
Native Preemptive Threads in SWI-Prolog

Jan Wielemaker

Social Science Informatics (SWI),
University of Amsterdam,

Roetersstraat 15, 1018 WB Amsterdam, The Netherlands,
jan@swi.psy.uva.nl

Abstract. Concurrency is an attractive property of a language to ex-
ploit multi-CPU hardware or perform multiple tasks concurrently. In
recent years we see Prolog systems experimenting with multiple threads
only sharing the database. Such systems are relatively easy to build and
remain very close to standard Prolog while providing valuable extra func-
tionality. This article describes the introduction of multiple threads in
SWI-Prolog exploiting OS-native threading. We discuss the extra prim-
itives available to the Prolog programmer as well as implementation is-
sues. We explored speedup on multi-processor hardware and speed degra-
dation when executing a single task.

1 Introduction

There are two approaches to concurrency in the Prolog community, implicit fine-
grained parallelism where tasks share Prolog variables and systems (see Sect. 7)
in which Prolog engines only share the database (clauses) and run otherwise
completely independent. Programming these multi-threaded systems is very close
to programming single-threaded Prolog systems, turning these systems into an
attractive platform for tasks where concurrency is desirable:

Network servers/agents These systems must be able to pay attention to mul-
tiple clients. Threading allows multiple, generally almost independent, tasks
to make progress at the same time and can improve overall performance when
exploiting multiple CPUs (SMP) or if the tasks are I/O bound. Section 4.1
provides an example.

Embedding in multi-threaded servers Concurrent network-service infras-
tructures such as CORBA or .NET that embed Prolog can profit from multi-
threaded Prolog retaining their overall concurrent behaviour, which is lost if
request must be serialized to a single Prolog instance that is responsible for
a significant part of the server’s work.

Background processing in interactive systems Responsiveness and use-
fulness of interactive applications can be improved if background processing
deals with tasks such as spell-checking and syntax-highlighting. Implemen-
tation as a foreground process either harms response-time or is complicated
by interaction with the GUI event-handling.



2 Wielemaker

CPU intensive tasks On SMP systems CPU intensive tasks that can easily
be split into independent subtasks can profit from a multi-threaded imple-
mentation. Section 6.2 describes an experiment.

In multi-threaded Prolog we must add primitives for threads to communicate
and synchronise their activities. Our choices are based on the requirement to
cooperate smoothly with multi-threaded foreign language code as well as the
desire to keep it simple for the Prolog programmer.

Our implementation is based to the POSIX thread (pthread) API [2] for its
portability and clean design. On Windows we use a mixture of pthread-win321

and the native Win32 thread-API.
This paper explores the loss of performance of single-threaded Prolog code

executing in a multi-threaded environment. It also explores the consequences
of introducing threads in an originally single-threaded implementation of the
Prolog language including difficult areas such as atom garbage-collection.

In Sect. 2 we summary our requirements for multi-threaded Prolog. Next we
describe what constitutes a thread and what primitives are used to make threads
communicate and synchronise. In Sect. 4 we summarise our new primitives.
Section 5 describes implementation experience, followed by performance analysis
in Sect. 6 and an overview of related work in Sect. 7.

2 Requirements

Smooth cooperation with (threaded) foreign code Prolog applications
operating in the real world often require substantial amounts of ‘foreign’
code for interaction with the outside world: window-system interface,
interfaces to dedicated devices and networks. Prolog threads must be able
to call arbitrary foreign code without blocking the other (Prolog-) threads
and foreign code must be able to create, use and destroy Prolog engines.

Simple for the Prolog programmer We want to introduce few and easy to
use primitives to the Prolog programmer.

Robust during development We want to be as robust as feasible during in-
teractive use and the test-edit-reload development cycle. In particular this
implies the use of synchronisation elements that will not easily create dead-
locks when used incorrectly.

