Precise Garbage Collection in Prolog

Jan Wielemaker! and Ulrich Neumerkel?

! Universiteit van Amsterdam, The Netherlands
J.Wielemaker@uva.nl
2 Technische Universitat Wien, Austria
ulrich@complang.tuwien.ac.at

Abstract. In this paper we present a series of tiny programs that verify
that a Prolog heap garbage collector can find specific forms of garbage.
Only 2 out of our tested 7 Prolog systems pass all tests. Comparing
memory usage on realistic programs dealing with finite datastructures
using both poor and precise garbage collection shows only a small dif-
ference, providing a plausible explanation why many Prolog implemen-
tors did not pay much attention to this issue. Attributed variables allow
for creating infinite lazy datastructures. We prove that such datastruc-
tures have great practical value and their introduction requires ‘precise’
garbage collection. The Prolog community knows about three techniques
to reach at precise garbage collection. We summarise these techniques
and provide more details on scanning virtual machine instructions to
infer reachability in a case study.

1 Introduction

All modern Prolog systems come with a heap garbage collector, no longer limiting
the programmer to revert to failure driven loops or findall/3 to free unneeded
memory through backtracking. For this article, we define a ‘precise’ garbage
collector as a garbage collector that reclaims all data that can no longer be
reached considering all possible execution paths from the current state without
considering semantics. I.e. in 1==2, A=ok, A is unreachable due to the semantics
of ==/2, but we consider all parts of a conjunction reachable and therefore A is
considered reachable. Our survey of 7 popular Prolog systems (Sect. 3) reveals
that only two satisfy this definition. We compared the memory requirements
between the poorest and best performance of GC on 5 very different real-world
programs (Tab. 2). The comparison indicates that precise GC is unimportant
for many programs, which provides a plausible explanation why precise GC is
not widespread.

Precise GC becomes important for processing infinite datastructures, in this
case distinguished from cyclic structures. A truly infinite structure clearly never
fits into finite physical memory. We are concerned with datastructures that grow
due to further instantiation while (older) parts of the datastructure become
unreachable after processing and can be reclaimed by the garbage collector. A
typical example is processing input using a list: the list is expanded as new

2 Jan Wielemaker and Ulrich Neumerkel

input becomes available, while the head of the list becomes unreachable after
being processed deterministically. This approach is used in [9], where infinite lists
are used for communication between concurrent processes. Similar consideration
motivated improvements in functional languages [17].

This article is organised as follows. First, in Sect. 2 we make a case for the
practical value of infinite lazy datastructures and the requirement of precise GC.
In Sect. 3 we identify possible leaks and test 7 Prolog implementations for them,
5 of which exhibit two or more leaks. This is followed by a survey of known
existing techniques to reach precise GC and the description and evaluation of a
case study adding precise GC to SWI-Prolog.?

2 A case for infinite lazy datastructures: pure input

Prolog DCG and other parsing techniques are based on processing lists. Unfortu-
nately, the data that needs to be parsed is often provided as a Prolog stream that
accesses data from the outside world. This problem has been identified long ago
and many implementations of DCG provide a hook 'C’/3 to read an input char-
acter. This hook is of little practical use, notably due to the poor combination of
non-determinism and side-effects. The current proposal for an ISO standard on
DCGs [8] no longer mentions 'C’/3. Fortunately, extended unification [13, 11, 10,
6] using attributed variables as found in many modern Prolog systems provides
a straightforward mechanism to remedy this problem.

Figure 1 presents the simple algorithm to apply a grammar rule on input from
a file as it appears in the SWI-Prolog library pure_input.pl. Besides standard
ISO predicates, the implementation depends on freeze(Var, Goal), which delays
Goaluntil Varbecomes instantiated (coroutining); call_cleanup(Goal, Cleanup)
which allows for closing the input handle when Goal becomes inaccessible due to
deterministic termination, an exception or pruning of a choicepoint and finally
read_pending_input(Handle, Head, Tail) which reads a block of buffered in-
put into the difference-list Head\Tail. Freeze or a substitute is available in all
systems with attributed variables. Call_cleanup is available in multiple Prolog
implementations and has been discussed for inclusion in the upcoming revision
of Part I of the ISO Prolog standard.* A block-read operation is not defined by
the ISO standard but trivial to implement while it provides a very significant
speedup (12x in SWI-Prolog 5.6.59) because it only needs to validate and lock
the stream handle once.

