A second life for
Prolog

Algorithm = Logic + Control

Jan Wielemaker

J.Wielemaker@cwi.nl


mailto:J.Wielemaker@cwi.nl

Overview

- Algorithm = Logic + Control
- Limitations of SLD
- Beyond SLD



Algorithm = Logic + Control
Bob Kowalski - 1979
- In Logic programming we only specify the logic
- For classic Prolog the Control is ,.SLD resolution®

v Defined execution order gives procedural reading

x Depth-first search is sensitive to non-termination

x Exploration order of the search space has huge impact on performance
X Wrong backtracking order leads to frequent recomputation

- See https://swish.swi-prolog.org/p/ltc_underground.swinb


https://swish.swi-prolog.org/p/ltc_underground.swinb

What now?

- Two directions

- Live with it, exploit the good stuff classical Prolog brings
- This is tomorrow's central topic

- Aspect programming: bring control under the control of the user
- This is today's central topic



SL.G Resolution (tabling)

- Memoize the results of old queries and their answers
- Avoids recomputation
- Explore other paths first if a variant of the current query is

encountered

- Avoids non-termination
- In practice acts as a lazy form of bottom-up evaluation.



Avoid recomputation using tabling

.- table fib/2.

fib(0, 1) :- !.
fib(1, 1) :- \.
fib(N, F) :-
N> 1,
N1 is N-1,
N2 is N-2,
fib(N1, F1),
fib(N2, F2),
Fis F1+F2.

- https://swish.swi-prolog.org/p/ltc_fibonacci.swinb


https://swish.swi-prolog.org/p/ltc_fibonacci.swinb

Avoid non-termination on left-recursion

.- table connected/2

% connections go both ways
connected(A, B) :- connected(B, A).
% and connections are transitive
connected(Start, End) :-
connected(Start, Somewhere),
connected(Somewhere, End).



SLG Resolution is the answer?

v Guaranteed termination for finite data structures

v'NOo recomputation

x Potentially large memory footprint

x Hard to predict execution order — no procedural reading

- For relatively small, but combinatorially hard problems
- Small? CYC, uses F-logic on top of XSB tabling!



Constraints

- Constrain the permissible values of a variable by

1. Adding data (attributes) to a variable

2. Call a predicate if the variable is unified with a concrete value or
another constraint variable

- Uses domain knowledge to reduce backtracking, i.e. given X in
S1, Y in S2, after X=Y X(Y) is in the intersection of S1 and S2.

- Traditional: member(X, S1), member(Y, S2) - O(N?
- Constraint: use interval (O(1)) or ordered set (O(N))



Example

S END +
MORE
MONEY

- 8 digits — 108 (100,000,000) combinations
- Naive: too costly
- Merge tests and computation into generator: 3.8 sec
- clp(fd): 0.001 sec.

- https://swish.swi-prolog.org/p/ltc_send_more _money.swinb

10


https://swish.swi-prolog.org/p/ltc_send_more_money.swinb

Constraints are the holy grail?

v Compact description of problems

v Efficient exploration of the search space

X Development of a solver requires domain knowledge
x Development of a solver is very complex

X We lost control: great if it works, but if it doesn't it is hard
to find out why and how to fix it

11



DEE
-3
B0E

Tor: lightweight custom search methods
for Prolog

- Make choice-points (clause or ;/2) explicit and hook them

- Control order of exploration using the hooks
- Iterative deepending

-+ ?- queens(Vars), search(id(label(Vars))).

- Limited discrepancy search

- ?- queens(Vars), search(lds(label(Vars))).

- Search with 50 credits and switch to bounded-backtrack search (1 backtrack

allowed) when the credits are exhausted
- ?- queens(Vars), search(credit(50,bbs(1),label(Vars))).