3 What is a Prolog thread?

A Prolog thread is an OS-native thread running a Prolog engine, consisting of
a set of stacks and the required state to accommodate the engine. After being
started from a goal it proves this goal just like a normal Prolog implementation.
Figure 1 illustrates the architecture. As each engine has its own stacks, Prolog
terms can only be transferred between threads by copying. Both dynamic pred-
icates and FIFO queues of Prolog terms can be used to transfer Prolog terms
between threads.
1 http://sources.redhat.com/pthreads-win32/



Native Preemptive Threads in SWI-Prolog 3

Shared Data

Predicates, atoms, records, streams

Stacks
Flags
System-stream-aliases
Thread-local clauses

Thread-1

Stacks
Flags
System-stream-aliases
Thread-local clauses

Thread-N

Fifo Queue

Fig. 1. Multiple Prolog engines sharing the same database. Flags and the system-
defined stream aliases such as current input are copied from the creating thread.
Clauses are normally shared, except for thread-local clauses discussed below in Sect. 3.1.

3.1 Predicates

By default, all predicates, both static and dynamic, are shared between all
threads. Changes to static predicates only influence the test-edit-reload cycle,
which is discussed in Sect. 5. For dynamic predicates we kept the ‘logical update
semantics’ as defined by the ISO standard [6]. This implies that a goal uses the
predicate with the clause set as found when the goal was started, regardless of
whether clauses are asserted or retracted by the calling thread or another thread.
The implementation ensures consistency of the predicate as seen from Prolog’s
perspective. Consistency as required by the application such as clause order and
consistency with other dynamic predicates must be ensured using synchronisa-
tion as discussed in Sect. 3.2.

Thread-local predicates are dynamic predicates that have a different set of
clauses in each thread. Modifications to such predicates using assert/1 or re-
tract/1 are only visible from the thread that performs the modification. In
addition, such predicates start with an empty clause set and clauses remaining
when the thread dies are automatically removed. Like the related POSIX thread-
specific data primitive, thread-local predicates simplifies making code designed
for single-threaded use thread-safe.

3.2 Synchronisation

The most difficult aspect of multi-threaded programming is the need to syn-
chronise the concurrently executing threads: ensure they use proper protocols
to exchange data and maintain invariants of shared-data in dynamic predicates.
POSIX threads offer three mechanisms to organise this:

A mutex is a Mutual Exclusive device. At most one thread can ‘hold’ a mutex.
By associating a mutex to data it can be assured only one thread has access
to this data at any time, allowing it to maintain the invariants.

A condition variable is an object that can be used to wait for a certain con-
dition. For example, if data is not in a state where a thread can start using
it it can wait on a condition variable associated with this data. If another



4 Wielemaker

thread updates the data it signals the condition variable, telling the waiting
thread something has changed and it may re-examine the condition.

As [2] explains in chapter 4, the commonly used thread cooperating tech-
niques can be realised using the above two primitives. These primitives however
are not very attractive to the Prolog user because great care is required to
use them in the proper order and complete all steps of the protocol. Failure to
do so may lead to data corruption or all threads waiting for an event to hap-
pen that never will (deadlock). Non-determinism, exceptions and the interactive
development-cycle supported by Prolog complicate this further.

Our primary synchronisation primitive is a FIFO (first-in-first-out) queue of
Prolog terms. This approach has been used successfully in similar projects and
languages, see Sect. 7. Queues (also called channels or ports) are well under-
stood, easy to understand by non-experts in multi-threading, can safely handle
abnormal execution paths (backtracking and exceptions) and can naturally rep-
resent serialised flow of data (pipeline). Next to the FIFO queues we support
goals guarded by a mutex by means of with mutex(Mutex, Goal) as defined in
Sect. 4.2.

3.3 I/O and debugging

Support for multi-threaded I/O is rather primitive. I/O streams are global ob-
jects that may be created, accessed and closed from any thread knowing their
handle. All I/O predicates lock a mutex associated with the stream, providing
elementary consistency.