The phrase_from_file(:DCG, +File) definition in Fig. 1 allows for applying
an arbitrary non-deterministic DCG completely transparently on the content of
a file while, given precise GC, the memory usage is independent from the size
of this file. We compared the use of a DCG on a file with a carefully hand-
crafted program to count words in a text-file. We summarise the key results in
the table below and conclude that the DCG version is much easier to read and
very comparable in performance.

3 http://www.swi-prolog.org
4 Inclusion is stalled because the precise semantics prove hard to describe.

Precise Garbage Collection in Prolog 3

read_to_input_stream(Handle, Posl, Stream0) :-
set_stream_position(Handle, Posl),
(at_end_of_stream(Handle)
-> Stream0 = []
; read_pending_input (Handle, Stream0, Streaml),
stream_property(Handle, position(Pos2)),
freeze(Streaml, read_to_input_stream(Handle, Pos2, Streaml))

).

phrase_from_file(Phrase, File) :-
open(File, read, Handle),
stream_property (Handle, position(Pos)),
freeze(Stream, read_to_input_stream(Handle, Pos, Stream)),
call_cleanup(phrase(Phrase, Stream), close(Handle)).

Fig. 1. Implementation of input streams.

‘traditional‘DCG on file

Code size (lines) 31 22
Time (sec., 25MB file) 16.1 17.1
GC time (sec.) 0.9 14

From the above, we conclude that infinite (lazy) terms have great practical value
and it is therefore desirable that garbage collection is capable of reclaiming the
no-longer-accessible part of the term.

3 State of the art

Can pure input as described above be used in current Prolog systems with corou-
tining? We reviewed 7 Prolog implementations. The first obvious requirement
is that there is no memory leak after a deterministic wakeup of a delayed goal
(Sect. 3.1). The other requirements are about reclaiming unneeded parts of the
input list within and-control and or-control. I.e. we must be able to create a list
of arbitrary size if there are no references to the entire list. The simplest form is
the test below. Predicate f/1 builds a list, but as nobody uses it, GC reclaims
it and run/0 runs forever in constant space.

run :- f£(_).

£CLEIXD) - £(X).

This is the simplest case, where the initial list is created through a singleton
variable. In WAM-based systems with registers, the list resides in a register
that is overwritten in each recursion. On virtual machines such as the ZIP [3,
14] and ATOAM [18] that pass arguments over the stack, last-call optimization
overwrites the arguments, making the head inaccessible.

4 Jan Wielemaker and Ulrich Neumerkel

We will now go systematically through requirements to deal with infinite
(lazy) datastructures. The first property validates that deterministic instantia-
tion of an attributed variable does not leak. The remaining properties validate
that various scenarios where the head of the list becomes inaccessible are de-
tected by the garbage collector. Each test case considers a situation that requires
special attention in one or more virtual machines, based on our understanding
of, notably, the WAM and ZIP. As the number of possible virtual machines is
unbounded, it is not possible to be sure that these cases cover all cases in all
possible virtual machines. Each property is accompanied by a program that must
run forever in constant space. A test is considered ‘failed’ if the system aborts
or memory usage exceeds 1Gb. The given programs are very simple, using a fact
dummy /1 to pretend access to a variable. We assume that dummy /1 cannot
be optimized away by the compiler, otherwise a more complex replacement is
needed.

3.1 Property 1: Permanent removal of attributes

Attributed variables that have been unified deterministically with a non-variable
term must be reclaimed completely. This property can be tested using the pro-
gram below. It creates delayed goals and executes them through determinis-
tic binding. Note that for most constraint solvers, complete reclamation of at-
tributed variables is not strictly necessary. Most CLP(FD) programs are con-
cerned with finding solutions nondeterministically via a labeling procedure, thus
most volatility stems from backtracking and not from forward recursion.

run :- run(_).
run(X) :- freeze(X, dummy(X)), X = 1, run(T).
Qummy (_) .

