operations. It is adviced to use the
versions from this library to make clear you are operating on ordered sets.

is ordset(@Term) [semidet]

True if Term is an ordered set. All predicates in this library expect ordered sets as input argu-
ments. Failing to fullfil this assumption results in undefined behaviour. Typically, ordered sets
are created by predicates from this library, sort/2 or setof/3.

ord empty(?List) [semidet]

True when List is the empty ordered set. Simply unifies list with the empty list. Not part of
Quintus.

ord seteq(+Set1, +Set2) [semidet]

True if Set1 and Set2 have the same elements. As both are canonical sorted lists, this is the
same as ==/2.

Compatibility sicstus

list to ord set(+List, -OrdSet) [det]

Transform a list into an ordered set. This is the same as sorting the list.

ord intersect(+Set1, +Set2) [semidet]

True if both ordered sets have a non-empty intersection.

SWI-Prolog 6.0 Reference Manual

A.17. LIBRARY(ORDSETS): ORDERED SET MANIPULATION 359

ord disjoint(+Set1, +Set2) [semidet]

True if Set1 and Set2 have no common elements. This is the negation of ord intersect/2.

ord intersect(+Set1, +Set2, -Intersection)
Intersection holds the common elements of Set1 and Set2.

deprecated Use ord intersection/3

ord intersection(+PowerSet, -Intersection)
True if Intersection is an ordered set holding all elements common to all sets in PowerSet.

Compatibility sicstus

ord intersection(+Set1, +Set2, -Intersection) [det]

Intersection holds the common elements of Set1 and Set2.

ord intersection(+Set1, +Set2, ?Intersection, ?Difference) [det]

Intersection and difference between two ordered sets. Intersection is the intersection between
Set1 and Set2, while Difference is defined by ord subtract(Set2, Set1, Difference).

See also ord intersection/3 and ord subtract/3.

ord add element(+Set1, +Element, ?Set2) [det]

Insert an element into the set. This is the same as ord union(Set1, [Element], Set2).

ord del element(+Set, +Element, -NewSet) [det]

Delete an element from an ordered set. This is the same as ord subtract(Set, [Element], NewSet).

ord memberchk(+Element, +Set) [semidet]

Check membership. This could stop comparing we have passed the right value, saving scanning
(on average) half the list if Element is not in Set. Probably the built-in memberchk/2 will be
faster.

Compatibility Not part of original Quintus library

ord member(?Element, +Set) [nondet]

True if Element is a member of Set. Stops if further elements are behind Element in the standard
order of terms.

Compatibility sicstus

ord subset(+Sub, +Super) [semidet]

Is true if all element of Sub are in Super

ord subtract(+InOSet, +NotInOSet, -Diff) [det]

Diff is the set holding all elements of InOSet that are not in NotInOSet.

ord union(+SetOfSets, -Union) [det]

True if Union is the union of all elements in the superset SetOfSets. Each member of SetOfSets
must be an ordered set, the sets need not be ordered in any way.

author Copied from YAP, probably originally by Richard O’Keefe.

SWI-Prolog 6.0 Reference Manual

360 APPENDIX A. THE SWI-PROLOG LIBRARY

ord union(+Set1, +Set2, ?Union) [det]

Union is the union of Set1 and Set2

ord union(+Set1, +Set2, -Union, -New) [det]

True if Union iff ord union(Set1, Set2, Union) and ord subtract(Set2, Set1, New).

ord symdiff(+Set1, +Set2, ?Difference) [det]

Is true when Difference is the symmetric difference of Set1 and Set2. I.e., Difference contains
all elements that are not in the intersection of Set1 and Set2. The semantics is the same as the
sequence below (but the actual implementation requires only a single scan).

ord_union(Set1, Set2, Union),
ord_intersection(Set1, Set2, Intersection),
ord_subtract(Union, Intersection, Difference).

For example:

?- ord_symdiff([1,2], [2,3], X).
X = [1,3].

A.18 library(pairs): Operations on key-value lists
author Jan Wielemaker
See also keysort/2, library(assoc)

This module implements common operations on Key-Value lists, also known as Pairs. Pairs have
great practical value, especially due to keysort/2 and the library assoc.pl.

This library is based on disussion in the SWI-Prolog mailinglist, including specifications from
Quintus and a library proposal by Richard O’Keefe.

pairs keys values(?Pairs, ?Keys, ?Values) [det]

True if Keys holds the keys of Pairs and Values the values.

Deterministic if any argument is instantiated to a finite list and the others are either free or finite
lists. All three lists are in the same order.

See also pairs values/2 and pairs keys/2.

pairs values(+Pairs, -Values) [det]

Remove the keys from a list of Key-Value pairs. Same as pairs keys values(Pairs, , Values)

pairs keys(+Pairs, -Keys) [det]

Remove the values from a list of Key-Value pairs. Same as pairs keys values(Pairs, Keys,)

group pairs by key(+Pairs, -Joined:list(Key-Values)) [det]

Group values with the same key. Pairs must be a key-sorted list. For example:

SWI-Prolog 6.0 Reference Manual

A.19. PIO: PURE I/O 361

?- group_pairs_by_key([a-2, a-1, b-4], X).

X = [a-[2,1], b-[4]]

Parameters
Pairs Key-Value list, sorted to the standard order of terms (as

keysort/2 does)
Joined List of Key-Group, where Group is the list of Values associated

with Key.

transpose pairs(+Pairs, -Transposed) [det]

Swap Key-Value to Value-Key and sort the result on Value (the new key) using keysort/2.

map list to pairs(:Function, +List, -Keyed)
Create a key-value list by mapping each element of List. For example, if we have a list of lists
we can create a list of Length-List using

map_list_to_pairs(length, ListOfLists, Pairs),

A.19 pio: Pure I/O

This library provides pure list-based I/O processing for Prolog, where the communication to the actual
I/O device is performed transparently through coroutining. This module itself is just an interface to
the actual implementation modules.

A.19.1 library(pure input): Pure Input from files
author

- Ulrich Neumerkel
- Jan Wielemaker

To be done
- Provide support for alternative input readers, e.g. reading terms, tokens, etc.
- Support non-repositioning streams, such as sockets and pipes.

This module is part of pio.pl, dealing with pure input: processing input streams from the
outside world using pure predicates, notably grammar rules (DCG). Using pure predicates makes
non-deterministic processing of input much simpler.

Pure input uses coroutining (freeze/2) to read input from the external source into a list on
demand. The overhead of lazy reading is more than compensated for by using block reads based on
read pending input/3.

phrase from file(:Grammar, +File) [nondet]

Process the content of File using the DCG rule Grammar. The space usage of this mechanism
depends on the length of the not committed part of Grammar. Committed parts of the
temporary list are reclaimed by the garbage collector, while the list is extended on demand.
Here is a very simple definition for searching a string in a file:

SWI-Prolog 6.0 Reference Manual

362 APPENDIX A. THE SWI-PROLOG LIBRARY

... --> []|[_],... .

file_contains(File, Pattern) :-
phrase_from_file((..., Pattern, ...), File).

match_count(File, Pattern, Count) :-
findall(x, file_contains(File, Pattern), Xs),
length(Xs, Count).

This can be called as (note that the pattern must be a string (code list)):

?- match_count(’pure_input.pl’, "file", Count).

phrase from file(:Grammar, +File, +Options) [nondet]

As phrase from file/2, providing additional Options. Options are passed to open/4,
except for buffer_size, which is passed to set stream/2. If not specified, the default
buffer size is 512 bytes. Of particular importance are the open/4 options type and
encoding.

stream to lazy list(+Stream, -List) [det]

Create a lazy list representing the character codes in Stream. It must be possible to reposition
Stream. List is a list that ends in a delayed goal. List can be unified completely transparent to a
(partial) list and processed transparently using DCGs, but please be aware that a lazy list is not
the same as a materialized list in all respects.

Typically, this predicate is used as a building block for more high level safe predicates such as
phrase from file/2.

To be done Enhance of lazy list throughout the system.

A.20 predicate options: Declare option-processing of predicates

Discussions with Jeff Schultz helped shaping this library

A.20.1 The strength and weakness of predicate options

Many ISO predicates accept options, e.g., open/4, write term/3. Options offer an attractive
alternative to proliferation into many predicates and using high-arity predicates. Properly defined and
used, they also form a mechanism for extending the API of both system and application predicates
without breaking portability. I.e., previously fixed behaviour can be replaced by dynamic behaviour
controlled by an option where the default is the previously defined fixed behaviour. The alternative to
using options is to add an additional argument and maintain the previous definition. While a series of
predicates with increasing arity is adequate for a small number of additional parameters, the untyped
positional argument handling of Prolog quickly makes this unmanageable.

The ISO standard uses the extensibility offered by options by allowing implementations to extend
the set of accepted options. While options form a perfect solution to maintain backward portability in
a linear development model, it is not well equipped to deal with concurrent branches because

SWI-Prolog 6.0 Reference Manual

A.20. PREDICATE OPTIONS: DECLARE OPTION-PROCESSING OF PREDICATES 363

1. There is no API to find which options are supported in a particular implementation.

2. While the portability problem caused by a missing predicate in Prolog A can easily be solved
by implementing this predicate, it is much harder to add processing of an additional option to
an already existing predicate.

Different Prolog implementations can be seen as concurrent development branches of the Prolog
language. Different sets of supported options pose a serious portability issue. Using an option O that
establishes the desired behaviour on system A leads (on most systems) to an error or system B. Porting
may require several actions:

• Drop O (if the option is not vital, such as the layout options to write term/3)

• Replace O by O2 (i.e., a differently named option doing the same)

• Something else (cannot be ported; requires a totally different approach, etc.)

Predicates that process options are particularly a problem when writing a compatibility layer to
run programs developed for System A on System B because complete emulation is often hard, may
cause a serious slowdown and is often not needed because the application-to-be-ported only uses
options that are shared by all target Prolog implementations. Unfortunately, the consequences of a
partial emulation cannot be assessed by tools.

A.20.2 Options as arguments or environment?

We distinguish two views on options. One is to see them as additional parameters that require strict
existence, type and domain-checking and the other is to consider them ‘locally scoped environment
variables’. Most systems adopt the first option. SWI-Prolog adopts the second: it silently ignores
options that are not supported but does type and domain checking of option-values. The ‘environment’
view is commonly used in applications to create predicates supporting more options using the skeleton
below. This way of programming requires that pred1 and pred2 do not interpret the same option
differently. In cases where this is not true, the options must be distributed by some pred. We have
been using this programming style for many years and in practice it turns out that the need for active
distribution of options is rare. I.e., options either have distinct names or multiple predicates implement
the same option but this has the desired effect. An example of the latter is the encoding option,
which typically needs to be applied consistently.

some_pred(..., Options) :-
pred1(..., Options),
pred2(..., Options).

As stated before, options provide a readable alternative to high-arity predicates and offer a robust
mechanism to evolve the API, but at the cost of some runtime overhead and weaker consistency
checking, both at compiletime and runtime. From our experience, the ‘environment’ approach is
productive, but the consequence is that mistyped options are silently ignored. The option infrastructure
described in this section tries to remedy these problems.

SWI-Prolog 6.0 Reference Manual

364 APPENDIX A. THE SWI-PROLOG LIBRARY

A.20.3 Improving on the current situation

Whether we see options as arguments or locally scoped environment variables, the most obvious
way to improve on the current situation is to provide reflective support for options: discover that an
argument is an option-list and find what options are supported. Reflective access to options can be
used by the compiler and development environment as well as by the runtime system to warn or throw
errors.

Options as types

An obvious approach to deal with options is to define the different possible option values as a type and
type the argument that processes the option as list(<option type>), as illustrated below. Considering
options as types fully covers the case where we consider options as additional parameters.

:- type open_option ---> type(stream_type) |
alias(atom) |

:- pred open(source_sink, open_mode, stream, list(open_option)).

There are three reasons for considering a different approach:

• There is no consensus about types in the Prolog world, neither about what types should look
like, nor whether or not they are desirable. It is not likely that this debate will be resolved
shortly.

• Considering options as types does not support the ‘environment’ view, which we consider the
most productive.

• Even when using types, we need reflective access to what options are provided in order to be
able to write compile or runtime conditional code.

Reflective access to options

From the above, we conclude that we require reflective access to find out whether an option is sup-
ported and valid for a particular predicate. Possible option values must be described by types. Due
to lack of a type system, we use library(error) to describe allowed option values. Predicate
options are declared using predicate options/3:

predicate options(:PI, +Arg, +Options) [det]

Declare that the predicate PI processes options on Arg. Options is a list of options processed.
Each element is one of:

• Option(ModeAndType) PI processes Option. The option-value must comply to Mode-
AndType. Mode is one of + or - and Type is a type as accepted by must be/2.

• pass to(:PI,Arg) The option-list is passed to the indicated predicate.

Below is an example that processes the option header(boolean) and passes all options to
open/4:

SWI-Prolog 6.0 Reference Manual

A.20. PREDICATE OPTIONS: DECLARE OPTION-PROCESSING OF PREDICATES 365

:- predicate_options(write_xml_file/3, 3,
[header(boolean),

pass_to(open/4, 4)
]).

write_xml_file(File, XMLTerm, Options) :-
open(File, write, Out, Options),
(option(header(true), Option, true)
-> write_xml_header(Out)
; true
),
...

This predicate may only be used as a directive and is processed by expand term/2. Option
processing can be be specified at runtime using assert predicate options/3, which is
intended to support program analysis.

assert predicate options(:PI, +Arg, +Options, ?New) [semidet]

As predicate options(:PI, +Arg, +Options). New is a boolean indicating whether the declara-
tions have changed. If new is provided and false, the predicate becomes semidet and fails
without modifications if modifications are required.

The predicates below realise the support for compile and runtime checking for supported options.

current predicate option(:PI, ?Arg, ?Option) [nondet]

True when Arg of PI processes Option. For example, the following is true:

?- current_predicate_option(open/4, 4, type(text)).
true.

This predicate is intended to support conditional compilation using if/1 ... endif/0. The
predicate current predicate options/3 can be used to access the full capabilities of a
predicate.

check predicate option(:PI, +Arg, +Option) [det]

Similar to current predicate option/3, but intended to support runtime checking.

Errors
- existence error(option, OptionName) if the option is not supported by PI.
- type error(Type, Value) if the option is supported but the value does not match the option type.
See must be/2.

The predicates below can be used in a development environment to inform the user about sup-
ported options. PceEmacs uses this for colouring option names and values.

current option arg(:PI, ?Arg) [nondet]

True when Arg of PI processes predicate options. Which options are processed can be accessed
using current predicate option/3.

SWI-Prolog 6.0 Reference Manual

366 APPENDIX A. THE SWI-PROLOG LIBRARY

current predicate options(:PI, ?Arg, ?Options) [nondet]

True when Options is the current active option declaration for PI on Arg. See
predicate options/3 for the argument descriptions. If PI is ground and refers to
an undefined predicate, the autoloader is used to obtain a definition of the predicate.

The library can execute a complete check of your program using
check predicate options/0:

check predicate options [det]

Analyse loaded program for errornous options. This predicate decompiles the current program
and searches for calls to predicates that process options. For each option list, it validates
whether the provided options are supported and validates the argument type. This predicate
performs partial dataflow analysis to track option-lists inside a clause.

See also derive predicate options/0 can be used to derive declarations for
predicates that pass options. This predicate should normally be called before
check predicate options/0.

The library offers predicates that may be used to create declarations for your application. These
predicates are designed to cooperate with the module system.

derive predicate options [det]

Derive new predicate option declarations. This predicate analyses the loaded program to find
clauses that process options using one of the predicates from library(option) or passes
options to other predicates that are known to process options. The process is repeated until no
new declarations are retrieved.

See also autoload/0 may be used to complete the loaded program.

retractall predicate options [det]

Remove all dynamically (derived) predicate options.

derived predicate options(:PI, ?Arg, ?Options) [nondet]

True when Options is the current derived active option declaration for PI on Arg.

derived predicate options(+Module) [det]

Derive predicate option declarations for the given module and print them to the current output.

A.21 prolog xref: Cross-reference data collection library

This library collects information on defined and used objects in Prolog sourcefiles. Typically these are
predicates, but we expect the library to deal with other types of objects in the future. The library is a
building block for tools doing dependency tracking in applications. Dependency tracking is useful to
reveal the structure of an unknown program or detect missing components at compile-time, but also
for program transformation or minimising a program saved-state by only saving the reachable objects.

This section gives a partial description of the library API, providing some insight in how you can
use it for analysing your program. The library should be further modularized, moving its knowledge
about -for example- XPCE into a different file and allowing for adding knowledge about other libraries
such as Logtalk. Please do not consider this interface rock-solid.

SWI-Prolog 6.0 Reference Manual

A.21. PROLOG XREF: CROSS-REFERENCE DATA COLLECTION LIBRARY 367

The library is exploited by two graphical tools in the SWI-Prolog environment. The XPCE fron-
tend started by gxref/0 and described in section 3.7 and PceEmacs (section 3.4) which exploits this
library for its syntax colouring.

For all predicates described below, Source is the source that is processed. This is normally a
filename in any notation acceptable to the file loading predicates (see load files/2). Using the
hooks defined in section A.21.1 it can be anything else that can be translated into a Prolog stream
holding Prolog source text. Callable is a callable term (see callable/1). Callables do not carry a
module qualifier unless the referred predicate is not in the module defined Source.

xref source(+Source)
Gather information on Source. If Source has already been processed and is still up-to-date
according to the file timestamp, no action is taken. This predicate must be called on a file
before information can be gathered.

xref current source(?Source)
Source has been processed.

xref clean(+Source)
Remove the information gathered for Source

xref defined(?Source, ?Callable, -How)
Callable is defined in Source. How is one of

dynamic(Line) Declared dynamic at Line
thread local(Line) Declared thread local at Line
multifile(Line) Declared multifile at Line
local(Line) First clause at Line
foreign(Line) Foreign library loaded at Line
constraint(Line) CHR Constraint at Line
imported(File) Imported from File

xref called(?Source, ?Callable, ?By)
Callable is called in Source by By.

xref exported(?Source, ?Callable)
Callable is public (exported from the module).

xref module(?Source, ?Module)
Source is a module-file defining the given module.

xref built in(?Callable)
True if Callable is a built-in predicate. Currently this is assumed for all predicates defined in
the system module and having the property built in. Built-in predicates are not registered
as ‘called’.