Stream alias names for the system streams (e.g. user input) are thread-
specific, where a new thread inherits the bindings from its creator. Local system
stream aliases allow us to re-bind the user streams and provide separate interac-
tion consoles for each thread as implemented by attach console/0. The console
is realised using a clone of the normal SWI-Prolog console on Windows or an
instance of the xterm application in Unix. The predicate interactor/0 creates
a thread, attaches a console and runs the Prolog toplevel.

Using thread signal/2, a primitive similar to thread push goal/2 in Qu-
Prolog and described in Sect. 4.2, the user can attach a console to any thread
as well as start the debugger in any thread as illustrated in Fig. 2.

4 Managing threads from Prolog

An important requirement is to make threads easy for the programmer, especially
for the task we are primarily targeting at, interacting with the outside world.
First we start with an example, followed by a partial description of the Prolog
API and the consequences for the foreign language interface.



Native Preemptive Threads in SWI-Prolog 5

Fig. 2. Attach a console and start the debugger in another thread.

4.1 A short example

Before describing the details, we present the implementation of a simple network
service in Fig. 3. We will not discuss the details of all built-in and library predi-
cates used in this example. The thread-related predicates are discussed in more
detail in Sect. 4.2 while all details can be found in [13]. Our service handles a sin-
gle TCP/IP request per connection, using a specified number of ‘worker threads’
and a single ‘accept-thread’. The accept-thread executes acceptor/2, accepting
connection requests and adding them to the queue for the workers. The workers
execute worker/1, getting the accepted socket from the queue, read the request
and execute process/2 to compute a reply and write this to the output stream.
After this, the worker returns to the queue for the next request.

The advantages of this implementation over a traditional single-threaded
Prolog implementation are evident. Our server exploits SMP hardware and will
show much more predictable response times, especially if there is a large distri-
bution in the time required by process/1. In addition, we can easily improve on
it with more monitoring components. For example, acceptor/2 could immedi-
ately respond with an estimated reply time, and commands can be provided to
examine and control activity of the workers. Using multi-threaded code, such im-
provements do not affect the implementation of process/2, keeping this simple
and reusable.

4.2 Prolog primitives

This section discusses the built-in predicates we have added to Prolog. The
description of the API is incomplete to keep it concise. A full description is in
[13].

thread create(:Goal, -Id, +Options)
Create a thread which starts executing Goal. Id is unified with the thread-



6 Wielemaker

:- use module(library(socket)).

make server(Port, Workers) :-
create socket(Port, S),
message queue create(Q),
forall(between(1, Workers, ),

thread create(worker(Q), , [])),
thread create(acceptor(S, Q), , []).

create socket(Port, Socket) :-
tcp socket(Socket),
tcp bind(Socket, Port),
tcp listen(Socket, 5).

acceptor(Socket, Q) :-
tcp accept(Socket, Client, Peer),
thread send message(Q, Client),
acceptor(Socket, Q).

worker(Q) :-
thread get message(Q, Client),
tcp open socket(Client, In, Out),
read(In, Command),
close(In),
process(Command, Out),
close(Out),
worker(Q).

process(hello, Out) :-
format(Out, ’Hello world!˜n’, []).

Fig. 3. Implementation of a multi-threaded server. Threading primitives are set in
bold. The left column builds the server. The top-right runs the acceptor thread, while
the bottom-right contains the code for a worker of the crew.

identifier. The thread create/3 call returns immediately. Goal can succeed
at most once.
The new Prolog engine runs independently. If the thread is attached, any
thread can wait for its completion using thread join/2. Otherwise all re-
sources are reclaimed silently on completion.

thread join(+Id, -Result)
Wait for the thread Id to finish and unify Result with the completion status,
which is one of true, false or exception(Term).

message queue create(-Queue)
Create a FIFO message queue (channel). Message queues can be read from
multiple threads. Each thread has a message queue (port) attached as it is
created.

thread send message(+QueueOrThread, +Term)
Add a copy of term to the given queue or default queue of the thread. Return
immediately.2

thread get message([+Queue], ?Term)
Get a message from the given queue (channel) or default queue if Queue is
omitted (port). The first message that unifies with Term is removed from
the queue and returned. If multiple threads are waiting, only one will be
given the term. If the queue has no matching terms, execution of the calling
thread is suspended.