3.2 Property 2: And-control (head variables)

Variables appearing in the head of a rule and in the body must be discarded as
soon as possible. We test this using the following which, like the previous test,
must run forever in bounded memory. The call to dummy /2 ensures L0 is not
made inaccessible due to last call optimization.

run :- run(_,_).

run(LO, L) :- £(LO, L1), dummy(L1, L).
f([glX], V) :- £(X, V).

dummy (Xs, Xs).

3.3 Property 3: And-control (existential variables)

Existential variables that occur in several goals, but not the last one. Ideally such
variables should be covered by environment trimming [5] in the WAM. Careful
environment trimming avoids more complex treatment.

Precise Garbage Collection in Prolog 5

run :- run(_,_).

run(LO, L) :- dummy(LO, L1), £(L1, L2), dummy(L2, L).
fCEIXT, ¥) - £(X, V).

dummy (Xs, Xs).

3.4 Property 4: Or-control

Or-control covers the case where a variable is only accessible from a choicepoint.
A well behaved garbage collector will reset such variables and discard their cur-
rent value (early-reset, [1]). This situation arises in disjunctions in grammars.
Eg. (...,"a"|...,"b"), where ...//0 is defined to match an unbounded string.

run :- run(_).
run(X) :- £(X).
run(X) :- X == [].
f([£1X]) - £CX).

3.5 Property 5: Branching inside a clause

Branching (A;B and If->Then; Else) using different ordering of the variables in
both branches cannot be handled optimally with the WAM environment trim-
ming as the branches require different environment layout. This test is only of
interest for systems that open code disjunctions, avoiding an auxiliary internal
definition.

run(Z) :- p(_,_,Z).

pX,Y,2) :- (Z>0 -> £(X), g(¥), dummy ; g(¥), £(X), dummy).
fCIEIX]) - £(X).

g(lglX]) - gX).

dummy .

3.6 Conclusion from our survey

| [1]2]3]4[5[5] VM|

SICStus 3.12.5||ok|ok|ok|ok|ok|ok| WAM
Ciao 1.10p8 ok|ok|ok|ok|ok|ok| WAM
YAP 5.0.1 n [ok|ok|ok|ok| n WAM
ECLiPSe 5.10 ||ok|ok| n |ok| n | n WAM
SWI 5.6.54 n|inin{n|{n|n ZIP
BProlog 7.1 nfok|n|n|n|n|ATOAM
XSB 3.1 njokln|{n|n|n WAM

Table 1. Evaluation of GC in some popular Prolog systems with coroutining. The
numbers correspond to the properties. Property 5 is tested for both branches.

6 Jan Wielemaker and Ulrich Neumerkel

In the above sections we have provided tests for the main properties of Prolog
coroutining and garbage collection needed to be able deal with infinite lazy
datastructures. The results are shown in Tab. 1. As detailed descriptions of GC
in these systems is either not in the literature or the description is likely to be
outdated and we do not have access to the source code of all these systems we
have not examined why tests succeed or fail. We merely conclude that precise
GC has not been given much attention by the respective developers. Table 2
justifies this behaviour in the absence of infinite datastructures.

To the best of our knowledge, SICStus® and the derived Ciao system [9] reach
a precise result using WAM registers, environment trimming and the implemen-
tation of in-clause alternative execution paths using anonymous predicates. The
YAP VM uses virtual machine instructions for in-clause alternative execution
paths, which cannot be handled perfectly with only environment trimming as
explained in Sect. 4. It is hard to explain the behaviour of the other systems.

Our study started with providing a pure input library for SWI-Prolog. SWI-
Prolog design was ok for property 1, but the implementation was proven flawed.
As the SWI-Prolog virtual machine passes arguments over the stack and does
not use environment trimming, it failed on all test.

4 Related work on data reachability in Prolog

Prolog systems discard data during backtracking. During forwards execution,
discarding data is achieved by the heap garbage collector. The garbage collector
preserves all data that is accessible through a set of root pointers [2]. The precise
set of root pointers depends on the Virtual Machine (VM) architecture, where
we distinguish between VMs that pass arguments in registers (WAM) and VMs
that pass arguments using the stack (ZIP, ATOAM). The current stack frame
and choice point are always root pointers. Registers and global variables are
other examples. There are several mechanisms by which data becomes inacces-
sible from the set of root pointers that are part of the normal Prolog (forward)
execution:

— Temporary variables allocated in registers become inaccessible when they
are overwritten.

