A second life for
Prolog

What went wrong and
how we fixed it

Jan Wielemaker

J.Wielemaker@cwi.nl
Jan.Wielemaker@kyndi.com

mailto:J.Wielemaker@cwi.nl
mailto:Jan.Wielemaker@kyndi.com

@r

About this talk

This talk is derived from an invited talk held in Poznan,
Poland for LTC-2017, the Language and Technology
Conference In the honour of Alain Colmerauer, the
founder of Prolog.

Overview

- Prolog is an elegant language
- Prolog doesn't scale!
- Or, how does it scale after all?

@)

Online material

- https://swish.swi-prolog.org

- Open a new tab
- Search for tag:"LTC"

- Specific notebooks are linked from slides

https://swish.swi-prolog.org/

Q)

Prolog was invented for NLP!

- DCG: A powerful grammer formalism

- Unlimited look-ahead
- Non-deterministic (can provide multiple parses)

- We can capture the semantics of language in logic

- This allows us to reason about language
- Translate, ...

- Search for "John Sowa common logic"
- Simple parser at

https://swish.swi-prolog.org/example/grammar.pl

https://swish.swi-prolog.org/example/grammar.pl

@’

Does it work?

- To some extend
- Artificial languages (document formats, computer languages)
- Controlled natural language (e.g., ACE)
- Natural language in limited domains (e.g., IBM Watson)

Real natural language?

- We all know it doesn‘t. Why not?

- Top-down parsing comes with too many choicepoints (slow)
- Long sentences produce too many possible parses (choose)
- Languages with free word ordering are hard to express

(expressivity)

- Or does it?
- Alpino (Dutch parser) is still one of the best parsers for

Dutch.

. Hybrid: A Prolog representation is compiled into a finite state '

machine and a statistical model is used for disambiguation.
Overall control is again in Prolog.

. ' i) The limitations of Prolog

- The good part: small trees
- See
https://swish.swi-prolog.org/p/ltc_family.swinb

daughter(Daugther, Parentg -
parent(Parent, Daugther),
female(Daugther).

https://swish.swi-prolog.org/p/ltc_family.swinb

@r

Great!

- Concise description

- Works in all directions:

- Create a table of all daugthers and their parents

- Find the daugthers of a parent

- Find the parents of a daugther

- Verify a specific daugther is the daugther of a specific parent

- |s pretty fast

But ...

- Now we do travel planning, traditionally by railway!

You can use a connection in two directions

You can travel around in circles without ever reaching your
destination

The number of connected tracks is pretty big

@y

What to do?

- Prolog Is a programming language, so we can code a

proper solution!

- Extend the inference mechanism of Prolog, so we can still

use the declarative version!

- Restrict ourselves to domains that do not suffer too much

from this issue (special purpose language)

11

Guest lecture SWI-Prolog Education by

Anne Ogborn, 2048

@'}

Coding the routing

- Requires

- Stratification

- Cycle breaking

- Appropriate control
- See

https.//swish.swi-prolog.org/p/ltc_underground.swinb

12

https://swish.swi-prolog.org/p/ltc_underground.swinb

Coding using SLD resolution

Control

travel(S1, S2, Routef -
travel bf(S2, [S1-[S1]], Route).

travel_bf(To, [To-Route|_], Route).
travel bf(To, [[S-RouteO|T], Route) :-
findall(S1-[S1|Route0], (adjacent(S,S1),\+member(S1,T)), New),
append(T, New, Agenda),
travel bf(To, Agenda, Route).

adjacent(S1, S2) :- connected(S1, S2). Communitative
adjacent(S1, S2) :- connected(S2, S1).

Break cycle

connected('Warshau', 'Poznan’). Data

13

';)

Coding using SLD resoluton

v Can implement any algorithm

vls typically still compact compared to alternatives
(Debugging)
v We can retry (time machine)
x Harder to follow control flow

x Steep learning curve if you come from an imperative
background

14

Beyond SLLD

- SLG (Tabling)
- Terminates provided finite data structures are used
- In some sense comparable to DatalLog
- See

https://swish.swi-prolog.org/p/ltc_fibonacci.swinb

- Constraint Logic Programming
- Use domain knowledge to reorder search and be smarter than generate-and-test for

finding possible values

- See

https://swish.swi-prolog.org/p/ltc_send _more _money.swinb

Declarative islands

15

https://swish.swi-prolog.org/p/ltc_fibonacci.swinb
https://swish.swi-prolog.org/p/ltc_send_more_money.swinb

€ ii) Declarative islands

SLD
Connector

SLG
Connections

Constraints
Scheduling

16

Q) Prolog as a special-purpose language?

- Can solve isolated, relatively small and simple problems

- For many of these, there are subsystems in other languages
- Parser generators
- Rule subsystems

- Embedding Prolog suffers from the relational impedence
mismatch that also complicates using relational databases from
many languages.

=» Sitill, Amzi! targets this

17

Use Prolog as a specification language

DSL for

problem domain

\

i

Explore using
interpretation

Compile

Interface

b

CIC++

18

Q)

Specification language

- Flexible syntax that is targetted at data
- Grammars are great for generating code
- Examples

- Alpino (we have seen)

- Weather prediction (university Leiden)

- Natural language understanding (Kyndi)
- Business rule management (SecuritEase)

19

Q)

Using Prolog as glue

- As we have seen

- Prolog can accomodate declarative islands

- Prolog can be used to generate problem specific code
- Prolog has a natural fit with

- Relational data (RDF and RDBMS)
- Hierarchical data (XML, JSON, etc)

20

Q)

But ...

- Traditional Prolog is a little autistic
- Only file I/0
- Poor representation for text
- Poor representation for arrays
- Often painful embedding support

21

SWI-Prolog

- Language
- Scalable support for multi-core hardware
- Unicode support, unlimited length atoms, volatile compact strings
- Unbounded arity for terms provides arrays
- Dicts (key-value objects)
- Scalable dynamic database with lazy indexing
- Security and garbage collection (atoms, clauses, stack)
- Connections

- Strong web server and client libraries
- Connections to languages and databases
- Parse and write document formats (RDF, XML, HTML, JSON,...)

22

b)

Take home

x Classical Prolog as a declarative language has limited
value

v Modern Prolog offers more powerful declarative
subsystems that can be used as declarative islands

v Prolog Is a great data representation and specification
language

v Prolog is great in providing a unifying framework for a
hybrid technology stack.

23

\
- | \ S | - | - i
- — . - w ,d
aF | =2
{)) - -]
i 0&..? a THR o g I _-.\!ll...,..,n ™
1

§T0¢ ‘uiogbo suuy
Ag uoneonp3 6ojoid-IMS 34N109| 1S8N9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