2 For a memory-efficient realisation of the pipeline model it may be desirable to sus-
pend if the queue exceeds a certain length, waiting for the consumers to drain the
queue.



Native Preemptive Threads in SWI-Prolog 7

with mutex(+Name, :Goal)
Execute Goal as once/1 while holding the named mutex. Name is an atom.
Explicit use of mutex objects is used to serialise access to code that is not
designed for multi-threaded operation as well as coordinate access to shared
dynamic predicates. The example below updates address/2. Without a mu-
tex another thread may see no address for Id if it executes just between the
retractall/1 and assert/1.

set_address(Id, Address) :-

with_mutex(address, (retractall(address(Id, _)),

assert(address(Id, Address)))).

thread signal(+Thread, :Goal)
Make Thread execute Goal on the first opportunity. ‘First opportunity’ is
defined to be the next pass through the call-port or foreign code calling
PL handle signals(). The latter mechanism is used to make threads handle
signals during blocking I/O, etc. This primitive is intended for ‘manager’
threads to control their work-crew as illustrated in Fig. 4 and for the devel-
oper to abort or trace a thread (Fig. 2).

Worker Manager

worker(Queue) :-
thread get message(Queue, Work),
catch(do work(Work), stop, cleanup),
worker(Queue).

. . .
thread signal(Worker, throw(stop)),
. . .

Fig. 4. Stopping a worker using thread signal/2. Bold fragments show the relevant
parts of the code.

4.3 Accessing Prolog threads from C

Integration with C-code has always been one of the main design goals of SWI-
Prolog. With Prolog threads, flexible embedding in multi-threaded environments
becomes feasible. The system provides two sets of primitives, one for long living
external threads that want to use Prolog often and one to facilitate environments
with many or short living threads that have to do some infrequent work in Prolog.

The API PL thread attach engine() creates a Prolog engine and makes it
available to the thread for running queries. The engine may be destroyed ex-
plicitely using PL thread destroy engine() or it will be destroyed automatically
when the underlying POSIX thread terminates. This method is not very suit-
able for many threads that infrequently require Prolog as creating and destroying
Prolog engines is an expensive operation and engines require significant memory
resources.



8 Wielemaker

Alternatively, foreign code can create one or more Prolog engines using
PL create engine() and attach an engine using PL set engine(). Setting and re-
leasing an engine is a fast operation and the system can realise a suitable pool of
engines to balance concurrency and memory requirements. A demo implemen-
tation is available.3

5 Implementation issues

We tried to minimise the changes required to turn the single-engine and single-
threaded SWI-Prolog system into a multi-threaded version. For the first imple-
mentation we split all global data into three sets: data that is initialised when
Prolog is initialised and never changes afterwards, data that is used for shared
data-structures, such as atoms, predicates, modules, etc. and finally data that
is only used by a single engine such as the stacks and virtual machine registers.
Each set is stored in a single C-structure, using thread-specific data (Sect. 3.2)
to access the engine data in the multi-threaded version. Update to shared data
was serialised using mutexes.

A prototype using this straight-forward transition was realised in only two
weeks, but it ran slowly due to too heavy use of pthread getspecific() and too
many mutex synchronisation points. In the second phase, fetching the current
engine using pthread getspecific() was reduced by caching this information in-
side functions that use it multiple times and passing it as an extra variable to
commonly used small functions as identified using the gprof [8] profiling tool.
Mutex contention was analysed and reduced from some critical places:

All predicates used reference counting to clean up deleted clauses after re-
tract/1 for dynamic or (re-)consult/1 for static code. Dynamic clauses re-
quire synchronisation to make changes visible and cleanup erased clauses,
but static code can do without this. Reclaiming dead clauses from static
code as a result of the test-edit-reconsult cycle is left to a garbage collector
that operates similarly to the atom garbage collection described in Sect. 5.1.