— Arguments (on machines passing arguments over the stack) and environment
slots become inaccessible if the frame is discarded due to last-call optimiza-
tion.

— Environment trimming (see below) shrinks the environment, discarding un-
needed parts as the execution of the clause progresses.

Environment trimming [5] allocates variables in the environments ordered
by the last subgoal that references the variable. Each call to a subgoal has
an additional numeric argument that states that the first IV variables of the

5 www.sics.se/sicstus/ explained to one of the authors by Mats Carlsson.

Precise Garbage Collection in Prolog 7

environment are still valid. Together with registers for argument passing and last-
call optimization, environment trimming reaches a precise result if there are no
alternative execution paths in the VM instructions. This implies that disjunction
(A;B) and If->Then; Else must be translated into pure (anonymous) predicates
with some additional machinery to deal with proper scoping of the cut. This
technique is used by SICStus Prolog and Ciao (see Sect. 3.6.

Many virtual machines realise disjunction and if-then-else using branch in-
structions in the VM. As different subgoal ordering in the alternate execution
paths may require different ordering of variables in the environment (Sect. 3.5),
there is no longer a perfect order and garbage collection that scans the entire
environment will mark data that is no longer reachable because there is no in-
struction that refers to some variable. Table 1 suggests this is the status in
YAP 5.0.1.

Environment trimming cannot deal with arguments that are passed over the
stack as their order is determined by the calling convention and, analogous to in-
clause branching, different clauses of the predicate generally require a different
ordering.

VMs that pass arguments over the stack as well as VMs that use branching
instructions to code in-clause alternate execution paths need additional mea-
sures to regain precise GC. Two techniques to achieve this have been part of the
Prolog folklore for some time.® One scans the VM instructions from the contin-
uation points to find the accessible variables. It was used by old versions of BIM
Prolog. With native code this became very hard to maintain. The other uses
compiler generated bitmaps for each possible continuation point that represent
all reachable variables. This is used by BIM Prolog and hProlog.

In systems based on ‘Binary Prolog’ [15], continuations take the place of en-
vironments. They are represented by ordinary Prolog terms and therefore profit
from the same data representations [16]. Garbage collection in such systems [7]
do not require any special treatment. On the other hand, Binary Prolog requires
more space for representing variables within continuations than traditional im-
plementations. Every occurrence of a variable is now represented separately,
while traditional environments represent each variable only once.

5 Our case study: SWI-Prolog

SWI-Prolog is based on the ZIP VM which passes arguments over the stack and
uses branching instructions inside a clause. Like most today’s Prolog systems,
the VM is emulated. We briefly examine these properties under the assumption
that the optimal choice depends on the specific setting: desired performance,
portability, transparency for debugging, simplicity and speed of the compiler.

— Argument passing
The use of registers for argument passing as the WAM has some clear advan-
tages. It keeps the environment small and simplifies last-call optimization.

5 according to Bart Demoen

8 Jan Wielemaker and Ulrich Neumerkel

This comes at a price: the compiler is more complicated and it is harder
to provide a (graphical) debugger that provides access to variables in the
parent frames.

— Branching instructions
Using branching instructions to code disjunction and if-then-else prohibits
precise trimming of the environment as we have seen in Sect. 4. On the other
hand, execution is generally faster as no environment needs to be created for
the anonymous predicates that otherwise replace different in-clause execution
paths. We have no information on the implementation effort associated with
these approaches.

— Emulated VM vs. native code
An emulated VM is clearly easier to implement and if the VM is written in
a portable language, portability of the system comes for free. In addition, it
allows for simple decompilation [4] and simplifies two tasks in GC: identify
not-yet-initialized variables in the environment and identify variables that
can still be accessed from a given program counter (PC) location. SICStus
has dropped native code in release 47

The above observations make it clear that scanning VM instructions to rem-
edy the reachability problem is the most obvious approach for SWI-Prolog. Be-
cause most todays Prolog implementation use an emulated VM and Tab. 1 proves
that several systems still need to realise precise GC we believe a description of
our case study will help persuading other implementors to implement precise
GC and will help them to take the correct decisions right away.