A.21.1 Extending the library

The library provides hooks for extending its rules it uses for finding predicates called by some pro-
gramming construct.

SWI-Prolog 6.0 Reference Manual

368 APPENDIX A. THE SWI-PROLOG LIBRARY

prolog:called by(+Goal, -Called)
Where Goal is a non-var subgoal appearing in called object (typically a clause-body). If it suc-
ceeds it must return a list of goals called by Goal. As a special construct, if a termCallable+N
is returned, N variable arguments are added to Callable before further processing. For simple
meta-calls a single fact suffices. Complex rules as used in the html write library provided
by the HTTP package examine the arguments and create a list of called objects.

The current system cannot deal with the same name/arity in different modules that behave dif-
ferently with respect to called arguments.

A.22 library(random): Random numbers
author R.A. O’Keefe, V.S. Costa, L. Damas, Jan Wielemaker
See also Built-in function random/1: A is random(10)
copyright DEC10 version: Public domain, YAP: Artistic

This library is derived from the DEC10 library random. Later, the core random generator was
moved to C. The current version uses the SWI-Prolog arithmetic functions to realise this library.
These functions are based on the GMP library.

random(-R:float) [det]

Binds R to a new random number in [0.0,1.0).

See also
- setrand/1, getrand/1 maye be used to fetch/set the state.
- In SWI-Prolog, random/1 is implemented by the function random float/0.

random(+L:int, +U:int, -R:int) [det]

random(+L:float, +U:float, -R:float) [det]

Binds R to a random number in [L,U). If L and U are both integers, R is an integer, Otherwise,
R is a float. Note that U will never be generated.

setrand(+State) [det]

getrand(-State) [det]

Query/set the state of the random generator. This is intended for restarting the generator
at a known state only. The predicate setrand/1 accepts an opaque term returned by
getrand/1. This term may be asserted, written and read. The application may not make
other assumptions about this term.

For compatibility reasons with older versions of this library, setrand/1 also accepts a term
rand(A,B,C), where A, B and C are integers in the range 1..30,000. This argument is used to
seed the random generator. Deprecated.

Errors existence error(random state,) is raised if the underlying infrastructure cannot fetch the ran-
dom state. This is currently the case if SWI-Prolog is not compiled with the GMP library.

See also set random/1 and random property/1 provide the SWI-Prolog native implementa-
tion.

maybe [semidet]

Succeed/fail with equal probability (variant of maybe/1).

SWI-Prolog 6.0 Reference Manual

A.22. LIBRARY(RANDOM): RANDOM NUMBERS 369

maybe(+P) [semidet]

Succeed with probability P, fail with probability 1-P

maybe(K, N) [semidet]

Succeed with probability K/N (variant of maybe/1)

random perm2(?A, ?B, ?X, ?Y) [semidet]

Does X=A,Y=B or X=B,Y=A with equal probability.

random member(-X, +List:list) [det]

X is a random member of List. Implemented by taking a random integer in the range [0, |List|],
followed by nth0/3.

Compatibility Quintus and SICStus libraries.

random select(-X, +List, -Rest) [det]

random select(+X, -List, +Rest) [det]

Randomly select or insert an element. Either List or Rest must be a list.

Compatibility Quintus and SICStus libraries.

randset(+K:int, +N:int, -S:list(int)) [det]

S is a sorted list of K unique random integers in the range 1..N. Implemented by enumerating
1..N and deciding whether or not the number should be part of the set. For example:

?- randset(5, 5, S).
S = [1, 2, 3, 4, 5]. (always)
?- randset(5, 20, S).
S = [2, 7, 10, 19, 20].

See also randseq/3.
bug Slow if N is large and K is small.

randseq(+K:int, +N:int, -List:list(int)) [det]

S is a list of K unique random integers in the range 1..N. The order is random. Works as if
defined by the following code.

randseq(K, N, List) :-
randset(K, N, Set),
random_permutation(Set, List).

See also randset/3.

random permutation(+List, -Permutation) [det]

random permutation(-List, +Permutation) [det]

Permutation is a random permutation of List. This is intended to process the elements of List
in random order. The predicate is symetric.

Errors instantiation error, type error(list,).

SWI-Prolog 6.0 Reference Manual

370 APPENDIX A. THE SWI-PROLOG LIBRARY

A.23 readutil: Reading lines, streams and files

This library contains primitives to read lines, files, multiple terms, etc. The package clib provides
a shared object (DLL) named readutil. If the library can locate this shared object it will use the
foreign implementation for reading character codes. Otherwise it will use a Prolog implementation.
Distributed applications should make sure to deliver the readutil shared object if performance of
these predicates is critical.

read line to codes(+Stream, -Codes)
Read the next line of input from Stream and unify the result with Codes after the line has been
read. A line is ended by a newline character or end-of-file. Unlike read line to codes/3,
this predicate removes trailing newline character.

On end-of-file the atom end of file is returned. See also at end of stream/[0,1].

read line to codes(+Stream, -Codes, ?Tail)
Diference-list version to read an input line to a list of character codes. Reading stops at the
newline or end-of-file character, but unlike read line to codes/2, the newline is retained
in the output. This predicate is especially useful for readine a block of lines upto some
delimiter. The following example reads an HTTP header ended by a blank line:

read_header_data(Stream, Header) :-
read_line_to_codes(Stream, Header, Tail),
read_header_data(Header, Stream, Tail).

read_header_data("\r\n", _, _) :- !.
read_header_data("\n", _, _) :- !.
read_header_data("", _, _) :- !.
read_header_data(_, Stream, Tail) :-

read_line_to_codes(Stream, Tail, NewTail),
read_header_data(Tail, Stream, NewTail).

read stream to codes(+Stream, -Codes)
Read all input until end-of-file and unify the result to Codes.

read stream to codes(+Stream, -Codes, ?Tail)
Difference-list version of read stream to codes/2.

read file to codes(+Spec, -Codes, +Options)
Read a file to a list of character codes. Spec is a file-specification for
absolute file name/3. Codes is the resulting code-list. Options is a list of op-
tions for absolute file name/3 and open/4. In addition, the option tail(Tail) is
defined, forming a difference-list.

read file to terms(+Spec, -Terms, +Options)
Read a file to a list of prolog terms (see read/1). Spec is a file-specification for
absolute file name/3. Terms is the resulting list of Prolog terms. Options is a
list of options for absolute file name/3 and open/4. In addition, the option
tail(Tail) is defined, forming a difference-list.

SWI-Prolog 6.0 Reference Manual

A.24. RECORD: ACCESS NAMED FIELDS IN A TERM 371

A.24 record: Access named fields in a term

The library record provides named access to fields in a record represented as a compound term such
as point(X, Y). The Prolog world knows various approaches to solve this problem, unfortunately
with no consensus. The approach taken by this library is proposed by Richard O’Keefe on the SWI-
Prolog mailinglist.

The approach automates a technique commonly described in Prolog text-books, where access-
and modification predicates are defined for the record type. Such predicates are subject to normal im-
port/export as well as analysis by cross-referencers. Given the simple nature of the access predicates,
an optimizing compiler can easily inline them for optimal preformance.

A record is defined using the directive record/1. We introduce the library with a short example:

:- record point(x:integer=0, y:integer=0).

...,
default_point(Point),
point_x(Point, X),
set_x_of_point(10, Point, Point1),

make_point([y(20)], YPoint),

The principal functor and arity of the term used defines the name and arity of the compound used as
records. Each argument is described using a term of the format below.

〈name〉[:〈type〉][=〈default〉]

In this definition, 〈name〉 is an atom defining the name of the argument. 〈type〉 is an optional type
specification as defined by must be/2 from library error and 〈default〉 is the default initial value.
The 〈type〉 defaults to any. If no default value is specified the default is an unbound variable.

A record declaration creates a set of predicates through term-expansion. We describe these predi-
cates below. In this description, 〈constructor〉 refers to the name of the record (‘point’ in the example
above) and 〈name〉 to the name of an argument (field).

• default 〈constructor〉(-Record)
Create a new record where all fields have their default values. This is the same as
make 〈constructor〉([], Record).

• make 〈constructor〉(+Fields, -Record)
Create a new record where specified fields have the specified values and remaining fields have
their default value. Each field is specified as a term 〈name〉(〈value〉). See example in the
introduction.

• make 〈constructor〉(+Fields, -Record, -RestFields)
Same as make 〈constructor〉/2, but named fields that do not appear in Record are returned in
RestFields. This predicate is motivated by option-list processing. See library option.

• 〈constructor〉 〈name〉(Record, Value)
Unify Value with argument in Record named 〈name〉.2

2Note this is not called ‘get ’ as it performs unification and can perfectly well instantiate the argument.

SWI-Prolog 6.0 Reference Manual

372 APPENDIX A. THE SWI-PROLOG LIBRARY

• set 〈name〉 of 〈constructor〉(+Value, +OldRecord, -NewRecord)
Replace the value for 〈name〉 in OldRecord by Value and unify the result with NewRecord.

• set 〈name〉 of 〈constructor〉(+Value, !Record)
Destructively replace the argument 〈name〉 in Record by Value based on setarg/3. Use with
care.

• nb set 〈name〉 of 〈constructor〉(+Value, !Record)
As above, but using non-backtrackable assignment based on nb setarg/3. Use with extreme
care.

• set 〈constructor〉 fields(+Fields, +Record0, -Record)
Set multiple fields using the same syntax as make 〈constructor〉/2, but starting with Record0
rather than the default record.

• set 〈constructor〉 fields(+Fields, +Record0, -Record, -RestFields)
Similar to set 〈constructor〉 fields/4, but fields not defined by 〈constructor〉 are returned in
RestFields.

• set 〈constructor〉 field(+Field, +Record0, -Record)
Set a single field specified as a term 〈name〉(〈value〉).

record(+Spec)
The construct :- record Spec, ... is used to define access to named fields in a com-
pound. It is subject to term-expansion (see expand term/2) and cannot be called as a
predicate. See section A.24 for details.

A.25 registry: Manipulating the Windows registry

The registry is only available on the MS-Windows version of SWI-Prolog. It loads the foreign
extension plregtry.dll, providing the predicates described below. This library only makes the
most common operations on the registry available through the Prolog user. The underlying DLL
provides a more complete coverage of the Windows registry API. Please consult the sources in pl/
src/win32/foreign/plregtry.c for further details.

In all these predicates, Path refers to a ‘/’ separated path into the registry. This is not an atom
containing ‘/’-characters as used for filenames, but a term using the functor //2. Windows defines the
following roots for the registry: classes root, current user, local machine and users

registry get key(+Path, -Value)
Get the principal (default) value associated to this key. Fails silently of the key does not exist.

registry get key(+Path, +Name, -Value)
Get a named value associated to this key.

registry set key(+Path, +Value)
Set the principal (default) value of this key. Creates (a path to) the key if this does not already
exist.

registry set key(+Path, +Name, +Value)
Associated a named value to this key. Creates (a path to) the key if this does not already exist.

SWI-Prolog 6.0 Reference Manual

A.26. SIMPLEX: SOLVE LINEAR PROGRAMMING PROBLEMS 373

registry delete key(+Path)
Delete the indicated key.

shell register file type(+Ext, +Type, +Name, +OpenAction)
Register a file-type. Ext is the extension to associate. Type is the type name, often something
link prolog.type. Name is the name visible in the Windows file-type browser. Finally,
OpenAction defines the action to execute when a file with this extension is opened in the
Windows explorer.

shell register dde(+Type, +Action, +Service, +Topic, +Command, +IfNotRunning)
Associate DDE actions to a type. Type is the same type as used for the 2nd argument of
shell register file type/4, Action is the a action to perform, Service and Topic
specify the DDE topic to address and Command is the command to execute on this topic.
Finally, IfNotRunning defines the command to execute if the required DDE server is not
present.

shell register prolog(+Ext)
Default registration of SWI-Prolog, which is invoked as part of the initialisation process on
Windows systems. As the source also explains the above predicates, it is given as an example:

shell_register_prolog(Ext) :-
current_prolog_flag(argv, [Me|_]),
concat_atom([’"’, Me, ’" "%1"’], OpenCommand),
shell_register_file_type(Ext, ’prolog.type’, ’Prolog Source’,

OpenCommand),
shell_register_dde(’prolog.type’, consult,

prolog, control, ’consult(’’%1’’)’, Me),
shell_register_dde(’prolog.type’, edit,

prolog, control, ’edit(’’%1’’)’, Me).

A.26 simplex: Solve linear programming problems

Author: Markus Triska

A linear programming problem consists of a set of (linear) constraints, a number of variables and a
linear objective function. The goal is to assign values to the variables so as to maximize (or minimize)
the value of the objective function while satisfying all constraints.

Many optimization problems can be modeled in this way. Consider having a knapsack with fixed
capacity C, and a number of items with sizes s(i) and values v(i). The goal is to put as many items as
possible in the knapsack (not exceeding its capacity) while maximizing the sum of their values.

As another example, suppose you are given a set of coins with certain values, and you are to find
the minimum number of coins such that their values sum up to a fixed amount. Instances of these
problems are solved below.
The simplex module provides the following predicates:

assignment(+Cost, -Assignment)
Cost is a list of lists representing the quadratic cost matrix, where element (i,j) denotes the cost

SWI-Prolog 6.0 Reference Manual

374 APPENDIX A. THE SWI-PROLOG LIBRARY

of assigning entity i to entity j. An assignment with minimal cost is computed and unified with
Assignment as a list of lists, representing an adjacency matrix.

constraint(+Constraint, +S0, -S)
Adds a linear or integrality constraint to the linear program corresponding to state S0. A
linear constraint is of the form ”Left Op C”, where ”Left” is a list of Coefficient*Variable
terms (variables in the context of linear programs can be atoms or compound terms) and
C is a non-negative numeric constant. The list represents the sum of its elements. Op can
be =, =¡ or ¿=. The coefficient ”1” can be omitted. An integrality constraint is of the form
integral(Variable) and constrains Variable to an integral value.

constraint(+Name, +Constraint, +S0, -S)
Like constraint/3, and attaches the name Name (an atom or compound term) to the new
constraint.

constraint add(+Name, +Left, +S0, -S)
Left is a list of Coefficient*Variable terms. The terms are added to the left-hand side of the
constraint named Name. S is unified with the resulting state.

gen state(-State)
Generates an initial state corresponding to an empty linear program.

maximize(+Objective, +S0, -S)
Maximizes the objective function, stated as a list of ”Coefficient*Variable” terms that repre-
sents the sum of its elements, with respect to the linear program corresponding to state S0. S is
unified with an internal representation of the solved instance.

minimize(+Objective, +S0, -S)
Analogous to maximize/3.

objective(+State, -Objective)
Unifies Objective with the result of the objective function at the obtained extremum. State must
correspond to a solved instance.

shadow price(+State, +Name, -Value)
Unifies Value with the shadow price corresponding to the linear constraint whose name is
Name. State must correspond to a solved instance.

transportation(+Supplies, +Demands, +Costs, -Transport)
Supplies and Demands are both lists of positive numbers. Their respective sums must be equal.
Costs is a list of lists representing the cost matrix, where an entry (i,j) denotes the cost of
transporting one unit from i to j. A transportation plan having minimum cost is computed and
unified with Transport in the form of a list of lists that represents the transportation matrix,
where element (i,j) denotes how many units to ship from i to j.

variable value(+State, +Variable, -Value)
Value is unified with the value obtained for Variable. State must correspond to a solved instance.

All numeric quantities are converted to rationals via rationalize/1, and rational arithmetic is
used throughout solving linear programs. In the current implementation, all variables are implicitly
constrained to be non-negative. This may change in future versions, and non-negativity constraints
should therefore be stated explicitly.

SWI-Prolog 6.0 Reference Manual

A.26. SIMPLEX: SOLVE LINEAR PROGRAMMING PROBLEMS 375

A.26.1 Example 1

This is the ”radiation therapy” example, taken from ”Introduction to Operations Research” by Hillier
and Lieberman. DCG notation is used to implicitly thread the state through posting the constraints:

:- use_module(library(simplex)).

post_constraints -->
constraint([0.3*x1, 0.1*x2] =< 2.7),
constraint([0.5*x1, 0.5*x2] = 6),
constraint([0.6*x1, 0.4*x2] >= 6),
constraint([x1] >= 0),
constraint([x2] >= 0).

radiation(S) :-
gen_state(S0),
post_constraints(S0, S1),
minimize([0.4*x1, 0.5*x2], S1, S).

An example query:

?- radiation(S), variable_value(S, x1, Val1), variable_value(S, x2, Val2).

Val1 = 15 rdiv 2
Val2 = 9 rdiv 2 ;

A.26.2 Example 2

Here is an instance of the knapsack problem described above, where C = 8, and we have two types of
items: One item with value 7 and size 6, and 2 items each having size 4 and value 4. We introduce
two variables, x(1) and x(2) that denote how many items to take of each type.

knapsack_constrain(S) :-
gen_state(S0),
constraint([6*x(1), 4*x(2)] =< 8, S0, S1),
constraint([x(1)] =< 1, S1, S2),
constraint([x(2)] =< 2, S2, S).

knapsack(S) :-
knapsack_constrain(S0),
maximize([7*x(1), 4*x(2)], S0, S).

An example query yields:

?- knapsack(S), variable_value(S, x(1), X1), variable_value(S, x(2), X2).

SWI-Prolog 6.0 Reference Manual

376 APPENDIX A. THE SWI-PROLOG LIBRARY

X1 = 1
X2 = 1 rdiv 2 ;

That is, we are to take the one item of the first type, and half of one of the items of the other type to
maximize the total value of items in the knapsack.

If items can not be split, integrality constraints have to be imposed:

knapsack_integral(S) :-
knapsack_constrain(S0),
constraint(integral(x(1)), S0, S1),
constraint(integral(x(2)), S1, S2),
maximize([7*x(1), 4*x(2)], S2, S).

Now the result is different:

?- knapsack_integral(S), variable_value(S, x(1), X1), variable_value(S, x(2), X2).

X1 = 0
X2 = 2

That is, we are to take only the two items of the second type. Notice in particular that always choosing
the remaining item with best performance (ratio of value to size) that still fits in the knapsack does not
necessarily yield an optimal solution in the presence of integrality constraints.