Permanent heap allocation uses a pool of free memory chunks associated
with the thread’s engine. This allows threads to allocate and free permanent
memory without synchronisation.

5.1 Garbage collection

Stack garbage collection is not affected by threading and continues concurrently.
This allows for threads under real-time constraints by writing them such that
they do not perform garbage collections, while other threads can use garbage
collection.

Atom garbage collection is more complicated because atoms are shared global
resources. Atoms referenced from global data such as clauses and records use
reference counting, while atoms reachable from the stacks are marked during the
3 http://gollem.swi.psy.uva.nl/twiki/pl/bin/view/Development/MultiThreadEmbed



Native Preemptive Threads in SWI-Prolog 9

marking phase of the atom garbage collector. With multiple threads this implies
that all threads have to mark their atoms before the collector can reclaim unused
atoms. The pseudo code below illustrates the signal-based implementation used
on Unix systems.

atom_gc()

{ mark_atoms_on_stacks(); // mark my own atoms

foreach(thread except self) // ask the other threads

{ pthread_kill(thread, SIG_ATOM_GC);

signalled++;

}

while(signalled-- > 0) // wait until all is done

sem_wait(atom_semaphore);

collect_unmarked_atoms();

}

A thread receiving SIG ATOM GC calls mark atoms on stacks() and signals the
atom semaphore semaphore when done. The mark atoms on stacks() function is
designed such that it is safe to call it asynchronously. Uninitialised variables on
the Prolog stacks may be interpreted incorrectly as an atom, but such mistakes
are infrequent and can be corrected in a later run of the garbage collector. The
atom garbage collector holds the atom mutex, preventing threads to create atoms
or increment the reference count. The marking phase is executed in parallel.

Windows does not provides asynchronous signals and synchronous (coopera-
tive) marking of referenced atoms is not acceptable because the invoking thread
as well as any thread that wishes to create an atom must block until atom GC
has completed. Therefore the thread that runs the atom garbage collector uses
SuspendThread() and ResumeThread() to stop and restart each thread in turn
while it marks the atoms of the suspended thread.

Atom-GC and GC interaction SWI-Prolog uses a sliding garbage collector [1].
During the execution of GC, it is very hard to mark atoms. Therefore during
atom-GC, GC cannot start. Because atom-GC is such a harmful activity, we
should avoid it being blocked by a normal GC. Therefore the system keeps track
of the number of threads executing GC. If a GC is running atom-GC is delayed
until no thread executes GC.

6 Performance evaluation

Our aim was to use the multi-threaded version as default release version, some-
thing which is only acceptable if its performance running a normal non-threaded
program is close to the performance of the single-threaded version, which is in-
vestigated in Sect. 6.1. In Sect. 6.2 we studied the speedup on SMP systems by
splitting a large task into subtasks that are distributed over a pool of threads.



10 Wielemaker

6.1 Comparing multi-threaded to single threaded version

We used the benchmark suite by Fernando Pereira4 for comparing the single
threaded to the multi threaded version on a range of benchmarks addressing
very specific parts of the Prolog implementation. We normalised the iterations
of each test to make it run for approx. one second, after which we executed the
34 tests in 5 different settings, described here in the left-to-right order used in
Fig. 5. All test were run on a 550Mhz Crusoe machine running SuSE Linux 7.3
and Windows 2000.

Bar Threading OS Comments

1 Single Linux Our base-case.
2 Single Linux With extra variable. See below.
3 Multi Linux Normal release version.
4 Single Windows Compiled for these tests.
5 Multi Windows Normal release version.

Fig. 5. Performance comparison between single and multi-threaded versions. The Y-
axis shows the time to complete the benchmark in seconds.

