A second life for
Prolog

What went wrong and
how we fixed it

Jan Wielemaker
J.Wielemaker@cwi.nl

mailto:J.Wielemaker@cwi.nl

Overview

- Now: invited talk
- WWW: Why Prolog, Why not and Why again

- Afternoon (17:50 — 19:10) Tutorial 1
- Introducing Prolog, the simple stuff, beyond SLD

- Tomorrow morning (08:00 — 10:00) Tutorial 2
- Handling data, interface to the outside world

Gllo) Why Prolog for language?

- DCG: A powerful grammer formalism
- Unlimited look-ahead
- Non-deterministic (can provide multiple parses)
- We can capture the semantics of language in logic
- This allows us to reason about language
- Translate, ...

- https://swish.swi-prolog.org/example/grammar.pl

https://swish.swi-prolog.org/example/grammar.pl

Does it work?

- To some extend

- Artificial languages (document formats, computer languages)
- Controlled natural language (e.g., ACE)
- Natural language in limited domains (e.g., Watson)

Real natural language?

- We all know it doesn‘t. Why not?

- Top-down parsing comes with too many choicepoints (slow)
- Long sentences produce too many possible parses (choose)

- Languages with free word ordering are hard to express
(expressivity)

- Or does it?

- Alpino (Dutch parser) is still one of the best parsers for Dutch. :

- Hybrid: A Prolog representation is compiled into a finite state
machine and a statistical model is used for disambiguation.
Overall control is again in Prolog.

-
()

£
©

Graph exploration

daughter(Daugther, Parent) :-
parent(Parent, Daugther),
female(Daugther).

Great!

- Concise description

- Works in all directions:

- Create a table of all daugthers and their parents

- Find the daugthers of a parent

- Find the parents of a daugther

- Verify a specific daugther is the daugther of a specific parent
- |s pretty fast

e But ...

- Now we do travel planning, traditionally by railway!

You can use a connection in two directions

You can travel around in circles without ever reaching your
destination

The number of connected tracks is pretty hu_q,

R
7

[/
\ J‘%J

=» Prolog looses its declarative beauty!

What to do?

- Prolog Is a programming language, so we can code a

proper solution!

- Extend the inference mechanism of Prolog, so we can still

use the declarative version!

- Restrict ourselves to domains that do not suffer too much

from this issue (special purpose language)

(<
()

£
©

Coding using SLD resolution

travel(S1, S2, Route) :-
travel bf(S2, [S1-[S1]], Route).

travel_bf(To, [To-Route|], Route). Break cycle

travel bf(To, [S-Route0|T], Route) :-
findall(S1-[S1|Route0], (adjacent(S,S1),\+member(S1,T)), New),
append(T, New, Agenda),
travel bf(To, Agenda, Route).

adjacent(S1, S2) :- connected(S1, S2).
adjacent(S1, S2) :- connected(S2, S1).

connected('Warshau', 'Poznan’).

Coding using SLD resoluton

v’ Can implement any algorithm

v'ls typically still compact compared to alternatives
(Debugging)
v We can retry (time machine)
x Harder to follow control flow

x Steep learning curve if you come from an imperative
background

11

- SLG (Tabling)

Beyond SLD

- Terminates provided finite data structures are used

- In some sense comparable to Datal.og
- Constraint Logic Programming

- Use domain knowledge to reorder search and be smarter than
generate-and-test for finding possible values

Declarative islands

SLD
Connect

SLG
Connections

Constraints
Scheduling

12

225 Prolog as a special-purpose language?

- Can solve isolated, relatively small and simple problems

- For many of these, there are subsystems in other languages
- Parser generators
- Rule subsystems

- Embedding Prolog suffers from the relational impedence mismatch
that also complicates using relational databases from many languages.

=» Still, Amzi! targets this

13

LEJE)
a
el

Use Prolog as a specification language

DSL for
problem domain

i

Compile

Explore using

interpretation

Interface

FsA

DB

(|
1\ -

14

Specification language

- Flexible syntax that is targetted at data
- Grammars are great for generating code

- Examples

- Alpino (we have seen)

- Weather prediction (university Leiden)

- Natural language understanding (Kyndi)

- Business rule management (SecuritEase)

15

Using Prolog as glue

- As we have seen

- Prolog can accomodate declarative islands

- Prolog can be used to generate problem specific code
- Prolog has a natural fit with

- Relational data (RDF and RDBMS)
- Hierarchical data (XML, JSON, etc)

16

E]L:]@ But oo o

- Traditional Prolog is a little autistic
- Only file I/0
- Poor representation for text
- Poor representation for arrays
- Often painful embedding support

17

2 SWI-Prolog

- Language
- Scalable support for multi-core hardware
- Unicode support, unlimited length atoms, volatile compact strings
- Unbounded arity for terms provides arrays
- Dicts (key-value objects)
- Scalable dynamic database with lazy indexing
- Security and garbage collection (atoms, clauses, stack)
- Connections

- Strong web server and client libraries
- Connections to languages and databases
- Parse and write document formats (RDF, XML, HTML, JSON,...)

18

Take home

x Classical Prolog as a declarative language has limited
value

v’ Modern Prolog offers more powerful declarative
subsystems that can be used as declarative islands

v Prolog is a great data representation and specification
language

v Prolog is great in providing a unifying framework for a
hybrid technology stack.

19

pue|ad) geuzod ‘103 6T-.T JoqUieRoN
aoualajuo) Abojouyos] » abenbue] Yig

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