A.26.3 Example 3

We are given 3 coins each worth 1, 20 coins each worth 5, and 10 coins each worth 20 units of money.
The task is to find a minimal number of these coins that amount to 111 units of money. We introduce
variables c(1), c(5) and c(20) denoting how many coins to take of the respective type:

coins -->
constraint([c(1), 5*c(5), 20*c(20)] = 111),
constraint([c(1)] =< 3),
constraint([c(5)] =< 20),
constraint([c(20)] =< 10),
constraint([c(1)] >= 0),
constraint([c(5)] >= 0),
constraint([c(20)] >= 0),
constraint(integral(c(1))),
constraint(integral(c(5))),
constraint(integral(c(20))),
minimize([c(1), c(5), c(20)]).

coins(S) :-
gen_state(S0),
coins(S0, S).

SWI-Prolog 6.0 Reference Manual

A.27. LIBRARY(THREAD POOL): RESOURCE BOUNDED THREAD MANAGEMENT377

An example query:

?- coins(S), variable_value(S, c(1), C1), variable_value(S, c(5), C5), variable_value(S, c(20), C20).

C1 = 1
C5 = 2
C20 = 5

A.27 library(thread pool): Resource bounded thread management

See also http handler/3 and http spawn/2.

The module library(thread pool) manages threads in pools. A pool defines properties of its
member threads and the maximum number of threads that can coexist in the pool. The call
thread create in pool/4 allocates a thread in the pool, just like thread create/3. If
the pool is fully allocated it can be asked to wait or raise an error.

The library has been designed to deal with server application that recieve a variety of requests,
such as HTTP servers. Simply starting a thread for each request is a bit too simple minded for such
servers:

• Creating many CPU intensive threads often leads to a slow-down rather than a speedup.

• Creating many memory intensive threads may exhaust resources

• Tasks that require little CPU and memory but take long waiting for external resources can run
many threads.

Using this library, one can define a pool for each set of tasks with comparable characteristics
and create threads in this pool. Unlike the worker-pool model, threads are not started immediately.
Depending on the design, both approaches can be attractive.

The library is implemented by means of a manager thread with the fixed thread id
__thread_pool_manager. All state is maintained in this manager thread, which receives and
processes requests to create and destroy pools, create threads in a pool and handle messages from
terminated threads. Thread pools are not saved in a saved state and must therefore be recreated using
the initialization/1 directive or otherwise during startup of the application.

thread pool create(+Pool, +Size, +Options) [det]

Create a pool of threads. A pool of threads is a declaration for creating threads with shared
properties (stack sizes) and a limited number of threads. Threads are created using
thread create in pool/4. If all threads in the pool are in use, the behaviour depends
on the wait option of thread create in pool/4 and the backlog option described
below. Options are passed to thread create/3, except for

SWI-Prolog 6.0 Reference Manual

378 APPENDIX A. THE SWI-PROLOG LIBRARY

backlog(+MaxBackLog)
Maximum number of requests that can be suspended. Default is infinite. Otherwise
it must be a non-negative integer. Using backlog(0) will never delay thread creation for
this pool.

The pooling mechanism does not interact with the detached state of a thread. Threads can
be created both detached and normal and must be joined using thread join/2 if they are
not detached.

bug The thread creation option at_exit is reserved for internal use by this library.

thread pool destroy(+Name) [det]

Destroy the thread pool named Name.

Errors existence error(thread pool, Name).

current thread pool(?Name) [nondet]

True if Name refers to a defined thread pool.

thread pool property(?Name, ?Property) [nondet]

True if Property is a property of thread pool Name. Defined properties are:

options(Options)
Thread creation options for this pool

free(Size)
Number of free slots on this pool

size(Size)
Total number of slots on this pool

members(ListOfIDs)
ListOfIDs is the list or threads running in this pool

running(Running)
Number of running threads in this pool

backlog(Size)
Number of delayed thread creations on this pool

thread create in pool(+Pool, :Goal, -Id, +Options) [det]

Create a thread in Pool. Options overrule default thread creation options associated to the pool.
In addition, the following option is defined:

wait(+Boolean)
If true (default) and the pool is full, wait until a member of the pool completes. If
false, throw a resource error.

Errors
- resource error(threads in pool(Pool)) is raised if wait is false or the backlog limit has been
reached.
- existence error(thread pool, Pool) if Pool does not exist.

SWI-Prolog 6.0 Reference Manual

A.28. UGRAPHS: UNWEIGHTED GRAPHS 379

A.28 ugraphs: Unweighted Graphs

Authors: Richard O’Keefe & Vitor Santos Costa

Implementation and documentation are copied from YAP 5.0.1. The ugraph library is
based on code originally written by Richard O’Keefe. The code was then extended to be
compatible with the SICStus Prolog ugraphs library. Code and documentation have been
cleaned and style has been changed to be more in line with the rest of SWI-Prolog.

The ugraphs library was originally released in the public domain. YAP is convered by the
Perl artistic license, which does not imply further restrictions on the SWI-Prolog LGPL
license.

The routines assume directed graphs, undirected graphs may be implemented by using two edges.
Originally graphs where represented in two formats. The SICStus library and this version of

ugraphs.pl only uses the S-representation. The S-representation of a graph is a list of (vertex-
neighbors) pairs, where the pairs are in standard order (as produced by keysort) and the neighbors
of each vertex are also in standard order (as produced by sort). This form is convenient for many
calculations. Each vertex appears in the S-representation, also if it has no neighbors.

vertices edges to ugraph(+Vertices, +Edges, -Graph)
Given a graph with a set of Vertices and a set of Edges, Graph must unify with the correspond-
ing S-representation. Note that the vertices without edges will appear in Vertices but not in
Edges. Moreover, it is sufficient for a vertice to appear in Edges.

?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L).
L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[]]

In this case all vertices are defined implicitly. The next example shows three unconnected
vertices:

?- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5], L).
L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[], 6-[], 7-[], 8-[]] ?

vertices(+Graph, -Vertices)
Unify Vertices with all vertices appearing in graph Graph. Example:

?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[]], L).
L = [1, 2, 3, 4, 5]

edges(+Graph, -Edges)
Unify Edges with all edges appearing in Graph. In the next example:

?- edges([1-[3,5],2-[4],3-[],4-[5],5-[]], L).
L = [1-3, 1-5, 2-4, 4-5]

SWI-Prolog 6.0 Reference Manual

380 APPENDIX A. THE SWI-PROLOG LIBRARY

add vertices(+Graph, +Vertices, -NewGraph)
Unify NewGraph with a new graph obtained by adding the list of Vertices to the Graph. Exam-
ple:

?- add_vertices([1-[3,5],2-[]], [0,1,2,9], NG).
NG = [0-[], 1-[3,5], 2-[], 9-[]]

del vertices(+Graph, +Vertices, -NewGraph)
Unify NewGraph with a new graph obtained by deleting the list of Vertices and all the edges
that start from or go to a vertex in Vertices to the Graph. Example:

?- del_vertices([2,1],
[1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[2,6],8-[]],
NL).

NL = [3-[],4-[5],5-[],6-[],7-[6],8-[]]

add edges(+Graph, +Edges, -NewGraph)
Unify NewGraph with a new graph obtained by adding the list of edges Edges to the graph
Graph. Example:

?- add_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]],
[1-6,2-3,3-2,5-7,3-2,4-5],
NL).

NL = [1-[3,5,6], 2-[3,4], 3-[2], 4-[5], 5-[7], 6-[], 7-[], 8-[]]

del edges(+Graph, +Edges, -NewGraph)
Unify NewGraph with a new graph obtained by removing the list of Edges from the Graph.
Notice that no vertices are deleted. In the next example:

?- del_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]],
[1-6,2-3,3-2,5-7,3-2,4-5,1-3],
NL).

NL = [1-[5],2-[4],3-[],4-[],5-[],6-[],7-[],8-[]]

transpose(+Graph, -NewGraph)
Unify NewGraph with a new graph obtained from Graph by replacing all edges of the form
V1-V2 by edges of the form V2-V1. The cost is O(|V |2). Notice that an undirected graph is
its own transpose. Example:

?- transpose([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]], NL).
NL = [1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]

neighbours(+Vertex, +Graph, -Vertices)
Unify Vertices with the list of neighbours of vertex Vertex in Graph. Example:

SWI-Prolog 6.0 Reference Manual

A.28. UGRAPHS: UNWEIGHTED GRAPHS 381

?- neighbours(4,[1-[3,5],2-[4],3-[],
4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL).

NL = [1,2,7,5]

neighbors(+Vertex, +Graph, -Vertices)
American version of neighbours/3.

complement(+Graph, -NewGraph)
Unify NewGraph with the graph complementary to Graph. Example:

?- complement([1-[3,5],2-[4],3-[],
4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL).

NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8],
4-[3,5,6,8],5-[1,2,3,4,6,7,8],6-[1,2,3,4,5,7,8],
7-[1,2,3,4,5,6,8],8-[1,2,3,4,5,6,7]]

compose(+LeftGraph, +RightGraph, -NewGraph)
Compose, by connecting the drains of LeftGraph to the sources of RightGraph. Example:

?- compose([1-[2],2-[3]],[2-[4],3-[1,2,4]],L).
L = [1-[4], 2-[1,2,4], 3-[]]

ugraph union(+Graph1, +Graph2, -NewGraph)
NewGraph is the union of Graph1 and Graph2. Example:

?- ugraph_union([1-[2],2-[3]],[2-[4],3-[1,2,4]],L).
L = [1-[2], 2-[3,4], 3-[1,2,4]]

top sort(+Graph, -Sort)
Generate the set of nodes Sort as a topological sorting of graph Graph, if one is possible. A
toplogical sort is possible if the graph is connected and acyclic. In the example we show how
topological sorting works for a linear graph:

?- top_sort([1-[2], 2-[3], 3-[]], L).
L = [1, 2, 3]

top sort(+Graph, -Sort0, -Sort)
Generate the difference list Sort-Sort0 as a topological sorting of graph Graph, if one is possi-
ble.

transitive closure(+Graph, -Closure)
Generate the graph Closure as the transitive closure of graph Graph. Example:

SWI-Prolog 6.0 Reference Manual

382 APPENDIX A. THE SWI-PROLOG LIBRARY

?- transitive_closure([1-[2,3],2-[4,5],4-[6]],L).
L = [1-[2,3,4,5,6], 2-[4,5,6], 4-[6]]

reachable(+Vertex, +Graph, -Vertices)
Unify Vertices with the set of all vertices in graph Graph that are reachable from Vertex. Exam-
ple:

?- reachable(1,[1-[3,5],2-[4],3-[],4-[5],5-[]],V).
V = [1, 3, 5]

A.29 library(url): Analysing and constructing URL
author

- Jan Wielemaker
- Lukas Faulstich

deprecated New code should use library(uri), provided by the clib package.

This library deals with the analysis and construction of a URL, Universal Resource Locator. URL
is the basis for communicating locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP, and a protocol-specific syntax further defining the location. URLs are
standardized in RFC-1738.

The implementation in this library covers only a small portion of the defined protocols. Though the
initial implementation followed RFC-1738 strictly, the current is more relaxed to deal with frequent
violations of the standard encountered in practical use.

global url(+URL, +Base, -Global) [det]

Translate a possibly relative URL into an absolute one.

Errors syntax error(illegal url) if URL is not legal.

is absolute url(+URL)
True if URL is an absolute URL. That is, a URL that starts with a protocol identifier.

http location(?Parts, ?Location)
Construct or analyze an HTTP location. This is similar to parse url/2, but only deals with
the location part of an HTTP URL. That is, the path, search and fragment specifiers. In the
HTTP protocol, the first line of a message is

<Action> <Location> HTTP/<version>

Parameters

Location Atom or list of character codes.

SWI-Prolog 6.0 Reference Manual

A.29. LIBRARY(URL): ANALYSING AND CONSTRUCTING URL 383

parse url(+URL, -Attributes) [det]

Construct or analyse a URL. URL is an atom holding a URL or a variable. Parts is a list of
components. Each component is of the format Name(Value). Defined components are:

protocol(Protocol)
The used protocol. This is, after the optional url:, an identifier separated from the
remainder of the URL using :. parse url/2 assumes the http protocol if no protocol
is specified and the URL can be parsed as a valid HTTP url. In addition to the RFC-1738
specified protocols, the file protocol is supported as well.

host(Host)
Host-name or IP-address on which the resource is located. Supported by all network-based
protocols.

port(Port)
Integer port-number to access on the \arg{Host}. This only appears if the port is explic-
itly specified in the URL. Implicit default ports (e.g., 80 for HTTP) do not appear in the
part-list.

path(Path)
(File-) path addressed by the URL. This is supported for the ftp, http and file
protocols. If no path appears, the library generates the path /.

search(ListOfNameValue)
Search-specification of HTTP URL. This is the part after the ?, normally used to transfer
data from HTML forms that use the GET protocol. In the URL it consists of a www-form-
encoded list of Name=Value pairs. This is mapped to a list of Prolog Name=Value terms
with decoded names and values.

fragment(Fragment)
Fragment specification of HTTP URL. This is the part after the # character.

The example below illustrates the all this for an HTTP URL.

?- parse_url(’http://swi.psy.uva.nl/message.cgi?msg=Hello+World%21#x’, P).

P = [protocol(http),
host(’swi.psy.uva.nl’),
fragment(x),
search([msg = ’Hello World!’

]),
path(’/message.cgi’)

]

By instantiating the parts-list this predicate can be used to create a URL.

parse url(+URL, +BaseURL, -Attributes) [det]

Similar to parse url/2 for relative URLs. If URL is relative, it is resolved using the absolute
URL BaseURL.

SWI-Prolog 6.0 Reference Manual

384 APPENDIX A. THE SWI-PROLOG LIBRARY

www form encode(+Value, -XWWWFormEncoded) [det]

www form encode(-Value, +XWWWFormEncoded) [det]

En/decode to/from application/x-www-form-encoded. Encoding encodes all characters except
RFC 3986 unreserved (ASCII alnum (see code type/2)), and one of ”-. ” using percent
encoding. Newline is mapped to %OD%OA. When decoding, newlines appear as a single
newline (10) character.

Note that a space is encoded as %20 instead of +. Decoding decodes both to a space.

deprecated Use uri encoded/3 for new code.

set url encoding(?Old, +New) [semidet]

Query and set the encoding for URLs. The default is utf8. The only other defined value is
iso_latin_1.

To be done Having a global flag is highly inconvenient, but a work-around for old sites using ISO
Latin 1 encoding.

url iri(+Encoded, -Decoded) [det]

url iri(-Encoded, +Decoded) [det]

Convert between a URL, encoding in US-ASCII and an IRI. An IRI is a fully expanded
Unicode string. Unicode strings are first encoded into UTF-8, after which %-encoding takes
place.

parse url search(?Spec, ?Fields:list(Name=Value)) [det]

Construct or analyze an HTTP search specification. This deals with form data using the MIME-
type =application/x-www-form-urlencoded= as used in HTTP GET requests.

file name to url(+File, -URL) [det]

file name to url(-File, +URL) [semidet]

Translate between a filename and a file:// URL.

To be done Current implementation does not deal with paths that need special encoding.

A.30 library(varnumbers): Utilities for numbered terms
See also numbervars/4, =@=/2 (variant/2).
Compatibility This library was introduced by Quintus and available in many related implementations, al-

though not with exactly the same set of predicates.

This library provides the inverse functionality of the built-in numbervars/3. Note that this
library suffers from the known issues that ’$VAR’(X) is a normal Prolog term and, -unlike the built-in
numbervars-, the inverse predicates do not process cyclic terms. The following predicate is true for
any acyclic term that contains no ’$VAR’(X), integer(X) terms and no constraint variables:

always_true(X) :-
copy_term(X, X2),
numbervars(X),
varnumbers(X, Copy),
Copy =@= X2.

SWI-Prolog 6.0 Reference Manual

A.30. LIBRARY(VARNUMBERS): UTILITIES FOR NUMBERED TERMS 385

numbervars(+Term) [det]

Number variables in Term using $VAR(N). Equivalent to numbervars(Term, 0,).

See also numbervars/3, numbervars/4

varnumbers(+Term, -Copy) [det]

Inverse of numbervars/1. Equivalent to varnumbers(Term, 0, Copy).

varnumbers(+Term, +Start, -Copy) [det]

Inverse of numbervars/3. True when copy is a copy of Term with all variables numbered
>= Start consistently replaced by fresh variables. Variables in Term are shared with Copy
rather than replaced by fresh variables.

Errors domain error(acyclic term, Term) if Term is cyclic.
Compatibility Quintus, SICStus. Not in YAP version of this library

max var number(+Term, +Start, -Max) [det]

True when Max is the max of Start and the highest numbered $VAR(N) term.

author Vitor Santos Costa
Compatibility YAP

SWI-Prolog 6.0 Reference Manual

Hackers corner B
This appendix describes a number of predicates which enable the Prolog user to inspect the Prolog
environment and manipulate (or even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described here should be handled with
some care as it is easy to corrupt the consistency of the Prolog system by misusing them.

B.1 Examining the Environment Stack

prolog current frame(-Frame)
Unify Frame with an integer providing a reference to the parent of the current local stack
frame. A pointer to the current local frame cannot be provided as the predicate succeeds
deterministically and therefore its frame is destroyed immediately after succeeding.

prolog frame attribute(+Frame, +Key, -Value)
Obtain information about the local stack frame Frame. Frame is a frame reference as ob-
tained through prolog current frame/1, prolog trace interception/4 or this
predicate. The key values are described below.

alternative
Value is unified with an integer reference to the local stack frame in which execution is
resumed if the goal associated with Frame fails. Fails if the frame has no alternative
frame.

has alternatives
Value is unified with true if Frame still is a candidate for backtracking. false other-
wise.

goal
Value is unified with the goal associated with Frame. If the definition module of the active
predicate is not user the goal is represented as 〈module〉:〈goal〉. Do not instantiate
variables in this goal unless you know what you are doing! Note that the returned term
may contain references to the frame and should be discarded before the frame terminates.1

parent goal
If Value is instantiated to a callable term, find a frame executing the predicate described
by Value and unify the arguments of Value to the goal arguments associated with the
frame. This is intended to check the current execution context. The user must ensure the
checked parent goal is not removed from the stack due to last-call optimisation and be
aware of the slow operation on deeply nested calls.