Figure 5 indicates there is no significant difference on any of the tests between
the single- and multi-threaded version on Windows 2000. It does show significant
differences on Linux, where the single-threaded version is considerably faster
and the multi-threaded version performs overall slightly worse and a few tests
that perform much less. The poorly performing tests all require frequent mutex
synchronisation due to the use of dynamic predicates or, for tests using setof/3,
locking atoms in the result table.

The state of the virtual machine in the single threaded version is stored
in a global structure, while it is accessible through a pointer passed between
functions in the multi threaded version. To explain the differences on Linux
we first compiled a version that passes a pointer to the virtual machine state
but is otherwise identical to the single threaded version. This version (2nd bar)
4 http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/code/bench/pereira.txt



Native Preemptive Threads in SWI-Prolog 11

exhibits behaviour very similar to the multi-threaded (3th bar) version on many
of the tests, except for the tests that require heavy synchronisation. We conclude
that the extra variable and argument in many functions is responsible for the
difference and the difference does not show up in the Windows version due to
inferior optimisation of MSVC 5 compared to gcc 2.95.5 We also conclude that
Microsoft critical sections used in the Windows version are considerably faster
than the glibc implementation of the more general POSIX mutex objects.

Finally we give the cumulative results of a few other platforms and compilers.
Dual AMD-Athlon, SuSE 8.1, gcc 3.1: -19%; Single UltraSPARC, Solaris 5.7, gcc
2.95: -7%; Single Intel PIII, SuSE 8.2, gcc 3.2: -19%. Solaris performs better on
the mutex-intensive tests.

6.2 A case study: Speedup on SMP systems

This section describes the results of multi-threading the Inductive Logic Pro-
gramming system Aleph [11], developed by Ashwin Srinivasan at the Oxford Uni-
versity Computing Laboratory. Inductive Logic Programming (ILP) is a branch
of machine learning that synthesises logic programs using other logic programs
as input.

The main algorithm in Aleph relies on searching a space of possible general
clauses for the one that scores best with respect to the input logic programs.
Given any one example from the input, a lattice of plausible single-clauses or-
dered by generality is bound from above by the clause with true as the body
(>), and bound from below by a long (up to hundreds of literals) clause known
as the most-specific-clause (or bottom) (⊥) [10].

Many strategies are possible for searching this often huge lattice. Randomised
local search [12] is one form implemented in Aleph. Here a node in the lattice
is selected at random as a starting location to (re)-start the search. A finite
number of moves (e.g. radially from the starting node) are made from the start
node. The best scoring node is recorded, and another node is selected at random
to restart the search. The best scoring node from all restarts is returned.

As each restart in a randomised local search of the lattice is independent,
the search can be multi-threaded in a straight forward manner using the worker-
crew model, with each worker handling moves from a random start point and
returning the best clauses as depicted in Fig. 6. We exploited the thread-local
predicates described Sect. 3.1 to make the working memory of the search kept
in dynamic predicates local to each worker.

Experimental results and discussion An exploratory study was performed
to study the speedup resulting from using multiple threads on an SMP machine.
We realised a work-crew model implementation for randomised local search in

5 This could be verified by compiling Prolog using GCC on Windows. This test has
not been performed.



12 Wielemaker

Fifo Queue

Fifo Queue

Manager Worker-1

Worker-N

Start-locations

Best clauses

Fig. 6. Concurrent Aleph. A manager schedules start points for a crew of workers. Each
worker computes the best clause from the neighbourhood of the start point, delivers it
to the manager and continues with the next start-point.

Aleph version 4. As the task is completely CPU bound we expected optimal re-
sults if the number of threads equals the number of utilised processors.6 The task
consisted of 16 random restarts, each making 10 moves using the carcinogenesis
[9] data set.7 This task was carried out using a work-crew of 1, 2, 4, 8 and 16
workers scheduled on an equal number of CPUs. Figure 7 shows the result.

speedup

0

5

Fig. 7. Speedup with an increasing number of CPUs defined as elapsed time using one
CPU divided by elapsed time using N CPUs. The task consisted of 16 restarts of 10
moves. The values are averaged over 30 runs. The study was performed on a Sun Fire
6800 with 24 UltraSPARC III 900 MHz Processors, 48 GB of shared memory, utilising
up to 16 processors. Each processor had 2 GB of memory.

