DEE
-3
B0E

A second life for
Prolog

Declarative programming

Jan Wielemaker
J.Wielemaker@cwi.nl

This research was partially supported by the VRE4EIC project, a project that has received funding from the European Union's Horiz%n

2020 research and innovation program under grant agreement No 676247.

mailto:J.Wielemaker@cwi.nl

Sessions

1) Introducing declarative programming and Prolog

Programming paradigms
Basics of Prolog

2) Algorithm = Logic + Control
Advanced control: tabling, constraints, continuations
Data and aggregation

3) Prolog as unifying framework
Accessing the outside world

Programming
paradigms

The Turing Machine

Current Current Current
state A: state B: state C:
TABLE Write Move Next | Write Move Next | Write Move Next

symbol: tape: state:| symbol: tape: state:
tape symbol is I 1 R B 1 L A

tape symbol is 1: 1 L C 1 R B 1 N HALT

symbol:

tape: state:

Write 1 =PRINT = P
Write 0 =ERASE =E

Tape left one square= L
Tape right one square = R

By Wvbailey (talk) (Uploads) - Own work, CC BY-SA 3.0, https://en.wikipedia.orag/w/index.php?curid=6917306

The universal computing device!

"The evidence seems to indicate that every algorithm for
any computing device has an equivalent Turing machine
algorithm ... if [Church's thesis] is true, it is certainly
remarkable that Turing machines, with their extremely
primitive operations, are capable of performing any
computation that any other device can perform,
regardless of how complex a device we choose."

(Stone (1972), p. 13)

5
e -

Von Neumann architecture

Central Processing Unit

Control Unit

]

Qutput
Device

Input

Arithmetic/Logic Unit
Device

8th Language & Technology Conference
Noyember 17-1972017, Pozran,/Peland

Memory Unit

By Kapooht - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25789639

Imperative Programming

Imperative: giving an authoritative command

X=Y+”Z
Take the values stored in the memory locations of Y and Z, add them and store
the result in the memory location of X.

X=X+1

To a mathematician this simply false

A programmer doesn't even see the problem!
With state everywhere, it gets hard to

Understand the computation
Reorder it computation (exploit concurrency)

Just a test ...

do

{ double r = floor(e0O/e1);

double €00 = e0, p00 = p0, q00 = q0;
volatile double p1_q1;

el = e1;
p0 = p1;
q0 = q1;
el =e00 - r*e1;
p1=p00 - r*p1;
g1 =900 - r*q1;
p1_q1 =p1/q1;

d =p1 _q1-n1->value.f;
} while(fabs(d) > DBL_EPSILON);

Functional programming

A function specifies its (return) value as an expression over its
Inputs

There are no more variables storing state
Easier to reason about and execute concurrently
Functions as primary objects (Lambda expressions)

Lisp (1958), Scheme (1970), Clojure (2007)

Most are hybrid language: they do provide for traditional variables
but discourage their use

JavaScript, Python. Even Java and to some extend C.

Logic programming
Use (predicate) logic to describe the relation between values:

parent(bob, jane).
parent(jan, jane).

mother(X,Y) :- parent(X,Y), female(Y).
father(X,Y) :- parent(X,Y), male(Y).

brother(X,Y) :- parent(X,P), parent(Y,P), male(Y).

10

Twists wrt. logic

P - Q (P implies Q) iswrittenas Q :- P (Qis true if P is
true).

Q (the head) is only a single atom, i.e., we cannot write
A, B:-P.

11

DEE
-3
B0E

Some logic based languages

Prolog (Alain Colmerauer, 1972)
Goal-directed backward chaining (top-down)
Datalog (~1977)
Forward chaining (bottom-up)
Mercury (1995)
Avoid need for extra-logical constructs using more declarations
Picat (2015)
Aim at combinatorial problems
Answer set programming (1993)
Pure

12

Prolog data

Constants

bob, 'Bob’, 'Nice wheather

=, ==, <, ... (sequences of glueing punctuation characters)

I, |, ... (non-glueing punctuation characters)
Numbers

0,42,67.3

7'012345, 0'a (97), 0b010101, Oxa0, 0077
Strings (SWI, LPA, ECLiIPSe)

“abc* (SWI, ECLiPSe), "abc™ (LPA)
Compounds

age('Bob’, 42)
Variables

X, Myvar, _var

13

2 Syntactic sugar

- Operators (user extensible):
- X=Y < =(X,Y)
- Type: fx, fy, xfx, xfy, yfx, xf, yf
Priority (0..1200)
- Lists (In SWI-Prolog . is []]):
[a,b,c] - .(a, .(b, .(c, [])))
[a,b|C] < .(a, .(b, C))
- “ab“or ab” (SWI) < .(97,.(98, [])
- Others

- {ab} < {{(&b)).