1The returned term is actually an illegal Prolog term that may hold references from the global- to the local stack to
preserve the variable names.

SWI-Prolog 6.0 Reference Manual

B.1. EXAMINING THE ENVIRONMENT STACK 387

predicate indicator
Similar to goal, but only returning the [〈module〉:]〈name〉/〈arity〉 term describing the
term, not the actual arguments. It avoids creating an illegal term as goal and is used by
the library prolog stack.

clause
Value is unified with a reference to the currently running clause. Fails if the current
goal is associated with a foreign (C) defined predicate. See also nth clause/3 and
clause property/2.

level
Value is unified with the recursion level of Frame. The top level frame is at level ‘0’.

parent
Value is unified with an integer reference to the parent local stack frame of Frame. Fails
if Frame is the top frame.

context module
Value is unified with the name of the context module of the environment.

top
Value is unified with true if Frame is the top Prolog goal from a recursive call back
from the foreign language. false otherwise.

hidden
Value is unified with true if the frame is hidden from the user, either because a parent
has the hide-childs attribute (all system predicates), or the system has no trace-me
attribute.

skipped
Value is true if this frame was skipped in the debugger.

pc
Value is unified with the program-pointer saved on behalf of the parent-goal if the parent-
goal is not owned by a foreign predicate.

argument(N)
Value is unified with the N-th slot of the frame. Argument 1 is the first argument of the
goal. Arguments above the arity refer to local variables. Fails silently if N is out of range.

prolog choice attribute(+ChoicePoint, +Key, -Value)
Extract attributes of a choice-point. ChoicePoint is a reference to a choice-point as passed
to prolog trace interception/4 on the 3-th argument. Key specifies the requested
information:

parent
Requests a reference to the first older choice-point.

frame
Requests a reference to the frame to which the choice-point refers.

type
Requests the type. Defined values are clause (the goal has alternative clauses),
foreign (non-deterministic foreign predicate), jump (clause internal choice-point),
top (first dummy choice-point), catch (catch/3 to allow for undo), debug (help the
debugger), or none (has been deleted).

SWI-Prolog 6.0 Reference Manual

388 APPENDIX B. HACKERS CORNER

This predicate is used for the graphical debugger to show the choice-point stack.

deterministic(-Boolean)
Unifies its argument with true if no choicepoint exists that is more recent than the entry of the
clause in which is appears. There are few realistic situations for using this predicate. It is used
by the prolog/0 toplevel to check whether Prolog should prompt the user for alternatives.
Similar results can be achieved in a more portable fashion using call cleanup/2.

B.2 Intercepting the Tracer

prolog trace interception(+Port, +Frame, +Choice, -Action)
Dynamic predicate, normally not defined. This predicate is called from the SWI-Prolog debug-
ger just before it would show a port. If this predicate succeeds the debugger assumes the trace
action has been taken care of and continues execution as described by Action. Otherwise the
normal Prolog debugger actions are performed.

Port denotes the reason to activate the tracer (‘port’ in the 4/5-port, but with some additions:

call
Normal entry through the call-port of the 4-port debugger.

redo
Normal entry through the call-port of the 4-port debugger. The redo port signals resum-
ing a predicate to generate alternative solutions.

unify
The unify-port represents the neck instruction, signalling the end of the head-matching
process. This port is normally invisible. See leash/1 and visible/1.

exit
The exit-port signals the goal is proved. It is possible for the goal to have alternative. See
prolog frame attribute/3 to examine the goal-stack.

fail
The fail-port signals final failure of the goal.

exception(Except)
An exception is raised and still pending. This port is activated on each parent frame of the
frame generating the exception until the exception is caught or the user restarts normal
computation using retry. Except is the pending exception-term.

break(PC)
A break instruction is executed. PC is program counter. This port is used by the graphi-
cal debugger.

cut call(PC)
A cut is encountered at PC. This port is used by the graphical debugger. to visualise the
effect of the cut.

cut exit(PC)
A cut has been executed. See cut call(PC) for more information.

Frame is a reference to the current local stack frame, which can be examined using
prolog frame attribute/3. Choice is a reference to the last choice-point and can be

SWI-Prolog 6.0 Reference Manual

B.2. INTERCEPTING THE TRACER 389

examined using prolog choice attribute/3. Action must be unified with a term that
specifies how execution must continue. The following actions are defined:

abort
Abort execution. See abort/0.

continue
Continue (i.e., creep in the commandline debugger).

fail
Make the current goal fail.

ignore
Step over the current goal without executing it.

nodebug
Continue execution in normal nodebugging mode. See nodebug/0.

retry
Retry the current frame.

retry(Frame)
Retry the given frame. This must be a parent of the current frame.

skip
Skip over the current goal (i.e., skip in the commandline debugger).

Together with the predicates described in section 4.36 and the other predicates of this chapter
this predicate enables the Prolog user to define a complete new debugger in Prolog. Besides
this it enables the Prolog programmer monitor the execution of a program. The example below
records all goals trapped by the tracer in the database.

prolog_trace_interception(Port, Frame, _PC, continue) :-
prolog_frame_attribute(Frame, goal, Goal),
prolog_frame_attribute(Frame, level, Level),
recordz(trace, trace(Port, Level, Goal)).

To trace the execution of ‘go’ this way the following query should be given:

?- trace, go, notrace.

prolog skip frame(-Frame)
Indicate Frame as a skipped frame and set the ‘skip level’ (see prolog skip level/2 to
the recursion depth of Frame. The effect of the skipped flag is that a redo on a child of this
frame is handled differently. First, a redo trace is called for the child, where the skip-level is
set to redo in skip. Next, the skip level is set to skip-level of the skipped frame.

prolog skip level(-Old, +New)
Unify Old with the old value of ‘skip level’ and than set this level according to New. New
is an integer, the atom very deep (meaning don’t skip) or the atom skip in redo
(see prolog skip frame/1). The ‘skip level’ is a setting of each Prolog thread that
disables the debugger on all recursion levels deeper than the level of the variable. See also
prolog skip frame/1.

SWI-Prolog 6.0 Reference Manual

390 APPENDIX B. HACKERS CORNER

B.3 Adding context to errors: prolog exception hook

The hook prolog exception hook/4 has been introduced in SWI-Prolog 5.6.5 to provide ded-
icated exception handling facilities for application frameworks. For example non-interactive server
applications that wish to provide extensive context for exceptions for offline debugging.

prolog exception hook(+ExceptionIn, -ExceptionOut, +Frame, +CatcherFrame)
This hook predicate, if defined in the module user, is between raising an exception and
handling it. It is intended to allow a program adding additional context to an exception to
simplify diagnosing the problem. ExceptionIn is the exception term as raised by throw/1 or
one of the bullt-in predicates. The output argument ExceptionOut describes the exception that
is actually raised. Frame is the innermost frame. See prolog frame attribute/3 and
the library prolog stack for getting information from this. CatcherFrame is a reference to
the frame calling the matching catch/3 or none of the exception is not caught.

The hook is run in ‘nodebug’ mode. If it succeeds ExceptionOut is considered the current
exception. If it fails, ExceptionIn is used for further processing. The hook is never called
recursively. The hook is not allowed to modify ExceptionOut in such as way that it no longer
unifies with the catching frame.

Typically, prolog exception hook/4 is used to fill the second argument of
error(Formal, Context) exceptions. Formal is defined by the ISO standard, while SWI-
Prolog defines Context as a term context(Location, Message). Location is bound to a term
〈name〉/〈arity〉 by the kernel. This hook can be used to add more information on the calling
context, such as a full stack trace.

Applications that use exceptions as part of normal processing must do a quick test of the envi-
ronment before starting expensive gathering information on the state of the program.

The hook can call trace/0 to enter trace mode immediately. For example imagine an appli-
cation performing an unwanted division by zero while all other errors are expected and handled.
We can force the debugger using the hook definition below. Run the program in debug mode
(see debug/0) to preserve as much as possible of the error context.

user:prolog_exception_hook(error(evaluation_error(zero_divisor), _),
_, _, _) :-

trace, fail.

B.4 Hooks using the exception predicate

This section describes the predicate exception/3, which can be defined by the user in the module
user as a multifile predicate. Unlike the name suggests, this is actually a hook predicate that has no
relation to Prolog exceptions as defined by the ISO predicates catch/3 and throw/1.

The predicate exception/3 is called by the kernel on a couple of events, allowing the user to
‘fix’ errors just-in-time. The mechanism allows for lazy creation of objects such as predicates.

exception(+Exception, +Context, -Action)
Dynamic predicate, normally not defined. Called by the Prolog system on run-time exceptions

SWI-Prolog 6.0 Reference Manual

B.5. HOOKS FOR INTEGRATING LIBRARIES 391

that can be repaired ‘just-in-time’. The values for Exception are described below. See also
catch/3 and throw/1.

If this hook predicate succeeds it must instantiate the Action argument to the atom fail to
make the operation fail silently, retry to tell Prolog to retry the operation or error to make
the system generate an exception. The action retry only makes sense if this hook modified
the environment such that the operation can now succeed without error.

undefined predicate
Context is instantiated to a predicate-indicator ([module]:〈name〉/〈arity〉). If the predicate
fails Prolog will generate an existence error exception. The hook is intended
to implement alternatives to the built-in autoloader, such as autoloading code from a
database. Do not use this hook to suppress existence errors on predicates. See also
unknown and section 2.13.

undefined global variable
Context is instantiated to the name of the missing global variable. The hook must call
nb setval/2 or b setval/2 before returning with the action retry.

B.5 Hooks for integrating libraries

Some libraries realise an entirely new programming paradigm on top of Prolog. An example is XPCE
which adds an object-system to Prolog as well as an extensive set of graphical primitives. SWI-Prolog
provides several hooks to improve the integration of such libraries. See also section 4.4 for editing
hooks and section 4.9.3 for hooking into the message system.

prolog list goal(:Goal)
Hook, normally not defined. This hook is called by the ’L’ command of the tracer in the
module user to list the currently called predicate. This hook may be defined to list only
relevant clauses of the indicated Goal and/or show the actual source-code in an editor. See also
portray/1 and multifile/1.

prolog:debug control hook(:Action)
Hook for the debugger-control predicates that allows the creator of more high-level program-
ming languages to use the common front-end predicates to control de debugger. For example,
XPCE uses these hooks to allow for spying methods rather then predicates. Action is one of:

spy(Spec)
Hook in spy/1. If the hook succeeds spy/1 takes no further action.

nospy(Spec)
Hook in nospy/1. If the hook succeeds spy/1 takes no further action. If spy/1 is
hooked, it is advised to place a complementary hook for nospy/1.

nospyall
Hook in nospyall/0. Should remove all spy-points. This hook is called in a failure-
driven loop.

debugging
Hook in debugging/0. It can be used in two ways. It can report the status of the
additional debug-points controlled by the above hooks and fail to let the system report the
others or it succeed, overruling the entire behaviour of debugging/0.

SWI-Prolog 6.0 Reference Manual

392 APPENDIX B. HACKERS CORNER

prolog:help hook(+Action)
Hook into help/0 and help/1. If the hook succeeds, the built-in actions are not executed.
For example, ?- help(picture). is caught by the XPCE help-hook to give help on the
class picture. Defined actions are:

help
User entered plain help/0 to give default help. The default performs help(help/1),
giving help on help.

help(What)
Hook in help/1 on the topic What.

apropos(What)
Hook in apropos/1 on the topic What.

B.6 Hooks for loading files

All loading of source-files is achieved by load files/2. The hook prolog load file/2 can
be used to load Prolog code from non-files or even load entirely different information, such as foreign
files.

prolog load file(+Spec, +Options)
Load a single object. If this call succeeds, load files/2 assumes the action has been taken
care of. This hook is only called if Options does not contain the stream(Input) option. The
hook must be defined in the module user.

The http load provides an example, loading Prolog sources directly from an HTTP server.

prolog:comment hook(+Comments, +Pos, +Term)
This hook allows for processing —structured— comments encountered by the compiler. The
reader collects all comments found from the current position to the end of the next term. It
calls this hook providing a list of Position-Comment in Comments, the start-position of the
next term in Pos and the next term itself in Term. All positions are stream-position terms. This
hook is exploited by the documentation system. See stream position data/3. See also
read term/3.

B.7 Readline Interaction

The following predicates are available if SWI-Prolog is linked to the GNU readline library. This is by
default the case on non-Windows installations and indicated by the Prolog flag readline.2 See also
readline(3)

rl read init file(+File)
Read a readline initialisation file. Readline by default reads ˜/.inputrc. This predicate
may be used to read alternative readline initialisation files.

rl add history(+Line)
Add a line to the Control-P/Control-N history system of the readline library.

2swipl-win.exe uses its own history system and does not support these predicates.

SWI-Prolog 6.0 Reference Manual

B.7. READLINE INTERACTION 393

rl write history(+FileName)
Write current history to FileName. Can be used from at halt/1 to save the history.

rl read history(+FileName)
Read history from FileName, appending to the current history.

SWI-Prolog 6.0 Reference Manual

Compatibility with other
Prolog dialects C
This chapter explains issues for writing portable Prolog programs. It was started after discussion with
Vitor Santos Costa, the leading developer of YAP Prolog1 YAP and SWI-Prolog have expressed the
ambition to enhance the portability beyond the trivial Prolog examples, including complex libraries
involving foreign code.

Although it is our aim to enhance compatibility, we are still faced with many incompatibilities
between the dialects. As a first step both YAP and SWI will provide some instruments that help
developing portable code. A first release of these tools appeared in SWI-Prolog 5.6.43. Some of the
facilities are implemented in the base system. Others in the library dialect.pl.

• The Prolog flag dialect is an unambiguous and fast way to find out which Prolog dialect
executes your program. It has the value swi for SWI-Prolog and yap on YAP.

• The Prolog flag version data is bound to a term swi(Major, Minor, Patch, Extra)

• Conditional compilation using :- if(Condition) . . .:- endif is supported. See sec-
tion 4.3.1.

• The predicate expects dialect/1 allows for specifying for which Prolog system the code
was written.

• The predicates exists source/1 and source exports/2 can be used to query the li-
brary content. The require/1 directive can be used to get access to predicates without know-
ing their location.

• The module predicates use module/1, use module/2 have been extended with a notion
for ‘import-except’ and ‘import-as’. This is particulary useful together with reexport/1 and
reexport/2 to compose modules from other modules and mapping names.

• Foreign code can expect SWI PROLOG when compiled for SWI-Prolog and
YAP PROLOG when compiled on YAP.

:- expects dialect(+Dialect)
This directive states that the code following the directive is written for the given Prolog Dialect.
See also dialect. The declaration holds until the end of the file in which it appears. The
current dialect is available using prolog load context/2.

The exact behaviour of this predicate is still subject to discussion. Of course, if Dialect
matches the running dialect the directive has no effect. Otherwise we check for the existence of
library(dialect/Dialect) and load it if the file is found. Currently, this file has this function-
ality:

1http://yap.sourceforge.net/

SWI-Prolog 6.0 Reference Manual

C.1. SOME CONSIDERATIONS FOR WRITING PORTABLE CODE 395

• Define system predicates of the requested dialect we do not have.

• Apply goal expansion/2 rules that map conflicting predicates to versions emulating
the requested dialect. These expansion rules reside in the dialect compatibility module,
but are applied if prolog load context(dialect, Dialect) is active.

• Modify the search path for library directories, putting libraries compatible with the target
dialect before the native libraries.

• Setup support for the default filename extension of the dialect.

exists source(+Spec)
Is true if Spec exists as a Prolog source. Spec uses the same conventions as load files/2.
Fails without error if Spec cannot be found.

source exports(+Spec, +Export)
Is true if source Spec exports Export, a predicate indicator. Fails without error otherwise.

C.1 Some considerations for writing portable code

The traditional way to write portable code is to define custom predicates for all potentially non-
portable code and define these separately for all Prolog dialects one wishes to support. Here are some
considerations.

• Probably the best reason for this is that it allows to define minimal semantics required by the
application for the portability predicates. Such functionality can often be mapped efficiently to
the target dialect. Contrary, if code was written for dialect X , the defined semantics are those
of dialect X . Emulating all extreme cases and full error handling compatibility may be tedious
and result in a much slower implementation that needed. Take for example call cleanup/2.
The SICStus definition is fundamentally different from the SWI definition, but 99% of the appli-
cations just want to make calls like below to guarantee StreamIn is closed, even if process/1
misbehaves.

call_cleanup(process(StreamIn), close(In))

• As a drawback, the code becomes full of my call cleanup, etc. and every potential portability
conflict needs to be abstracted. It is hard for people who have to maintain such code later to
grasp the exact semantics of the my * predicates and applications that combine multiple libraries
using this compatibility approach are likely to encounter conflicts between the portability layers.
A good start is not to use my *, but a prefix derived from the library or application name or
names that explain the intended semantics more precisely.

• Another problem is that most code is initially not written with portability in mind. Instead,
ports are requested by users or arise from the desire to switch Prolog dialect. Typically, we
want to achieve compatibility with the new Prolog dialect with minimal changes, often keeping
compatibility with the original dialect(s). This problem is well known from the C/Unix world
and we advice anyone to study the philosophy of GNU autoconf, from which we will illustrate
some highlights below.

SWI-Prolog 6.0 Reference Manual

396 APPENDIX C. COMPATIBILITY WITH OTHER PROLOG DIALECTS

The GNU autoconf suite, known to most people as configure, was an answer to the frustrating
life of Unix/C programmers when Unix dialects were about as abundant and poorly standardised as
Prolog dialects today. Writing a portable C program can only be achieved using cpp, the C preproces-
sor. The C preprocessor performs two tasks: macro expansion and conditional compilation. Prolog
realises macro expansion through term expansion/2 and goal expansion/2. Conditional
compilation is achieved using :- if(Condition) as explained in section 4.3.1. The situation
appears similar.

The important lesson learned from GNU autoconf is that the last resort for conditional compilation
to achieve portability is to switch on the platform or dialect. Instead, GNU autoconf allows you to
write tests for specific properties of the platform. Most of these are whether or not some function or
file is available. Then there are some standard tests for difficult-to-write-portable situations and finally
there is a framework that allows you to write arbitrary C programs and check whether they can be
compiled and/or whether they show the intended behaviour. Using a separate configure program
is needed in C, as you cannot perform C compilation step or run C programs from the C preprocessor.
In most Prolog environments we do not need this distinction as the compiler is integrated into the
runtime environment and Prolog has excelent reflexion capabilities.