Finally, we used Aleph to assess performance using many threads per CPU.
These results indicate the penalty of splitting a single-threaded design into a
multi-threaded one. The results are shown in Fig. 8.

6 We forgot to reserve a CPU for the manager. As it has very little work to do we
do not expect results with an additional CPU for the manager to differ significantly
with our results.

7 ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/carcinogenesis/progol/carcinogenesis.tar.Z



Native Preemptive Threads in SWI-Prolog 13

Threads

1 2 4 8 16 32

Time

0

100

200

300

400

500

600

Fig. 8. CPU- and elapsed time running Aleph concurrent on two architectures. The top
two graphs are executed on a single CPU Intel PIII/733 Mhz, SuSE 8.2. The bottom
two graphs are executed on a dual Athlon 1600+, SuSE 8.1. The X and triangle marked
graps represent elapsed time.

7 Related Work

This section provides an incomplete overview of other Prolog implementations
providing multi-threading where threads only share the database. Many imple-
mentations use message queues (called port if the queue is an integral part of
the thread or channel if they can be used by multiple threads).

SICStus-MT [7] describes a prototype implementation of a multi-threaded ver-
sion of SICStus Prolog based on the idea to have multiple Prolog engines only
sharing the database. They used a proprietary preemptive scheduler for the pro-
totype and therefore cannot support SMP hardware and have trouble with clean
handling of blocking system-calls. The programmer interface is similar to ours,
but they do not provide queues (channels) with multiple readers, nor additional
synchronisation primitives.

CIAO Prolog 8 [4] provides preemptive threading based on POSIX threads. The
referenced article also gives a good overview of concurrency approaches in Prolog
and related languages. Their design objectives are similar, though they stress the
ability to backtrack between threads as well as Linda-like [3] blackboard architec-
tures. Threads that succeed non-deterministically can be restarted to produce
an alternative solution and instead of queues they use ‘concurrent’ predicates
where execution suspends if there is no alternative clause and is resumed after
another thread asserts a new clause.

Qu-Prolog 9 provides threads using its own scheduler. Thread creation is similar
in nature to the interface described in this article. Thread communication is, like
ours, based on exchanging terms through a queue attached to each thread. For
atomic operations it provides thread atomic goal/1 which freezes all threads.
8 http://clip.dia.fi.upm.es/Software/Ciao/
9 http://www.svrc.uq.edu.au/Software/QuPrologHome.html



14 Wielemaker

This operation is nearly impossible to realise on POSIX threads. Qu-Prolog sup-
ports thread signal/2 under the name thread push goal/2. For synchroni-
sation it provides thread wait/1 to wait for arbitrary changes to the database.

Multi-Prolog [5] is logic programming instantiation of the Linda blackboard
architecture. It adds primitives to ‘put’ and ‘get’ both passive Prolog literals
and active Prolog atoms (threads) to the blackboard. It is beyond the scope of
this article to discuss the merits of message queues vs. a blackboard.

8 Issues and future work

Concurrency running static Prolog code is very good. Performance however de-
grades quickly on SMP systems when using primitives that require synchronisa-
tion. The most important issues are:

Dynamic predicates harm concurrency Dynamic predicates require mutex
synchronisation on assert, retract, entry and exit. Heavy use of dynamic
code can harm efficiency significantly. Thread-local dynamic code can avoid
expensive synchronisation.

Atoms harm concurrency Atom handling in the current implementation has
serious flaws. Creating an atom, creating a reference to an atom from as-
sert/1 or recorda/1 as well as erasing records and clauses referencing atoms
require locking the atom table. Even worse, atom garbage collection affects
all running threads, harming threads under tight real-time constraints.