- http:/ltomschrijvers.blogspot.nl/2012/03/tor-lightweight-custom-search-met

hods.html

12


http://tomschrijvers.blogspot.nl/2012/03/tor-lightweight-custom-search-methods.html
http://tomschrijvers.blogspot.nl/2012/03/tor-lightweight-custom-search-methods.html

Probabilistic Logic Programming

- The real world often needs maybe!
- Annotate facts with probabilities

- Scenarios

- Create a logic program and learn the probabilities from data
- Compute the probability of an answer based on the probabilities of all

explanations

- Find the most probable answer

- See http://cplint.lamping.unife.it/

13


http://cplint.lamping.unife.it/

Coroutines

- Traditionally these were the hooks called from unifying
annotated (attributed) variables for constraints.

- Recent

- Continuations (SWI) are inherited from functional programming:

- Capture the ,remainder’ of the computation (stack)
- Do something else, to resume the captured continuation later

- Interactors (SWI, Lean Prolog) are Prolog inference engines you
can control from Prolog

14



Data in Prolog

- Modern Prolog systems allow for predicates with many
clauses. E.g.

- ?- logrecord(A,B,C,D,E,F,G,H,I,J)

A=6,

B ='P101_u_ex1510.log.gz',

C =1443657696.0,

D = get,

E = "/nl/pres/view/cite",

F = "identifier=ddd%3A010132734%3Ampeg21%3Aa0031&coll=ddd&query=plooij",

G = a48cde2180406905aefac97f2899588,

H = "Mozilla/5.0+(Windows+NT+6.1;+WOW64)+AppleWebKit/537.36+(KHTML, +like+ Gecko)+Chrome/45.0.2454.101+Safari/537.36",

| = http://www.delpher.nl/nl/kranten/view?query=plooij&facets%5Bspatial%5D%5B%5D=Nederlands-Indi%C3%AB+%7C+Indonesi%C3%AB&page=2&coll=ddd&identifier=ddd%3A010132734%3Ampeg21%3Aa0031&resultsidentifier=ddd
%3A010132734%3Ampeg21%3Aa0031

J =200

- Stats: 6,573,723 clauses, 3,822,297,600 bytes

15



Example 2: Princeton Wordnet 3.0

- Load time: 32 sec, size 200Mb
- After precompilation (qcompile/1): load time: 1.0 sec

16



Clause indexing 1.0

- Instead of trying clauses one-by-one, Prolog examines the
first argument.

- If this Is bound (nonvar) it uses an index (list or hash
table) that gives direct access to the candidate clauses.

v Speeds up finding the right clause

v Determine there are no more candidates, so we do not
need to create a choicepoint.

17



Clause indexing 2.0

- Pioneered by YAP, now also in SWI and Jekejek

- JITI: Just In Time Indexing

- If a good index for call is available, use it

- Otherwise, see whether a good index can be created

- If so, create it
- Otherwise mark we tried

v Provides indexes on any argument, not just the first
v Provides combined argument indexes
v Index into term arguments (planned for SWI-Prolog)

18



Lazy evaluation

- Create a partially instantiated term with attributed variables
were it needs to be lazily extended.

- Combine attributed-variable unification hook and non-
backtrackable assignment in terms to extend the term as it is
accessed.

- library(lazy_lists) turns any input for which we can do a
get/read operation into a lazy list.

- Process infinite input with bounded resources
- https://swish.swi-prolog.org/p/ltc_lazy _list.swinb

19



DEE
-3
B0E

Take home

- SLD resolution allows programming in Prolog, but has limited

Inference power

- SLG, Constraints and Tor bring alternative inference strategies to

Prolog

- Attributed variables, global variables, non-backtrackable

assignments, continuations and interactors allow implementing
alternative control regimes

- Probabillistic logic programming connects to machine learning
- Modern Prolog systems can efficiently handle large amounts of data

20



21

pue|dd " geuzod ‘L 103 6T-/T JoqUIeAON
aJualajuo) ABojouyoa] » abenbue] Y18



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