We must learn from the distinction to test for features instead of platform (dialect), as this makes
the platform specific code robust for future changes of the dialect. Suppose we need compare/3 as
defined in this manual. The compare/3 predicate is not part of the ISO standard, but many systems
support it and it is not unlikely it will become ISO standard or the intended dialect will start supporting
it. GNU autoconf strongly advises to test for the availability:

:- if(\+current_predicate(_, compare(_,_,_))).
compare(<, Term1, Term2) :-

Term1 @< Term2, !.
compare(>, Term1, Term2) :-

Term1 @> Term2, !.
compare(=, Term1, Term2) :-

Term1 == Term2.
:- endif.

This code is much more robust against changes to the intended dialect and, possible at least as impor-
tant, will provide compatibility with dialects you didn’t even consider porting to right now.

In a more challenging case, the target Prolog has compare/3, but the semantics are different.
What to do? One option is to write a my compare/3 and change all occurrences in the code.
Alternatively you can rename calls using goal expansion/2 like below. This construct will not
only deal with Prolog dialects lacking compare as well as those that only implement it for numeric
comparison or have changed the argument order. Of course, writing rock-solid code would require a
complete test-suite, but this example will probably cover all Prolog dialects that allow for conditional
compilation, have core ISO facilities and provide goal expansion/2, the things we claim a Prolog
dialect should have to start writing portable code for it.

:- if(\+catch(compare(<,a,b), _, fail)).
compare_standard_order(<, Term1, Term2) :-

Term1 @< Term2, !.
compare_standard_order(>, Term1, Term2) :-

Term1 @> Term2, !.

SWI-Prolog 6.0 Reference Manual

C.1. SOME CONSIDERATIONS FOR WRITING PORTABLE CODE 397

compare_standard_order(=, Term1, Term2) :-
Term1 == Term2.

goal_expansion(compare(Order, Term1, Term2),
compare_standard_order(Order, Term1, Term2)).

:- endif.

SWI-Prolog 6.0 Reference Manual

Glossary of Terms D
anonymous [variable]

The variable _ is called the anonymous variable. Multiple occurrences of _ in a single term are
not shared.

arguments
Arguments are terms that appear in a compound term. A1 and a2 are the first and second
argument of the term myterm(A1, a2).

arity
Argument count (is number of arguments) of a compound term.

assert
Add a clause to a predicate. Clauses can be added at either end of the clause-list of a predicate.
See asserta/1 and assertz/1.

atom
Textual constant. Used as name for compound terms, to represent constants or text.

backtracking
Search process used by Prolog. If a predicate offers multiple clauses to solve a goal, they are
tried one-by-one until one succeeds. If a subsequent part of the proof is not satisfied with the
resulting variable binding, it may ask for an alternative solution (= binding of the variables),
causing Prolog to reject the previously chosen clause and try the next one.

binding [of a variable]
Current value of the variable. See also backtracking and query.

built-in [predicate]
Predicate that is part of the Prolog system. Built-in predicates cannot be redefined by the user,
unless this is overruled using redefine system predicate/1.

body
Part of a clause behind the neck operator (:-).

clause
‘Sentence’ of a Prolog program. A clause consists of a head and body separated by the neck
operator (:-) or it is a fact. For example:

parent(X) :-
father(X, _).

SWI-Prolog 6.0 Reference Manual

399

Expressed “X is a parent if X is a father of someone”. See also variable and predicate.

compile
Process where a Prolog program is translated to a sequence of instructions. See also interpreted.
SWI-Prolog always compiles your program before executing it.

compound [term]
Also called structure. It consists of a name followed by N arguments, each of which are terms.
N is called the arity of the term.

context module
If a term is referring to a predicate in a module, the context module is used to find the target
module. The context module of a goal is the module in which the predicate is defined, unless
this predicate is module transparent, in which case the context module is inherited from the
parent goal. See also module transparent/1 and meta-predicate.

dynamic [predicate]
A dynamic predicate is a predicate to which clauses may be asserted and from which clauses
may be retracted while the program is running. See also update view.

exported [predicate]
A predicate is said to be exported from a module if it appears in the public list. This im-
plies that the predicate can be imported into another module to make it visible there. See also
use module/[1,2].

fact
Clause without a body. This is called a fact because interpreted as logic, there is no condition
to be satisfied. The example below states john is a person.

person(john).

fail
A goal is said to haved failed if it could not be proven.

float
Computers crippled representation of a real number. Represented as ‘IEEE double’.

foreign
Computer code expressed in other languages than Prolog. SWI-Prolog can only cooperate
directly with the C and C++ computer languages.

functor
Combination of name and arity of a compound term. The term foo(a, b, c) is said to be a term
belonging to the functor foo/3. foo/0 is used to refer to the atom foo.

goal
Question stated to the Prolog engine. A goal is either an atom or a compound term. A goal
succeeds, in which case the variables in the compound terms have a binding or fails if Prolog
fails to prove the goal.

SWI-Prolog 6.0 Reference Manual

400 APPENDIX D. GLOSSARY OF TERMS

hashing
Indexing technique used for quick lookup.

head
Part of a clause before the neck instruction. This is an atom or compound term.

imported [predicate]
A predicate is said to be imported into a module if it is defined in another module and made
available in this module. See also chapter 5.

indexing
Indexing is a technique used to quickly select candidate clauses of a predicate for a specific
goal. In most Prolog systems, indexing is done (only) on the first argument of the head. If this
argument is instantiated to an atom, integer, float or compound term with functor, hashing is
used quickly select all clauses of which the first argument may unify with the first argument of
the goal. SWI-Prolog supports just-in-time and multi-argument indexing. See section 2.17.

integer
Whole number. On all implementations of SWI-Prolog integers are at least 64-bit signed
values. When linked to the GNU GMP library, integer arithmetic is unbounded. See also
current prolog flag/2, flags bounded, max integer and min integer.

interpreted
As opposed to compiled, interpreted means the Prolog system attempts to prove a goal by
directly reading the clauses rather than executing instructions from an (abstract) instruction set
that is not or only indirectly related to Prolog.

meta-predicate
A predicate that reasons about other predicates, either by calling them, (re)defining them or
querying properties.

module
Collection of predicates. Each module defines a name-space for predicates. built-in predicates
are accessible from all modules. Predicates can be published (exported) and imported to make
their definition available to other modules.

module transparent [predicate]
A predicate that does not change the context module. Sometimes also called a meta-predicate.

multifile [predicate]
Predicate for which the definition is distributed over multiple source-files. See multifile/1.

neck
Operator (:-) separating head from body in a clause.

operator
Symbol (atom) that may be placed before its operand (prefix), after its operand (postfix) or
between its two operands (infix).

In Prolog, the expression a+b is exactly the same as the canonical term +(a,b).

SWI-Prolog 6.0 Reference Manual

401

operand
Argument of an operator.

precedence
The priority of an operator. Operator precedence is used to interpret a+b*c as
+(a, *(b,c)).

predicate
Collection of clauses with the same functor (name/arity). If a goal is proved, the system looks
for a predicate with the same functor, then uses indexing to select candidate clauses and then
tries these clauses one-by-one. See also backtracking.

predicate indicator
Term of the form Name/Arity (traditional) or Name//Arity (ISO DCG proposal) where Name is
an atom an Arity a non-negative integer. It acts as an indicator (or reference) to a predicate or
DCG rule.

priority
In the context of operators a synonym for precedence.

program
Collection of predicates.

property
Attribute of an object. SWI-Prolog defines various * property predicates to query the status of
predicates, clauses. etc.

prove
Process where Prolog attempts to prove a query using the available predicates.

public list
List of predicates exported from a module.

query
See goal.

retract
Remove a clause from a predicate. See also dynamic, update view and assert.

shared
Two variables are called shared after they are unified. This implies if either of them is bound,
the other is bound to the same value:

?- A = B, A = a.

A = a,
B = a

SWI-Prolog 6.0 Reference Manual

402 APPENDIX D. GLOSSARY OF TERMS

singleton [variable]
Variable appearing only one time in a clause. SWI-Prolog normally warns for this to avoid
you making spelling mistakes. If a variable appears on purpose only once in a clause, write
it as _ (see anonymous). Rules for naming a variable and avoiding a warning are given in
section 2.15.1.

solution
Bindings resulting from a successfully proven goal.

structure
Synonym for compound term.

string
Used for the following representations of text: a packed array (see section 4.22), SWI-Prolog
specific), a list of character codes or a list of one-character atoms.

succeed
A goal is said to have succeeded if it has been proven.

term
Value in Prolog. A term is either a variable, atom, integer, float or compound term. In addition,
SWI-Prolog also defines the type string

transparent
See module transparent.

unify
Prolog process to make two terms equal by assigning variables in one term to values at the
corresponding location of the other term. For example:

?- foo(a, B) = foo(A, b).

A = a,
B = b

Unlike assignment (which does not exist in Prolog), unification is not directed.

update view
How Prolog behaves when a dynamic predicate is changed while it is running. There are two
models. In most older Prolog systems the change becomes immediately visible to the goal, in
modern systems including SWI-Prolog, the running goal is not affected. Only new goals ‘see’
the new definition.

variable
A Prolog variable is a value that ‘is not yet bound’. After binding a variable, it cannot be
modified. Backtracking to a point in the execution before the variable was bound will turn it
back into a variable:

SWI-Prolog 6.0 Reference Manual

403

?- A = b, A = c.
No
?- (A = b; true; A = c).
A = b ;
A = _G283 ;
A = c ;
No

See also unify.

SWI-Prolog 6.0 Reference Manual

SWI-Prolog License Conditions
and Tools E
SWI-Prolog licensing aims at a large audience, combining ideas from the Free Software Foundation
and the less principal Open Source Initiative. The license aims at:

• Make SWI-Prolog itself and its libraries are ‘As free as possible’.

• Allow for easy integration of contributions. See section E.2.

• Free software can build on SWI-Prolog without limitations.

• Non-free (open or proprietary) software can be produced using SWI-Prolog, although con-
tributed pure GPL-ed components cannot be used.

To achieve this, different parts of the system have different licenses. SWI-Prolog programs con-
sists of a mixture of ‘native’ code (source compiled to machine instructions) and ‘virtual machine’
code (Prolog source compiled to SWI-Prolog virtual machine instructions, covering both compiled
SWI-Prolog libraries and your compiled application).

For maximal coherence between free licenses, we start with the two prime licenses from the Free
Software Foundation, the GNU General Public License (GPL) and the Lesser GNU General Public
License (LGPL), after which we add a proven (used by the GNU-C compiler runtime library as well
as the GNU ClassPath project) exception to deal with the specific nature of compiled virtual machine
code in a saved state.

E.1 The SWI-Prolog kernel and foreign libraries

The SWI-Prolog kernel and our foreign libraries are distributed under the LGPL. A Prolog executable
consists of the combination of these ‘native’ code components and Prolog virtual machine code. The
SWI-Prolog swipl-rc utility allows for disassembling and re-assembling these parts, a process
satisfying article 6b of the LGPL.

Under the LGPL SWI-Prolog can be linked to code distributed under arbitrary licenses, provided
a number of requirements are fullfilled. The most important requirement is that, if an application
replies on a modified version of SWI-Prolog, the modified sources must be made available.

E.1.1 The SWI-Prolog Prolog libraries

Lacking a satisfactory technical solution to handle article 6 of the LGPL, this license cannot be used
for the Prolog source code that is part of the SWI-Prolog system (both libraries and kernel code). This
situation is comparable to libgcc, the runtime library used with the GNU C-compiler. Therefore,
we use the same proven license terms as this library. The libgcc license is the with a special exception.
Below we rephrased this exception adjusted to our needs:

SWI-Prolog 6.0 Reference Manual

E.2. CONTRIBUTING TO THE SWI-PROLOG PROJECT 405

As a special exception, if you link this library with other files, compiled with a Free
Software compiler, to produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License. This exception
does not however invalidate any other reasons why the executable file might be covered
by the GNU General Public License.

E.2 Contributing to the SWI-Prolog project

To achieve maximal coherence using SWI-Prolog for Free and Non-Free software we advice the use
of the LGPL for contributed foreign code and the use of the GPL with SWI-Prolog exception for
Prolog code for contributed modules.

As a rule of thumb it is advised to use the above licenses whenever possible and only use a strict
GPL compliant license only if the module contains other code under strict GPL compliant licenses.

E.3 Software support to keep track of license conditions

Given the above, it is possible that SWI-Prolog packages and extensions will rely on the GPL.1 The
predicates below allow for registering license requirements for Prolog files and foreign modules. The
predicate eval license/0 reports which components from the currenly configured system are dis-
tributed under copy-left and open source enforcing licenses (the GPL) and therefore must be replaced
before distributing linked applications under non-free license conditions.

eval license
Evaluate the license conditions of all loaded components. If the system contains one or more
components that are licenced under GPL-like restrictions the system indicates this program
may only be distributed under the GPL license as well as which components prohibit the use of
other license conditions.

license(+LicenseId, +Component)
Register the fact that Component is distributed under a license identified by LicenseId. The
most important LicenseId’s are:

swipl
Indicates this module is distributed under the GNU General Public License (GPL) with
the SWI-Prolog exception:2

As a special exception, if you link this library with other files, compiled with
SWI-Prolog, to produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License. This
exception does not however invalidate any other reasons why the executable file
might be covered by the GNU General Public License.

1On the Unix version, the default toplevel uses the GNU readline library for command-line editing. This library is
distributed under the GPL. In practice this problem is small as most final applications have Prolog embedded, without direct
access to the commandline and therefore without need for libreadline.

2This exception is a straight re-phrasing of the license used for libgcc, the GNU-C runtime library facing similar
technical issues.

SWI-Prolog 6.0 Reference Manual

406 APPENDIX E. SWI-PROLOG LICENSE CONDITIONS AND TOOLS

This should be the default for software contributed to the SWI-Prolog project as it allows
the community to prosper both in the free and non-free world. Still, people using SWI-
Prolog to create non-free applications must contribute sources to improvements they make
to the community.

lgpl
This is the default license for foreign-libraries linked with SWI-Prolog. Use
PL license() to register the condition from foreign code.

gpl
Indicates this module is strictly Free Software, which implies it cannot be used together
with any module that is incompatible with the GPL. Please only use these conditions
when forced by other code used in the component.

Other licenses known to the system are guile, gnu ada, x11, expat, sml,
public domain, cryptix, bsd, zlib, constlgpl compatible and gpl compatible.
New licenses can be defined by adding clauses for the multifile predicate license:license/3.
Below is an example. The second argument is either gpl or lgpl to indicate compatibility
with these licenses. Other values cause the license to interpreted as proprietary. Proprietary
licenses are reported by eval license/0. See the file boot/license.pl for details.

:- multifile license:license/3.

license:license(mylicense, lgpl,
[comment(’My personal license’),

url(’http://www.mine.org/license.html’)
]).

:- license(mylicense).

license(+LicenseId)
Intented as a directive in Prolog source files. It takes the current filename and calls
license/2.

void PL license(const char *LicenseId, const char *Component)
Intended for the install() procedure of foreign libraries. This call can be made before
PL initialise().

E.4 License conditions inherited from used code

E.4.1 Cryptographic routines

Cryptographic routines are used in variant sha1/2 and crypt. These routines are provided
under the following conditions.

Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.

LICENSE TERMS

SWI-Prolog 6.0 Reference Manual

E.4. LICENSE CONDITIONS INHERITED FROM USED CODE 407

The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:

1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;

2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;

3. the copyright holder’s name is not used to endorse products
built using this software without specific written permission.

ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.

DISCLAIMER

This software is provided ’as is’ with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.

SWI-Prolog 6.0 Reference Manual

Summary F
F.1 Predicates

The predicate summary is used by the Prolog predicate apropos/1 to suggest predicates from a
keyword.