14

DEE
-3
B0E

Logical variables: unification

T1=T2, is true If there Is a substitution of variables with
values that makes the two terms identical (T1 ==T2)

X=a - a=a
a=X - a=a
X=Y - XY = XY
X=Y,Y=a - a=a
f(1) = f(X) - (1) = (1)
1=2 - false

f(X,1) = 1(Y,2) - false 15

Logical variables

After unifying with a non-variable, the variable is gone!
?-T=1(X), X =1.
T = f(1).

Unify-once:
X=1,X=2 - falsel!

16

Observations

Objects (terms) that do not contain variables are ground.

There is no new. Writing an object (term) creates it. As
terms are immutable one instance suffices.

The program Is represented as a term

We can reason about programs
We can do dynamic programming

17

databases and a queries

The data
mother(bob, jane).
mother(jan, jane).
Queries
?- mother(bob, jane).
true.
?- mother(bob, jennifer).
false.

18

databases and a queries (cont)

The data
mother(bob, jane).
mother(jan, jane).

Queries
?- mother(X, jane).
X =bob ;

X=jan;
false.

19

databases and a queries (cont)

The data
parent(jane, bob). female(jane). male(bob).
parent(jane, jan). male(jan).

parent(jane, mary). female(mary).
Queries

?- parent(jane, X), female(X).

X = mary.

20

databases, rules and a queries

The data
parent(jane, bob). female(jane). male(bob).
parent(jane, jan). male(jan).
parent(jane, mary). female(mary).

Rule

daughter(Mother, Daughter) :-

parent(Mother, Daughter),
female(Daughter).

Queries
?- daughter(X, jane).
X = mary.

21

Exercises

Please play around with the exercise below:

https://swish.swi-prolog.org/p/ltc_family.swinb

All material is linked from
https://swish.swi-prolog.org/p/LTC2017.swinb

22

https://swish.swi-prolog.org/p/ltc_family.swinb
https://swish.swi-prolog.org/p/LTC2017.swinb

Einstein‘s Riddle

- Also known as ,, The zebra puzzle*

https://swish.swi-prolog.org/example/houses_puzzle.pl

1.

N

o o M w

10.

11.

12.

13

14.

15.

Five colored houses in a row, each with an owner, a pet, cigarettes, and a drink.
The English lives in the red house.

The Spanish has a dog.

They drink coffee in the green house.

The Ukrainian drinks tea.

The green house is next to the white house.

The Winston smoker has a serpent.

In the yellow house they smoke Kool.

In the middle house they drink milk.

The Norwegian lives in the first house from the left.

The Chesterfield smoker lives near the man with the fox.

In the house near the house with the horse they smoke Kool.
The Lucky Strike smoker drinks juice.

The Japanese smokes Kent.

The Norwegian lives near the blue house.

23

https://swish.swi-prolog.org/example/houses_puzzle.pl

Five colored houses in a row,

each with an owner, a pet, cigarettes, and a
drink.

Houses = [house(Owner,Pet,Cigarettes,Drink,Color),

nouse(_, , , ,),
nouse(_, , , ,),
house(_, , , ,),
nouse(_, , , ,)

24

g G
08E
(-

member(house(english, , , ,red), Houses)

member(X, [X]|_]

member(X, [|T]

The English lives in the red house

).
) :- member(X, T).

25

-
()

£
©

In the middle house they drink milk.

Houses =[, ,house(, , .milk,), ,].

26

The Chesterfield smoker lives near the man with
the fox

next(house(_,fox, , ,),
nouse(_, ,chesterfield, ,),
Houses)

next(A, B, Ls) :- append(_, [A,B|_], Ls).
next(A, B, Ls) :- append(_, [B,A|], Ls).

27

Exercises

Map coloring
https://swish.swi-prolog.org/p/ltc_mapcolor.swinb
Learn Prolog Now! (2.2 Proof Search)

http://Ipn.swi-prolog.org/lpnpage.php?pagetype=html&pageid=
lpn-htmise6

28

https://swish.swi-prolog.org/p/ltc_mapcolor.swinb
http://lpn.swi-prolog.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse6
http://lpn.swi-prolog.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse6

29

pue|dd " geuzod ‘L 103 6T-/T JoqUIeAON
aJualajuo) ABojouyoa] » abenbue] Y18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