Meta-calling harms concurrency Meta-calling requires synchronised map-
ping from module and functor to predicate.

Mutex synchronisation POSIX mutexes are stand-alone entities and thus
not related to the data they protect through any formal mechanism. This also
holds for our Prolog-level mutexes. Alternatively a lock could be attached to
the object it protects (i.e. a dynamic predicate). We have not adopted this
model as we regard the use of explicit mutex objects restricted to special
cases.

9 Conclusions

We have demonstrated the feasibility of supporting preemptive multi-threading
using portable (POSIX) thread primitives in an existing Prolog system de-
veloped for single-threading. Concurrently running static Prolog code performs
comparable to the single-threaded version and scales well on SMP hardware.
Threaded Prolog using a shared database is relatively easy to implement while
providing valuable functionality for server, interactive and CPU-intensive appli-
cations.

Built on the POSIX thread API, the system has been confirmed to run un-
modified on six Unix dialects. The MacOS X and MS-Windows versions required
special attention due to the partial support for POSIX semaphores in MacOS X
and the lack of asynchronous signals in MS-Windows.



Native Preemptive Threads in SWI-Prolog 15

Acknowledgements

SWI-Prolog is a Free Software project which, by nature, profits heavily from user
feedback and participation. We would like to express our gratitude to Sergey
Tikhonov for his courage to test and help debug early versions of the imple-
mentation. The work reported in Sect. 6.2 was performed jointly with Ashwin
Srinivasan and Steve Moyle at the Oxford University Computing Laboratory. We
gratefully acknowledge the Oxford Supercomputing Centre for the use of their
system, and in particular Fred Youhanaie for his patient guidance and support.
Anjo Anjewierden has provided extensive comments on earlier versions of this
article.

References

1. Karen Appleby, Mats Carlsson, Seif Haridi, and Dan Sahlin. Garbage collection
for Prolog based on WAM. Communications of the ACM, 31(6):719–741, 1988.

2. David R. Butenhof. Programming with POSIX threads. Addison-Wesley, Reading,
MA, USA, 1997.

3. Nicholas Carriero and David Gelernter. Linda in context. Communications of the
ACM, 32(4):444–458, April 1989.

4. Manuel Carro and Manuel V. Hermenegildo. Concurrency in Prolog using threads
and a shared database. In International Conference on Logic Programming, pages
320–334, 1999.

5. Koen de Bosschere and Jean-Marie Jacquet. Multi-Prolog: Definition, operational
semantics and implementation. In David S. Warren, editor, Proceedings of the
Tenth International Conference on Logic Programming, pages 299–313, Budapest,
Hungary, 1993. The MIT Press.

6. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-Verlag,
New York, 1996.

7. Jesper Eskilson and Mats Carlsson. SICStus MT—a multithreaded execution envi-
ronment for SICStus Prolog. In C. Palamidessi, H. Glaser, and K. Meinke, editors,
Programming Languages: Implementations, Logics, and Programs, volume 1490 of
Lecture Notes in Computer Science, pages 36–53. Springer-Verlag, 1998.

8. Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a call graph
execution profiler. In SIGPLAN Symposium on Compiler Construction, pages 120–
126, 1982.

9. R.D. King and A. Srinivasan. Prediction of rodent carcinogenicity bioassays from
molecular structure using inductive logic programming. Environmental Health Per-
spectives, 104(5):1031–1040, 1996.

10. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

11. A. Srinivasan. The Aleph Manual, 2003.
12. F. Železný, A. Srinivasan, and D. Page. Lattice-search runtime distributions may

be heavy-tailed. In S. Matwin and C. Sammut, editors, Proceedings of the 12th
International Conference on Inductive Logic Programming, volume 2583 of Lecture
Notes in Artificial Intelligence, pages 333–345. Springer-Verlag, 2003.

13. J. Wielemaker. SWI-Prolog 5.1: Reference Manual. SWI, University of Amsterdam,
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands, 1997-2003. E-mail:
jan@swi.psy.uva.nl.