!/0 Cut (discard choicepoints)
,/2 Conjunction of goals
->/2 If-then-else
*->/2 Soft-cut
./2 Consult. Also list constructor
;/2 Disjunction of goals. Same as |/2
</2 Arithmetic smaller
=/2 Unification
=../2 “Univ.” Term to list conversion
=:=/2 Arithmetic equal
=</2 Arithmetic smaller or equal
==/2 Identical
=@=/2 Structural identical
=\=/2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
?=/2 Test of terms can be compared now
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+/1 Negation by failure. Same as not/1
\=/2 Not unifiable
\==/2 Not identical
\=@=/2 Not structural identical
ˆ/2 Existential quantification (bagof/3, setof/3)
|/2 Disjunction of goals. Same as ;/2
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abort/0 Abort execution, return to top level
absolute file name/2 Get absolute path name
absolute file name/3 Get absolute path name with options
access file/2 Check access permissions of a file

SWI-Prolog 6.0 Reference Manual

F.1. PREDICATES 409

acyclic term/1 Test term for cycles
add import module/3 Add module to the auto-import list
add nb set/2 Add term to a non-backtrackable set
add nb set/3 Add term to a non-backtrackable set
append/1 Append to a file
apply/2 Call goal with additional arguments
apropos/1 online help Search manual
arg/3 Access argument of a term
assoc to list/2 Convert association tree to list
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertion/1 Make assertions about your program
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
attach console/0 Attach I/O console to thread
attribute goals/3 Project attributes to goals
attr unify hook/2 Attributed variable unification hook
attr portray hook/2 Attributed variable print hook
attvar/1 Type test for attributed variable
at end of stream/0 Test for end of file on input
at end of stream/1 Test for end of file on stream
at halt/1 Register goal to run at halt/1
atom/1 Type check for an atom
atom chars/2 Convert between atom and list of characters
atom codes/2 Convert between atom and list of characters codes
atom concat/3 Append two atoms
atom length/2 Determine length of an atom
atom prefix/2 Test for start of atom
atom number/2 Convert between atom and number
atom to term/3 Convert between atom and term
atomic/1 Type check for primitive
atomic concat/3 Concatenate two atomic values to an atom
atomic list concat/2 Append a list of atoms
atomic list concat/3 Append a list of atoms with separator
autoload/0 Autoload all predicates now
autoload path/1 Add directories for autoloading
b getval/2 Fetch backtrackable global variable
b setval/2 Assign backtrackable global variable
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
blob/2 Type check for a blob
break/0 Start interactive top-level
byte count/2 Byte-position in a stream
call/1 Call a goal
call/[2..] Call with additional arguments

SWI-Prolog 6.0 Reference Manual

410 APPENDIX F. SUMMARY

call cleanup/3 Guard a goal with a cleaup-handler
call cleanup/2 Guard a goal with a cleaup-handler
call residue vars/2 Find residual attributed variables
call shared object function/2 UNIX: Call C-function in shared (.so) file
call with depth limit/3 Prove goal with bounded depth
callable/1 Test for atom or compound term
catch/3 Call goal, watching for exceptions
char code/2 Convert between character and character code
char conversion/2 Provide mapping of input characters
char type/2 Classify characters
character count/2 Get character index on a stream
chdir/1 Compatibility: change working directory
chr constraint/1 CHR Constraint declaration
chr show store/1 List suspended CHR constraints
chr trace/0 Start CHR tracer
chr type/1 CHR Type declaration
chr notrace/0 Stop CHR tracer
chr leash/1 Define CHR leashed ports
chr option/2 Specify CHR compilation options
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clause property/2 Get properties of a clause
close/1 Close stream
close/2 Close stream (forced)
close dde conversation/1 Win32: Close DDE channel
close shared object/1 UNIX: Close shared library (.so file)
collation key/2 Sort key for locale dependent ordering
comment hook/3 (hook) handle comments in sources
compare/3 Compare, using a predicate to determine the order
compile aux clauses/1 Compile predicates for goal expansion/2
compile predicates/1 Compile dynamic code to static
compiling/0 Is this a compilation run?
compound/1 Test for compound term
code type/2 Classify a character-code
consult/1 Read (compile) a Prolog source file
context module/1 Get context module of current goal
convert time/8 Break time stamp into fields
convert time/2 Convert time stamp to string
copy stream data/2 Copy all data from stream to stream
copy stream data/3 Copy n bytes from stream to stream
copy predicate clauses/2 Copy clauses between predicates
copy term/2 Make a copy of a term
copy term/3 Copy a term and obtain attribute-goals
copy term nat/2 Make a copy of a term without attributes
create prolog flag/3 Create a new Prolog flag
current arithmetic function/1 Examine evaluable functions
current atom/1 Examine existing atoms

SWI-Prolog 6.0 Reference Manual

F.1. PREDICATES 411

current blob/2 Examine typed blobs
current char conversion/2 Query input character mapping
current flag/1 Examine existing flags
current foreign library/2 shlib Examine loaded shared libraries (.so files)
current format predicate/2 Enumerate user-defined format codes
current functor/2 Examine existing name/arity pairs
current input/1 Get current input stream
current key/1 Examine existing database keys
current module/1 Examine existing modules
current op/3 Examine current operator declarations
current output/1 Get the current output stream
current predicate/1 Examine existing predicates (ISO)
current predicate/2 Examine existing predicates
current signal/3 Current software signal mapping
current stream/3 Examine open streams
cyclic term/1 Test term for cycles
day of the week/2 Determine ordinal-day from date
date time stamp/2 Convert sate structure to time-stamp
date time value/3 Extract info from a date structure
dcg translate rule/2 Source translation of DCG rules
dde current connection/2 Win32: Examine open DDE connections
dde current service/2 Win32: Examine DDE services provided
dde execute/2 Win32: Execute command on DDE server
dde register service/2 Win32: Become a DDE server
dde request/3 Win32: Make a DDE request
dde poke/3 Win32: POKE operation on DDE server
dde unregister service/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debug/1 Select topic for debugging
debug/3 Print debugging message on topic
debug control hook/1 (hook) Extend spy/1, etc.
debugging/0 Show debugger status
debugging/1 Test where we are debugging topic
default module/2 Query module inheritance
del attr/2 Delete attribute from variable
del attrs/1 Delete all attributes from variable
delete directory/1 Remove a folder from the file system
delete file/1 Remove a file from the file system
delete import module/2 Remove module from import list
deterministic/1 Test deterministicy of current clause
dif/2 Constrain two terms to be different
directory files/2 Get entries of a directory/folder
discontiguous/1 Indicate distributed definition of a predicate
downcase atom/2 Convert atom to lower-case
duplicate term/2 Create a copy of a term
dwim match/2 Atoms match in “Do What I Mean” sense
dwim match/3 Atoms match in “Do What I Mean” sense

SWI-Prolog 6.0 Reference Manual

412 APPENDIX F. SUMMARY

dwim predicate/2 Find predicate in “Do What I Mean” sense
dynamic/1 Indicate predicate definition may change
edit/0 Edit current script- or associated file
edit/1 Edit a file, predicate, module (extensible)
elif/1 Part of conditional compilation (directive)
else/0 Part of conditional compilation (directive)
empty assoc/1 Create/test empty association tree
empty nb set/1 Test/create an empty non-backtrackable set
encoding/1 Define encoding inside a source file
endif/0 End of conditional compilation (directive)
ensure loaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause
eval license/0 Evaluate licenses of loaded modules
exception/3 (hook) Handle runtime exceptions
exists directory/1 Check existence of directory
exists file/1 Check existence of file
exists source/1 Check existence of a Prolog source
expand answer/2 Expand answer of query
expand file name/2 Wildcard expansion of file names
expand file search path/2 Wildcard expansion of file paths
expand goal/2 Compiler: expand goal in clause-body
expand query/4 Expanded entered query
expand term/2 Compiler: expand read term into clause(s)
expects dialect/1 For which Prolog dialect is this code written?
explain/1 explain Explain argument
explain/2 explain 2nd argument is explanation of first
export/1 Export a predicate from a module
fail/0 Always false
false/0 Always false
current prolog flag/2 Get system configuration parameters
file base name/2 Get file part of path
file directory name/2 Get directory part of path
file name extension/3 Add, remove or test file extensions
file search path/2 Define path-aliases for locating files
find chr constraint/1 Returns a constraint from the store
findall/3 Find all solutions to a goal
findall/4 Difference list version of findall/3
flag/3 Simple global variable system
float/1 Type check for a floating point number
flush output/0 Output pending characters on current stream
flush output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format time/3 C strftime() like date/time formatter
format time/4 date/time formatter with explicit locale

SWI-Prolog 6.0 Reference Manual

F.1. PREDICATES 413

format predicate/2 Program format/[1,2]
term attvars/2 Find attributed variables in a term
term variables/2 Find unbound variables in a term
term variables/3 Find unbound variables in a term
freeze/2 Delay execution until variable is bound
frozen/2 Query delayed goals on var
functor/3 Get name and arity of a term or construct a term
garbage collect/0 Invoke the garbage collector
garbage collect atoms/0 Invoke the atom garbage collector
garbage collect clauses/0 Invoke clause garbage collector
gen assoc/3 Enumerate members of association tree
gen nb set/2 Generate members of non-backtrackable set
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream
get assoc/3 Fetch key from association tree
get assoc/5 Fetch key from association tree
get0/1 Read next character
get0/2 Read next character from a stream
get attr/3 Fetch named attribute from a variable
get attrs/2 Fetch all attributes of a variable
get byte/1 Read next byte (ISO)
get byte/2 Read next byte from a stream (ISO)
get char/1 Read next character as an atom (ISO)
get char/2 Read next character from a stream (ISO)
get code/1 Read next character (ISO)
get code/2 Read next character from a stream (ISO)
get single char/1 Read next character from the terminal
get time/1 Get current time
getenv/2 Get shell environment variable
goal expansion/2 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
gdebug/0 Debug using graphical tracer
gspy/1 Spy using graphical tracer
gtrace/0 Trace using graphical tracer
guitracer/0 Install hooks for the graphical debugger
gxref/0 Cross-reference loaded program
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status
term hash/2 Hash-value of ground term
term hash/4 Hash-value of term with depth limit
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
help hook/1 (hook) User-hook in the help-system
if/1 Start conditional compilation (directive)
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module

SWI-Prolog 6.0 Reference Manual

414 APPENDIX F. SUMMARY

import module/2 Query import modules
in pce thread/1 Run goal in XPCE thread
include/1 Include a file with declarations
initialization/1 Initialization directive
initialization/2 Initialization directive
instance/2 Fetch clause or record from reference
integer/1 Type check for integer
interactor/0 Start new thread with console and top-level
is/2 Evaluate arithmetic expression
is absolute file name/1 True if arg defines an absolute path
is list/1 Type check for a list
is stream/1 Type check for a stream handle
join threads/0 Join all terminated threads interactively
keysort/2 Sort, using a key
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library directory/1 (hook) Directories holding Prolog libraries
license/1 Define license for current file
license/2 Define license for named module
line count/2 Line number on stream
line position/2 Character position in line on stream
list debug topics/0 List registered topics for debugging
list to assoc/2 Create association tree from list
list to set/2 Remove duplicates from a list
listing/0 List program in current module
listing/1 List predicate
load files/2 Load source files with options
load foreign library/1 shlib Load shared library (.so file)
load foreign library/2 shlib Load shared library (.so file)
locale sort/2 Language dependent sort of atoms
make/0 Reconsult all changed source files
make directory/1 Create a folder on the file system
make library index/1 Create autoload file INDEX.pl
make library index/2 Create selective autoload file INDEX.pl
map assoc/2 Map association tree
map assoc/3 Map association tree
max assoc/3 Highest key in association tree
memberchk/2 Deterministic member/2
message hook/3 Intercept print message/2
message line element/2 (hook) Intercept print message lines/3
message queue create/1 Create queue for thread communication
message queue create/2 Create queue for thread communication
message queue destroy/1 Destroy queue for thread communication
message queue property/2 Query message queue properties
message to string/2 Translate message-term to string
meta predicate/1 Declare access to other predicates

SWI-Prolog 6.0 Reference Manual

F.1. PREDICATES 415

min assoc/3 Lowest key in association tree
module/1 Query/set current type-in module
module/2 Declare a module
module property/2 Find properties of a module
module transparent/1 Indicate module based meta-predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
mutex create/1 Create a thread-synchronisation device
mutex create/2 Create a thread-synchronisation device
mutex destroy/1 Destroy a mutex
mutex lock/1 Become owner of a mutex
mutex property/2 Query mutex properties
mutex statistics/0 Print statistics on mutex usage
mutex trylock/1 Become owner of a mutex (non-blocking)
mutex unlock/1 Release ownership of mutex
mutex unlock all/0 Release ownership of all mutexes
name/2 Convert between atom and list of character codes
nb current/2 Enumerate non-backtrackable global variables
nb delete/1 Delete a non-backtrackable global variable
nb getval/2 Fetch non-backtrackable global variable
nb linkarg/3 Non-backtrackable assignment to term
nb linkval/2 Assign non-backtrackable global variable
nb set to list/2 Convert non-backtrackable set to list
nb setarg/3 Non-backtrackable assignment to term
nb setval/2 Assign non-backtrackable global variable
nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
nodebug/1 Disable debug-topic
noguitracer/0 Disable the graphical debugger
nonvar/1 Type check for bound term
noprofile/1 Hide (meta-) predicate for the profiler
noprotocol/0 Disable logging of user interaction
normalize space/2 Normalize white space
nospy/1 Remove spy point
nospyall/0 Remove all spy points
not/1 Negation by failure (argument not provable). Same as \+/1
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth clause/3 N-th clause of a predicate
number/1 Type check for integer or float
number chars/2 Convert between number and one-char atoms
number codes/2 Convert between number and character codes
numbervars/3 Number unbound variables of a term
numbervars/4 Number unbound variables of a term
on signal/3 Handle a software signal
once/1 Call a goal deterministically

SWI-Prolog 6.0 Reference Manual

416 APPENDIX F. SUMMARY

op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)
open dde conversation/3 Win32: Open DDE channel
open null stream/1 Open a stream to discard output
open resource/3 Open a program resource as a stream
open shared object/2 UNIX: Open shared library (.so file)
open shared object/3 UNIX: Open shared library (.so file)
ord list to assoc/2 Convert ordered list to assoc
parse time/2 Parse text to a time-stamp
parse time/3 Parse text to a time-stamp
pce dispatch/1 Run XPCE GUI in separate thread
pce call/1 Run goal in XPCE GUI thread
peek byte/1 Read byte without removing
peek byte/2 Read byte without removing
peek char/1 Read character without removing
peek char/2 Read character without removing
peek code/1 Read character-code without removing
peek code/2 Read character-code without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour of print/1
portray clause/1 Pretty print a clause
portray clause/2 Pretty print a clause to a stream
predicate property/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
preprocessor/2 Install a preprocessor before the compiler
print/1 Print a term
print/2 Print a term on a stream
print message/2 Print message from (exception) term
print message lines/3 Print message to stream
profile/1 Obtain execution statistics
profile/3 Obtain execution statistics
profile count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler
prolog/0 Run interactive top-level
prolog choice attribute/3 Examine the choice-point stack
prolog current frame/1 Reference to goal’s environment stack
prolog edit:locate/2 Locate targets for edit/1
prolog edit:locate/3 Locate targets for edit/1
prolog edit:edit source/1 Call editor for edit/1
prolog edit:edit command/2 Specify editor activation
prolog edit:load/0 Load edit/1 extensions
prolog exception hook/4 Rewrite exceptions
prolog file type/2 Define meaning of file extension

SWI-Prolog 6.0 Reference Manual

F.1. PREDICATES 417

prolog frame attribute/3 Obtain information on a goal environment
prolog ide/1 Program access to the development environment
prolog list goal/1 (hook) Intercept tracer ’L’ command
prolog load context/2 Context information for directives
prolog load file/2 (hook) Program load files/2
prolog skip level/2 Indicate deepest recursion to trace
prolog skip frame/1 Perform ‘skip’ on a frame
prolog stack property/2 Query properties of the stacks
prolog to os filename/2 Convert between Prolog and OS filenames
prolog trace interception/4 user Intercept the Prolog tracer
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used by read/1
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged
public/1 Declaration that a predicate may be called
put/1 Write a character
put/2 Write a character on a stream
put assoc/4 Add Key-Value to association tree
put attr/3 Put attribute on a variable
put attrs/2 Set/replace all attributes on a variable
put byte/1 Write a byte
put byte/2 Write a byte on a stream
put char/1 Write a character
put char/2 Write a character on a stream
put code/1 Write a character-code
put code/2 Write a character-code on a stream
qcompile/1 Compile source to Quick Load File
qcompile/2 Compile source to Quick Load File
qsave program/1 Create runtime application
qsave program/2 Create runtime application
random property/1 Query properties of random generation
rational/1 Type check for a rational number
rational/3 Decompose a rational
read/1 Read Prolog term
read/2 Read Prolog term from stream
read clause/1 Read clause
read clause/2 Read clause from stream
read history/6 Read using history substitution
read link/3 Read a symbolic link
read pending input/3 Fetch buffered input from a stream
read term/2 Read term with options
read term/3 Read term with options from stream
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database
recorded/3 Obtain term from the database

SWI-Prolog 6.0 Reference Manual

418 APPENDIX F. SUMMARY

recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefine system predicate/1 Abolish system definition
reexport/1 Load files and re-export the imported predicates
reexport/2 Load predicates from a file and re-export it
reload foreign libraries/0 Reload DLLs/shared objects
reload library index/0 Force reloading the autoload index
rename file/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
reset gensym/1 Reset a gensym key
reset gensym/0 Reset all gensym keys
reset profiler/0 Clear statistics obtained by the profiler
resource/3 Declare a program resource
retract/1 Remove clause from the database
retractall/1 Remove unifying clauses from the database
same file/2 Succeeds if arguments refer to same file
same term/2 Test terms to be at the same address
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
set end of stream/1 Set physical end of an open file
set input/1 Set current input stream from a stream
set module/1 Set properties of a module
set output/1 Set current output stream from a stream
set prolog IO/3 Prepare streams for interactive session
set prolog flag/2 Define a system feature
set prolog stack/2 Modify stack characteristics
set random/1 Control random number generation
set stream/2 Set stream attribute
set stream position/2 Seek stream to position
set tty/2 Set ‘tty’ stream
setup call cleanup/3 Undo side-effects safely
setup call catcher cleanup/4 Undo side-effects safely
setarg/3 Destructive assignment on term
setenv/2 Set shell environment variable
setlocale/3 Set/query C-library regional information
setof/3 Find all unique solutions to a goal
shell/0 Execute interactive subshell
shell/1 Execute OS command
shell/2 Execute OS command
show profile/1 Show results of the profiler
show profile/2 Show results of the profiler
size file/2 Get size of a file in characters
size nb set/2 Determine size of non-backtrackable set
skip/1 Skip to character in current input

SWI-Prolog 6.0 Reference Manual

F.1. PREDICATES 419

skip/2 Skip to character on stream
rl add history/1 Add line to readline(3) history
rl read history/1 Read readline(3) history
rl read init file/1 Read readline(3) init file
rl write history/1 Write readline(3) history
sleep/1 Suspend execution for specified time
sort/2 Sort elements in a list
source exports/2 Check whether source exports a predicate
source file/1 Examine currently loaded source files
source file/2 Obtain source file of predicate
source file property/2 Information about loaded files
source location/2 Location of last read term
spy/1 Force tracer on specified predicate
stamp date time/3 Convert time-stamp to date structure
statistics/0 Show execution statistics
statistics/2 Obtain collected statistics
stream pair/3 Create/examine a bi-directional stream
stream position data/3 Access fields from stream position
stream property/2 Get stream properties
string/1 Type check for string
string concat/3 atom concat/3 for strings
string length/2 Determine length of a string
string to atom/2 Conversion between string and atom
string to list/2 Conversion between string and list of character codes
strip module/3 Extract context module and term
style check/1 Change level of warnings
sub atom/5 Take a substring from an atom
sub string/5 Take a substring from a string
subsumes term/2 One-sided unification test
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string
swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
tdebug/0 Switch all threads into debug mode
tdebug/1 Switch a thread into debug mode
tell/1 Change current output stream
telling/1 Query current output stream
term expansion/2 (hook) Convert term before compilation
term subsumer/3 Most specific generalization of two terms
term to atom/2 Convert between term and atom
thread at exit/1 Register goal to be called at exit
thread create/3 Create a new Prolog task
thread detach/1 Make thread cleanup after completion
thread exit/1 Terminate Prolog task with value
thread get message/1 Wait for message
thread get message/2 Wait for message in a queue

SWI-Prolog 6.0 Reference Manual

420 APPENDIX F. SUMMARY

thread get message/3 Wait for message in a queue
thread initialization/1 Run action at start of thread
thread join/2 Wait for Prolog task-completion
thread local/1 Declare thread-specific clauses for a predicate
thread peek message/1 Test for message
thread peek message/2 Test for message in a queue
thread property/2 Examine Prolog threads
thread self/1 Get identifier of current thread
thread send message/2 Send message to another thread
thread setconcurrency/2 Number of active threads
thread signal/2 Execute goal in another thread
thread statistics/3 Get statistics of another thread
threads/0 List running threads
throw/1 Raise an exception (see catch/3)
time/1 Determine time needed to execute goal
time file/2 Get last modification time of file
tmp file/2 Create a temporary filename
tmp file stream/3 Create a temporary file and open it
tnodebug/0 Switch off debug mode in all threads
tnodebug/1 Switch off debug mode in a thread
told/0 Close current output
tprofile/1 Profile a thread for some period
trace/0 Start the tracer
trace/1 Set trace-point on predicate
trace/2 Set/Clear trace-point on ports
tracing/0 Query status of the tracer
trim stacks/0 Release unused memory resources
true/0 Succeed
tspy/1 Set spy point and enable debugging in all threads
tspy/2 Set spy point and enable debugging in a thread
tty get capability/3 Get terminal parameter
tty goto/2 Goto position on screen
tty put/2 Write control string to terminal
tty size/2 Get row/column size of the terminal
ttyflush/0 Flush output on terminal
unify with occurs check/2 Logically sound unification
unifiable/3 Determining binding required for unification
unix/1 OS interaction
unknown/2 Trap undefined predicates
unload file/1 Unload a source-file
unload foreign library/1 shlib Detach shared library (.so file)
unload foreign library/2 shlib Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
upcase atom/2 Convert atom to upper-case
use foreign library/1 Load DLL/shared object (directive)
use foreign library/2 Load DLL/shared object (directive)
use module/1 Import a module

SWI-Prolog 6.0 Reference Manual

F.1. PREDICATES 421

use module/2 Import predicates from a module
var/1 Type check for unbound variable
var number/2 Check that var is numbered by numbervars
variant sha1/2 Term-hash for term-variants
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved
wait for input/3 Wait for input with optional timeout
when/2 Execute goal when condition becomes true
wildcard match/2 Csh(1) style wildcard match
win exec/2 Win32: spawn Windows task
win has menu/0 Win32: true if console menu is available
win folder/2 Win32: get special folder by CSIDL
win insert menu/2 swipl-win.exe: add menu
win insert menu item/4 swipl-win.exe: add item to menu
win shell/2 Win32: open document through Shell
win shell/3 Win32: open document through Shell
win registry get value/3 Win32: get registry value
win window pos/1 Win32: change size and position of window
window title/2 Win32: change title of window
with mutex/2 Run goal while holding mutex
with output to/2 Write to strings and more
working directory/2 Query/change CWD
write/1 Write term
write/2 Write term to stream
writeln/1 Write term, followed by a newline
write canonical/1 Write a term with quotes, ignore operators
write canonical/2 Write a term with quotes, ignore operators on a stream
write length/3 Dermine #characters to output a term
write term/2 Write term with options
write term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream
writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream

SWI-Prolog 6.0 Reference Manual

422 APPENDIX F. SUMMARY

F.2 Library predicates

F.2.1 aggregate

aggregate/3 Aggregate bindings in Goal according to Template.
aggregate/4 Aggregate bindings in Goal according to Template.
aggregate all/3 Aggregate bindings in Goal according to Template.
aggregate all/4 Aggregate bindings in Goal according to Template.
foreach/2 True if the conjunction of instances of Goal using the bindings from Generator is true.
free variables/4 In order to handle variables properly, we have to find all the universally quantified variables in the Generator.

F.2.2 apply

exclude/3 Filter elements for which Goal fails.
include/3 Filter elements for which Goal succeed.
maplist/2 True if Goal can succesfully be applied on all elements of List.
maplist/3 True if Goal can succesfully be applied to all succesive pairs of elements of List1 and List2.
maplist/4 True if Goal can succesfully be applied to all succesive triples of elements of List1..List3.
maplist/5 True if Goal can succesfully be applied to all succesive quadruples of elements of List1..List4.
partition/4 Filter elements of List according to Pred.
partition/5 Filter list according to Pred in three sets.

F.2.3 assoc

assoc to list/2 Translate assoc into a pairs list
assoc to keys/2 Translate assoc into a key list
assoc to values/2 Translate assoc into a value list
empty assoc/1 Test/create an empty assoc
gen assoc/3 Non-deterministic enumeration of assoc
get assoc/3 Get associated value
get assoc/5 Get and replace associated value
list to assoc/2 Translate pair list to assoc
map assoc/2 Test assoc values
map assoc/3 Map assoc values
max assoc/3 Max key-value of an assoc
min assoc/3 Min key-value of an assoc
ord list to assoc/3 Translate ordered list into an assoc
put assoc/4 Add association to an assoc

F.2.4 broadcast

broadcast/1 Send event notification
broadcast request/1 Request all agents
listen/2 Listen to event notifications
listen/3 Listen to event notifications
unlisten/1 Stop listening to event notifications

SWI-Prolog 6.0 Reference Manual

F.2. LIBRARY PREDICATES 423

unlisten/2 Stop listening to event notifications
unlisten/3 Stop listening to event notifications
listening/3 Who is listening to event notifications?

F.2.5 charsio

atom to chars/2 Convert Atom into a list of character codes.
atom to chars/3 Convert Atom into a difference-list of character codes.
format to chars/3 Use format/2 to write to a list of character codes.
format to chars/3 Use format/2 to write to a list of character codes.
number to chars/2 Convert Atom into a list of character codes.
number to chars/3 Convert Number into a difference-list of character codes.
open chars stream/2 Open Codes as an input stream.
read from chars/2 Read Codes into Term.
read term from chars/3 Read Codes into Term.
with output to chars/2 Run Goal with as once/1.
with output to chars/3 Run Goal with as once/1.
with output to chars/4 As with output to chars/2, but Stream is unified with the temporary stream.
write to chars/2 Codes is a list of character codes produced by write/1 on Term.
write to chars/3 Codes is a difference-list of character codes produced by write/1 on Term.

F.2.6 check

check/0 Program completeness and consistency
list undefined/0 List undefined predicates
list autoload/0 List predicates that require autoload
list redefined/0 List locally redefined predicates

F.2.7 csv

csv read file/2 Read a CSV file into a list of rows.
csv read file/3 Read a CSV file into a list of rows.
csv write file/2 Write a list of Prolog terms to a CSV file.
csv write file/3 Write a list of Prolog terms to a CSV file.
csv/3 Prolog DCG to ‘read/write’ CSV data.
csv/4 Prolog DCG to ‘read/write’ CSV data.

F.2.8 lists

append/2 Concatenate a list of lists.
append/3 List1AndList2 is the concatination of List1 and List2.
delete/3 Is true when Lis1, with all occurences of Elem deleted results in List2.
flatten/2 Is true it List2 is a non nested version of List1.
intersection/3 True if Set3 unifies with the intersection of Set1 and Set2.
is set/1 True if Set is a proper list without duplicates.
last/2 Succeeds when ‘Last’ is the last element of ‘List’.

SWI-Prolog 6.0 Reference Manual

424 APPENDIX F. SUMMARY

list to set/2 True when Set has the same element as List in the same order.
max list/2 True if Max is the largest number in List.
max member/2 True when Max is the largest member in the standard order of terms.
member/2 True if Elem is a member of List.
min list/2 True if Min is the largest number in List.
min member/2 True when Min is the smallest member in the standard order of terms.
nextto/3 True of Y follows X in List.
nth0/3 True when Elem is the Index-th element of List.
nth0/4 Select/insert element at index.
nth1/3 Is true when Elem is the Index’th element of List.
nth1/4 As nth0/4, but counting starts at 1.
numlist/3 List is a list [Low, Low+1, ... High].
permutation/2 permutation(Xs, Ys) is true when Xs is a permutation of Ys.
prefix/2 True iff Part is a leading substring of Whole.
proper length/2 True when Length is the number of elements in the proper list List.
reverse/2 Is true when the elements of List2 are in reverse order compared to List1.
same length/2 Is true when List1 and List2 are lists with the same number of elements.
select/3 Is true when List1, with Elem removed results in List2.
select/4 Is true when select(X, XList) and select(Y, YList) are true, X and Y appear in the same locations of their respective lists and same length(XList, YList) is true.
selectchk/3 Semi-deterministic removal of first element in List that unifies Elem.
selectchk/4 Semi-deterministic version of select/4.
subset/2 True if all elements of SubSet belong to Set as well.
subtract/3 Delete all elements from ‘Set’ that occur in ‘Delete’ (a set) and unify the result with ‘Result’.
sumlist/2 Sum is the result of adding all numbers in List.
union/3 True if Set3 unifies with the union of Set1 and Set2.

F.2.9 debug

assertion/1 Acts similar to C assert() macro.
assertion failed/2 This hook is called if the Goal of assertion/1 fails.
debug/1 Add/remove a topic from being printed.
debug/3 Similar to format/3 to =user error=, but only prints if Topic is activated through debug/1.
debug message context/1 Specify additional context for debug messages.
debug print hook/3 Hook called by debug/3.
debugging/1 Check whether we are debugging Topic or enumerate the topics we are debugging.
debugging/2 Check whether we are debugging Topic or enumerate the topics we are debugging.
list debug topics/0 List currently known debug topics and their setting.
nodebug/1 Add/remove a topic from being printed.

F.2.10 option

merge options/3 Merge two option lists.
meta options/3 Perform meta-expansion on options that are module-sensitive.
option/2 Get an option from a OptionList.
option/3 Get an option from a OptionList.
select option/3 Get and remove option from an option list.

SWI-Prolog 6.0 Reference Manual

F.2. LIBRARY PREDICATES 425

select option/4 Get and remove option with default value.

F.2.11 optparse

opt arguments/3 Convenience predicate, assuming that command-line arguments can be accessed by current prolog flag/2 (as in swi-prolog).
opt help/2 Returns a help string (atom), synthesized from the help descriptions in OptsSpec.
opt parse/4 Equivalent to opt parse(OptsSpec, ApplArgs, Opts, PositionalArgs, []).
opt parse/5 Parse the arguments Args (as list of atoms) according to OptsSpec.

F.2.12 ordsets

is ordset/1 True if Term is an ordered set.
list to ord set/2 Transform a list into an ordered set.
ord add element/3 Insert an element into the set.
ord del element/3 Delete an element from an ordered set.
ord disjoint/2 True if Set1 and Set2 have no common elements.
ord empty/1 True when List is the empty ordered set.
ord intersect/2 True if both ordered sets have a non-empty intersection.
ord intersect/3 Intersection holds the common elements of Set1 and Set2.
ord intersection/2 True if Intersection is an ordered set holding all elements common to all sets in PowerSet.
ord intersection/3 Intersection holds the common elements of Set1 and Set2.
ord intersection/4 Intersection and difference between two ordered sets.
ord member/2 True if Element is a member of Set.
ord memberchk/2 Check membership.
ord seteq/2 True if Set1 and Set2 have the same elements.
ord subset/2 Is true if all element of Sub are in Super.
ord subtract/3 Diff is the set holding all elements of InOSet that are not in NotInOSet.
ord symdiff/3 Is true when Difference is the symmetric difference of Set1 and Set2.
ord union/2 True if Union is the union of all elements in the superset SetOfSets.
ord union/3 Union is the union of Set1 and Set2.
ord union/4 True if Union iff ord union(Set1, Set2, Union) and ord subtract(Set2, Set1, New).

F.2.13 prologxref

prolog:called by/2 (hook) Extend cross-referencer
xref built in/1 Examine defined built-ins
xref called/3 Examine called predicates
xref clean/1 Remove analysis of source
xref current source/1 Examine cross-referenced sources
xref defined/3 Examine defined predicates
xref exported/2 Examine exported predicates
xref module/2 Module defined by source
xref source/1 Cross-reference analysis of source

F.2.14 pairs

SWI-Prolog 6.0 Reference Manual

426 APPENDIX F. SUMMARY

group pairs by key/2 Group values with the same key.
map list to pairs/3 Create a key-value list by mapping each element of List.
pairs keys/2 Remove the values from a list of Key-Value pairs.
pairs keys values/3 True if Keys holds the keys of Pairs and Values the values.
pairs values/2 Remove the keys from a list of Key-Value pairs.
transpose pairs/2 Swap Key-Value to Value-Key and sort the result on Value (the new key) using keysort/2.

F.2.15 pio

pure input

phrase from file/2 Process the content of File using the DCG rule Grammar.
phrase from file/3 As phrase from file/2, providing additional Options.
stream to lazy list/2 Create a lazy list representing the character codes in Stream.

F.2.16 random

getrand/1 Query/set the state of the random generator.
maybe/0 Succeed/fail with equal probability (variant of maybe/1).
maybe/1 Succeed with probability P, fail with probability 1-P.
maybe/2 Succeed with probability K/N (variant of maybe/1).
random/1 Binds R to a new random number in [0.0,1.0).
random/3 Binds R to a random number in [L,U).
random member/2 X is a random member of List.
random perm2/4 Does X=A,Y=B or X=B,Y=A with equal probability.
random permutation/2 Permutation is a random permutation of List.
random select/3 Randomly select or insert an element.
randseq/3 S is a list of K unique random integers in the range 1..N.
randset/3 S is a sorted list of K unique random integers in the range 1..N.
setrand/1 Query/set the state of the random generator.

F.2.17 readutil

read line to codes/2 Read line from a stream
read line to codes/3 Read line from a stream
read stream to codes/2 Read contents of stream
read stream to codes/3 Read contents of stream
read file to codes/3 Read contents of file
read file to terms/3 Read contents of file to Prolog terms

F.2.18 record

record/1 Define named fields in a term

SWI-Prolog 6.0 Reference Manual

F.2. LIBRARY PREDICATES 427

F.2.19 registry

This library is only available on Windows systems.

registry get key/2 Get principal value of key
registry get key/3 Get associated value of key
registry set key/2 Set principal value of key
registry set key/3 Set associated value of key
registry delete key/1 Remove a key
shell register file type/4 Register a file-type
shell register dde/6 Register DDE action
shell register prolog/1 Register Prolog

F.2.20 ugraphs

vertices edges to ugraph/3 Create unweighted graph
vertices/2 Find vertices in graph
edges/2 Find edges in graph
add vertices/3 Add vertices to graph
del vertices/3 Delete vertices from graph
add edges/3 Add edges to graph
del edges/3 Delete edges from graph
transpose/2 Invert the direction of all edges
neighbors/3 Find neighbors of vertice
neighbours/3 Find neighbors of vertice
complement/2 Inverse presense of edges
compose/3
top sort/2 Sort graph topologically
top sort/3 Sort graph topologically
transitive closure/2 Create transitive closure of graph
reachable/3 Find all reachable vertices
ugraph union/3 Union of two graphs

F.2.21 url

file name to url/2 Translate between a filename and a file:// URL.
global url/3 Translate a possibly relative URL into an absolute one.
http location/2 Construct or analyze an HTTP location.
is absolute url/1 True if URL is an absolute URL.
parse url/2 Construct or analyse a URL.
parse url/3 Similar to parse url/2 for relative URLs.
parse url search/2 Construct or analyze an HTTP search specification.
set url encoding/2 Query and set the encoding for URLs.
url iri/2 Convert between a URL, encoding in US-ASCII and an IRI.
www form encode/2 En/decode to/from application/x-www-form-encoded.

SWI-Prolog 6.0 Reference Manual

428 APPENDIX F. SUMMARY

F.2.22 www browser

www open url/1 Open a web-page in a browser

F.2.23 clp/clpfd

#/\/2 P and Q hold.
#</2 X is less than Y.
#<==/2 Q implies P.
#<==>/2 P and Q are equivalent.
#=/2 X equals Y.
#=</2 X is less than or equal to Y.
#==>/2 P implies Q.
#>/2 X is greater than Y.
#>=/2 X is greater than or equal to Y.
#\/1 The reifiable constraint Q does not hold.
#\//2 P or Q holds.
#\=/2 X is not Y.
all different/1 Vars are pairwise distinct.
all distinct/1 Like all different/1, with stronger propagation.
automaton/3 Equivalent to automaton(, , Signature, Nodes, Arcs, [], [],), a common use case of automaton/8.
automaton/8 True if the finite automaton induced by Nodes and Arcs (extended with Counters) accepts Signature.
chain/2 Zs is a list of finite domain variables that are a chain with respect to the partial order Relation, in the order they appear in the list.
circuit/1 True if the list Vs of finite domain variables induces a Hamiltonian circuit, where the k-th element of Vs denotes the successor of node k.
cumulative/1 Equivalent to cumulative(Tasks, [limit(1)]).
cumulative/2 Tasks is a list of tasks, each of the form task(S i, D i, E i, C i, T i).
element/3 The N-th element of the list of finite domain variables Vs is V.
fd dom/2 Dom is the current domain (see in/2) of Var.
fd inf/2 Inf is the infimum of the current domain of Var.
fd size/2 Size is the number of elements of the current domain of Var, or the atom *sup* if the domain is unbounded.
fd sup/2 Sup is the supremum of the current domain of Var.
fd var/1 True iff Var is a CLP(FD) variable.
global cardinality/2 Equivalent to global cardinality(Vs, Pairs, []).
global cardinality/3 Vs is a list of finite domain variables, Pairs is a list of Key-Num pairs, where Key is an integer and Num is a finite domain variable.
in/2 Var is an element of Domain.
indomain/1 Bind Var to all feasible values of its domain on backtracking.
ins/2 The variables in the list Vars are elements of Domain.
label/1 Equivalent to labeling([], Vars).
labeling/2 Labeling means systematically trying out values for the finite domain variables Vars until all of them are ground.
lex chain/1 Lists are lexicographically non-decreasing.
scalar product/4 Cs is a list of integers, Vs is a list of variables and integers.
serialized/2 Constrain a set of intervals to a non-overlapping sequence.
sum/3 The sum of elements of the list Vars is in relation Rel to Expr, where Rel is #=, #\=, #<, #>, #=< or #>=.
transpose/2 Transpose a list of lists of the same length.
tuples in/2 Relation must be a list of lists of integers.
zcompare/3 Analogous to compare/3, with finite domain variables A and B.

SWI-Prolog 6.0 Reference Manual

F.2. LIBRARY PREDICATES 429

F.2.24 clpqr

entailed/1 Check if constraint is entailed
inf/2 Find the infimum of an expression
sup/2 Find the supremum of an expression
minimize/1 Minimizes an expression
maximize/1 Maximizes an expression
bb inf/3 Infimum of expression for mixed-integer problems
bb inf/4 Infimum of expression for mixed-integer problems
bb inf/5 Infimum of expression for mixed-integer problems
dump/3 Dump constraints on variables

F.2.25 clp/simplex

assignment/2 Solve assignment problem
constraint/3 Add linear constraint to state
constraint/4 Add named linear constraint to state
constraint add/4 Extend a named constraint
gen state/1 Create empty linear program
maximize/3 Maximize objective function in to linear constraints
minimize/3 Minimize objective function in to linear constraints
objective/2 Fetch value of objective function
shadow price/3 Fetch shadow price in solved state
transportation/4 Solve transportation problem
variable value/3 Fetch value of variable in solved state

F.2.26 thread pool

current thread pool/1 True if Name refers to a defined thread pool.
thread create in pool/4 Create a thread in Pool.
thread pool create/3 Create a pool of threads.
thread pool destroy/1 Destroy the thread pool named Name.
thread pool property/2 True if Property is a property of thread pool Name.

F.2.27 varnumbers

max var number/3 True when Max is the max of Start and the highest numbered $VAR(N) term.
numbervars/1 Number variables in Term using $VAR(N).
varnumbers/2 Inverse of numbervars/1.
varnumbers/3 Inverse of numbervars/3.

SWI-Prolog 6.0 Reference Manual

430 APPENDIX F. SUMMARY

F.3 Arithmetic Functions

*/2 Multiplication
**/2 Power function
+/1 Unary plus (No-op)
+/2 Addition
-/1 Unary minus
-/2 Subtraction
//2 Division
///2 Integer division
/\/2 Bitwise and
<</2 Bitwise left shift
>>/2 Bitwise right shift
./2 List of one character: character code
\/1 Bitwise negation
\//2 Bitwise or
ˆ/2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
asin/1 Inverse (arc) sine
atan/1 Inverse (arc) tangent
atan/2 Rectangular to polar conversion
atan2/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cputime/0 Get CPU time
div/2 Integer division
e/0 Mathematical constant
epsilon/0 Floating point precision
eval/1 Evaluate term as expression
exp/1 Exponent (base e)
float/1 Explicitly convert to float
float fractional part/1 Fractional part of a float
float integer part/1 Integer part of a float
floor/1 Largest integer below argument
gcd/2 Greatest common divisor
integer/1 Round to nearest integer
log/1 Natural logarithm
log10/1 10 base logarithm
lsb/1 Least significant bit
max/2 Maximum of two numbers
min/2 Minimum of two numbers
msb/1 Most significant bit
mod/2 Remainder of division
powm/3 Integer exponent and modulo

SWI-Prolog 6.0 Reference Manual

F.3. ARITHMETIC FUNCTIONS 431

random/1 Generate random number
random float/0 Generate random number
rational/1 Convert to rational number
rationalize/1 Convert to rational number
rdiv/2 Ration number division
rem/2 Remainder of division
round/1 Round to nearest integer
truncate/1 Truncate float to integer
pi/0 Mathematical constant
popcount/1 Count 1s in a bitvector
sign/1 Extract sign of value
sin/1 Sine
sqrt/1 Square root
tan/1 Tangent
xor/2 Bitwise exclusive or

SWI-Prolog 6.0 Reference Manual

432 APPENDIX F. SUMMARY

F.4 Operators

$ 1 fx Bind top-level variable
ˆ 200 xfy Predicate
ˆ 200 xfy Arithmetic function
mod 300 xfx Arithmetic function
* 400 yfx Arithmetic function
/ 400 yfx Arithmetic function
// 400 yfx Arithmetic function
<< 400 yfx Arithmetic function
>> 400 yfx Arithmetic function
xor 400 yfx Arithmetic function
+ 500 fx Arithmetic function
- 500 fx Arithmetic function
? 500 fx XPCE: obtainer
\ 500 fx Arithmetic function
+ 500 yfx Arithmetic function
- 500 yfx Arithmetic function
/\ 500 yfx Arithmetic function
\/ 500 yfx Arithmetic function
: 600 xfy module:term separator
< 700 xfx Predicate
= 700 xfx Predicate
=.. 700 xfx Predicate
=:= 700 xfx Predicate
< 700 xfx Predicate
== 700 xfx Predicate
=@= 700 xfx Predicate
=\= 700 xfx Predicate
> 700 xfx Predicate
>= 700 xfx Predicate
@< 700 xfx Predicate
@=< 700 xfx Predicate
@> 700 xfx Predicate
@>= 700 xfx Predicate
is 700 xfx Predicate
\= 700 xfx Predicate
\== 700 xfx Predicate
=@= 700 xfx Predicate
not 900 fy Predicate
\+ 900 fy Predicate
, 1000 xfy Predicate
-> 1050 xfy Predicate
*-> 1050 xfy Predicate
; 1100 xfy Predicate
| 1105 xfy Predicate

SWI-Prolog 6.0 Reference Manual

F.4. OPERATORS 433

discontiguous 1150 fx Predicate
dynamic 1150 fx Predicate
module transparent 1150 fx Predicate
meta predicate 1150 fx Head
multifile 1150 fx Predicate
thread local 1150 fx Predicate
volatile 1150 fx Predicate
initialization 1150 fx Predicate
:- 1200 fx Introduces a directive
?- 1200 fx Introduces a directive
--> 1200 xfx DCGrammar: rewrite
:- 1200 xfx head :- body. separator

SWI-Prolog 6.0 Reference Manual

Bibliography

[Anjewierden & Wielemaker, 1989] A. Anjewierden and J. Wielemaker. Extensible objects. ESPRIT
Project 1098 Technical Report UvA-C1-TR-006a, University of
Amsterdam, March 1989.

[BIM, 1989] BIM sa/nv, Everberg, Belgium. BIM Prolog release 2.4, 1989.

[Bowen et al., 1983] D. L. Bowen, L. M. Byrd, and WF. Clocksin. A portable Pro-
log compiler. In L. M. Pereira, editor, Proceedings of the Logic
Programming Workshop 1983, Lisabon, Portugal, 1983. Univer-
sidade nova de Lisboa.

[Bratko, 1986] I. Bratko. Prolog Programming for Artificial Intelligence.
Addison-Wesley, Reading, Massachusetts, 1986.

[Butenhof, 1997] David R. Butenhof. Programming with POSIX threads. Addi-
son-Wesley, Reading, MA, USA, 1997.

[Byrd, 1980] L. Byrd. Understanding the control flow of Prolog programs.
Logic Programming Workshop, 1980.

[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish. Programming in Prolog.
Springer-Verlag, New York, Third, Revised and Extended edi-
tion, 1987.

[Demoen, 2002] Bart Demoen. Dynamic attributes, their hProlog implementa-
tion, and a first evaluation. Report CW 350, Department of Com-
puter Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

[Deransart et al., 1996] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Stan-
dard. Springer-Verlag, New York, 1996.

[Frühwirth,] T. Frühwirth. Thom Fruehwirth’s constraint han-
dling rules website. http://www.informatik.uni-
ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html.

[Frühwirth, 1998] T. Frühwirth. Theory and Practice of Constraint Handling Rules.
In P. Stuckey and K. Marriot, editors, Special Issue on Con-
straint Logic Programming, volume 37, October 1998.

[Graham et al., 1982] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick.
gprof: a call graph execution profiler. In SIGPLAN Symposium
on Compiler Construction, pages 120–126, 1982.

SWI-Prolog 6.0 Reference Manual

BIBLIOGRAPHY 435

[Hodgson, 1998] Jonathan Hodgson. validation suite for con-
formance with part 1 of the standard, 1998,
http://www.sju.edu/˜jhodgson/pub/suite.tar.gz.

[Holzbaur, 1992] Christian Holzbaur. Metastructures versus attributed variables
in the context of extensible unification. In PLILP, volume 631,
pages 260–268. Springer-Verlag, 1992. LNCS 631.

[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[Neumerkel, 1993] Ulrich Neumerkel. The binary WAM, a simplified Prolog
engine. Technical report, Technische Universität Wien, 1993.
http://www.complang.tuwien.ac.at/ulrich/papers/PDF/binwam-
nov93.pdf.

[O’Keefe, 1990] R. A. O’Keefe. The Craft of Prolog. MIT Press, Massachussetts,
1990.

[Pereira, 1986] F. Pereira. C-Prolog User’s Manual. EdCaad, University of
Edinburgh, 1986.

[Qui, 1997] AI International ltd., Berkhamsted, UK. Quintus Prolog, User
Guide and Reference Manual, 1997.

[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cam-
bridge, Massachusetts, 1986.

SWI-Prolog 6.0 Reference Manual

	Introduction
	SWI-Prolog
	Books about Prolog

	Status
	Compliance to the ISO standard
	Should you be using SWI-Prolog?
	The XPCE GUI system for Prolog
	Release Notes
	Donate to the SWI-Prolog project
	Acknowledgements

	Overview
	Getting started quickly
	Starting SWI-Prolog
	Executing a query

	The user's initialisation file
	Initialisation files and goals
	Command-line options
	Controlling the stack-sizes
	Running goals from the commandline
	Compiler options
	Maintenance options

	GNU Emacs Interface
	Online Help
	Command-line history
	Reuse of top-level bindings
	Overview of the Debugger
	Compilation
	During program development
	For running the result

	Environment Control (Prolog flags)
	An overview of hook predicates
	Automatic loading of libraries
	Garbage Collection
	Syntax Notes
	ISO Syntax Support

	Rational trees (cyclic terms)
	Just-in-time clause indexing
	Future directions
	Indexing and portability

	Wide character support
	Wide character encodings on streams

	System limits
	Limits on memory areas
	Other Limits
	Reserved Names

	SWI-Prolog and 64-bit machines
	Supported platforms
	Comparing 32- and 64-bits Prolog
	Choosing between 32- and 64-bits Prolog

	Initialising and Managing a Prolog Project
	The project source files
	File Names and Locations
	Project Special Files
	International source files

	Using modules
	The test-edit-reload cycle
	Locating things to edit
	Editing and incremental compilation

	Using the PceEmacs built-in editor
	Activating PceEmacs
	Bluffing through PceEmacs
	Prolog Mode

	The Graphical Debugger
	Invoking the window-based debugger

	The Prolog Navigator
	Cross referencer
	Accessing the IDE from your program
	Summary of the IDE

	Built-in predicates
	Notation of Predicate Descriptions
	Character representation
	Loading Prolog source files
	Conditional compilation and program transformation
	Loading files, active code and threads
	Quick load files

	Listing and Editor Interface
	Verify Type of a Term
	Comparison and Unification of Terms
	Standard Order of Terms
	Special unification and comparison predicates

	Control Predicates
	Meta-Call Predicates
	ISO compliant Exception handling
	Debugging and exceptions
	The exception term
	Printing messages

	Handling signals
	Notes on signal handling

	DCG Grammar rules
	Database
	Update view
	Indexing databases

	Declaring predicates properties
	Examining the program
	Input and output
	ISO Input and Output Streams
	Edinburgh-style I/O
	Switching Between Edinburgh and ISO I/O
	Write onto atoms, code-lists, etc.

	Status of streams
	Primitive character I/O
	Term reading and writing
	Analysing and Constructing Terms
	Non-logical operations on terms

	Analysing and Constructing Atoms
	Character properties
	Case conversion
	White space normalization
	Language specific comparison

	Representing text in strings
	Operators
	Character Conversion
	Arithmetic
	Special purpose integer arithmetic
	General purpose arithmetic

	Misc arithmetic support predicates
	Built-in list operations
	Finding all Solutions to a Goal
	Forall
	Formatted Write
	Writef
	Format
	Programming Format

	Terminal Control
	Operating System Interaction
	Dealing with time and date
	Controlling the swipl-win.exe console window

	File System Interaction
	User Top-level Manipulation
	Creating a Protocol of the User Interaction
	Debugging and Tracing Programs
	Obtaining Runtime Statistics
	Execution profiling
	Profiling predicates
	Visualizing profiling data
	Information gathering

	Memory Management
	Windows DDE interface
	DDE client interface
	DDE server mode

	Miscellaneous

	Modules
	Why Use Modules?
	Defining a Module
	Importing Predicates into a Module
	Defining a meta-predicate
	Overruling Module Boundaries
	Interacting with modules from the toplevel
	Composing modules from other modules
	Operators and modules
	Dynamic importing using import modules
	Reserved Modules and using the `user' module
	An alternative import/export interface
	Dynamic Modules
	Transparent predicates: definition and context module
	Module properties
	Compatibility of the Module System

	Special Variables and Coroutining
	Attributed variables
	Attribute manipulation predicates
	Attributed variable hooks
	Operations on terms with attributed variables
	Special purpose predicates for attributes

	Coroutining
	Global variables
	Compatibility of SWI-Prolog Global Variables

	CHR: Constraint Handling Rules
	Introduction
	Syntax and Semantics
	Syntax
	Semantics

	CHR in SWI-Prolog Programs
	Embedding in Prolog Programs
	Constraint declaration
	Compilation

	Debugging
	Ports
	Tracing
	CHR Debugging Predicates

	Examples
	Backwards Compatibility
	The Old SICStus CHR implemenation
	The Old ECLiPSe CHR implemenation

	Programming Tips and Tricks
	Compiler Errors and Warnings
	CHR Compiler Errors

	Multi-threaded applications
	Creating and destroying Prolog threads
	Monitoring threads
	Thread communication
	Message queues
	Signalling threads
	Threads and dynamic predicates

	Thread synchronisation
	Thread support library(threadutil)
	Debugging threads
	Profiling threads

	Unbounded thread creation
	Multi-threaded mixed C and Prolog applications
	A Prolog thread for each native thread (one-to-one)
	Pooling Prolog engines (many-to-many)

	Multithreading and the XPCE graphics system

	Foreign Language Interface
	Overview of the Interface
	Linking Foreign Modules
	What linking is provided?
	What kind of loading should I be using?
	library(shlib): Utility library for loading foreign objects (DLLs, shared objects)
	Low-level operations on shared libraries
	Static Linking

	Interface Data types
	Type term_t: a reference to a Prolog term
	Other foreign interface types

	The Foreign Include File
	Argument Passing and Control
	Atoms and functors
	Analysing Terms via the Foreign Interface
	Constructing Terms
	Unifying data
	Convience functions to generate Prolog exceptions
	BLOBS: Using atoms to store arbitrary binary data
	Exchanging GMP numbers
	Calling Prolog from C
	Discarding Data
	Foreign Code and Modules
	Prolog exceptions in foreign code
	Catching Signals (Software Interrupts)
	Miscellaneous
	Errors and warnings
	Environment Control from Foreign Code
	Querying Prolog
	Registering Foreign Predicates
	Foreign Code Hooks
	Storing foreign data
	Embedding SWI-Prolog in other applications

	Linking embedded applications using swipl-ld
	A simple example

	The Prolog `home' directory
	Example of Using the Foreign Interface
	Notes on Using Foreign Code
	Memory Allocation
	Compatibility between Prolog versions
	Debugging and profiling foreign code (valgrind)
	Name Conflicts in C modules
	Compatibility of the Foreign Interface

	Generating Runtime Applications
	Limitations of qsave_program
	Runtimes and Foreign Code
	Using program resources
	Predicates Definitions
	The swipl-rc program

	Finding Application files
	Passing a path to the application

	The SWI-Prolog library
	library(aggregate): Aggregation operators on backtrackable predicates
	library(apply): Apply predicates on a list
	assoc: Association lists
	broadcast: Broadcast and receive event notifications
	library(charsio): I/O on Lists of Character Codes
	check: Elementary completeness checks
	library(clpfd): Constraint Logic Programming over Finite Domains
	clpqr: Constraint Logic Programming over Rationals and Reals
	Solver predicates
	Syntax of the predicate arguments
	Use of unification
	Non-linear constraints
	Status and known problems

	library(csv): Process CSV (Comma-Separated Values) data
	library(debug): Print debug messages and test assertions
	gensym: Generate unique identifiers
	library(lists): List Manipulation
	nb_set: Non-backtrackable set
	www_browser: Activating your Web-browser
	library(option): Option list processing
	library(optparse): command line parsing
	Notes and tips

	library(ordsets): Ordered set manipulation
	library(pairs): Operations on key-value lists
	pio: Pure I/O
	library(pure_input): Pure Input from files

	predicate_options: Declare option-processing of predicates
	The strength and weakness of predicate options
	Options as arguments or environment?
	Improving on the current situation

	prolog_xref: Cross-reference data collection library
	Extending the library

	library(random): Random numbers
	readutil: Reading lines, streams and files
	record: Access named fields in a term
	registry: Manipulating the Windows registry
	simplex: Solve linear programming problems
	Example 1
	Example 2
	Example 3

	library(thread_pool): Resource bounded thread management
	ugraphs: Unweighted Graphs
	library(url): Analysing and constructing URL
	library(varnumbers): Utilities for numbered terms

	Hackers corner
	Examining the Environment Stack
	Intercepting the Tracer
	Adding context to errors: prolog_exception_hook
	Hooks using the exception predicate
	Hooks for integrating libraries
	Hooks for loading files
	Readline Interaction

	Compatibility with other Prolog dialects
	Some considerations for writing portable code

	Glossary of Terms
	SWI-Prolog License Conditions and Tools
	The SWI-Prolog kernel and foreign libraries
	The SWI-Prolog Prolog libraries

	Contributing to the SWI-Prolog project
	Software support to keep track of license conditions
	License conditions inherited from used code
	Cryptographic routines

	Summary
	Predicates
	Library predicates
	aggregate
	apply
	assoc
	broadcast
	charsio
	check
	csv
	lists
	debug
	option
	optparse
	ordsets
	prologxref
	pairs
	pio
	random
	readutil
	record
	registry
	ugraphs
	url
	www_browser
	clp/clpfd
	clpqr
	clp/simplex
	thread_pool
	varnumbers

	Arithmetic Functions
	Operators