6 Implementation

The SWI-Prolog VM differs considerable from the much more widely adopted
WAM. SWI-Prolog’s garbage collector however closely follows the SICStus Pro-
log garbage collector, which is described excellently in [1]. The fact that our GC
closely follows a GC for a WAM-based system gives some confidence that our
findings are applicable to a wider range of Prolog implementations. This section
only concentrates on the modifications to the algorithm described in [1] and
cannot be understood without detailed understanding of this paper.

Our modifications only affect the marking phase of GC. The modified algo-
rithm is provided in pseudo code in Fig. 2 and discussed below. Added lines and
deleted lines are marked with +/- at the start of the line.

First, initialize_and_mark() marks all data that is accessible from the con-
tinuation PC and at the same time initialises variables for which it finds a
‘first-access’ instruction, finishing the initialization of the environment. All en-
vironments are marked as ‘seen’. This is the same as in [1], except

" Mats Carlsson has confirmed that SICStus 4 wuses VM code scan-
ning to deal with wuninitialized variables in the environment. See also
http://www.sics.se/sicstus/docs/latest4d/pdf/relnotes.pdf

Precise Garbage Collection in Prolog

procedure mark_environments(env, PC)
while (env)
if (not_seen(env))
set_seen(env)
- initialize(env, PC)
+ initialize_and_mark(env, PC)
PC = env->PC
env = env->parent
else
+ mark (env, PC)
return

procedure mark_choices(ch)
env = ch->environment
early_reset_trail()
while (ch)
if (pc_choice(ch))
mark_environments(env, ch->PC)
else if (alt_clause(ch))

+ unmarked = count_unmarked_arguments (env)
+ while (unmarked > 0 && clause)
+ mark_arguments(env, clause->code)
+ clause = next_visible(clause)
if (not_seen(env))

set_seen(env)

mark_environments (env->parent, env->PC),
+ else if (foreign_choice(ch))
+ mark_all_arguments(env) ;

procedure mark_stacks(env, ch, PC)
mark_environments(env, PC)
mark_choices(ch)

Fig. 2. Pseudo code for the marking algorithm

9

10 Jan Wielemaker and Ulrich Neumerkel

— Mark variables in the environment that are referred to by instructions reach-
able from the PC instead of all variables in the environment.

— If we find a reference pointer to a parent environment, we mark the pointer
and continue marking the referenced destination. In the traditional algorithm
the variable in the parent is marked if we mark the parent environment. Now
we must cover the case where the corresponding variable is accessed in this
frame, but not in the parent frame.

— When called from mark_choices(), that marking is normally aborted if the
frame has already been seen. Now we must continue to mark the first seen
environment as this continuation may have a different PC and thus access
to different variables. There is no need to continue with the parent frame as
that has already been marked using the same PC.

Marking choicepoints is also similar to [1]. It resets trail entries that point
to garbage cells (early reset, dealing with property 4) and then marks the as-
sociated environment. As SWI-Prolog passes arguments over the stack, if an
alternate clause is encountered we need to keep all arguments that are used
by the remainder of the clause list (possibly reduced due to indexing). Simply
scanning the code of each clause could scan a lot of code on, for example, pred-
icates with many facts. We avoid this by computing the number of unmarked
arguments and abort the scan if all arguments are marked. Note that a clause
without singleton variables in the head accesses all arguments and thus stops the
search. Ground facts are a common example. Finally, as we have no information
on how a foreign predicate accesses its arguments we must mark all arguments
as accessible.

Sweeping an environment has been changed slightly. In [1], all heap refer-
ences in the environment are inserted into relocation chains. Now, we first check
whether the heap reference is marked. If so, we put it into a relocation chain as
before, otherwise we assign the atom ’<garbage_collected>’ to the variable.
This ensures consistency of the environment variable after heap relocation and is
needed by the debugger if execution switches from normal mode to debug mode
after a user interrupt or explicit call to trace/0 inside code running in no-debug
mode. In such cases, the debugger may show arguments of parent goals that
were executed in normal mode as ’<garbage_collected>’ and the graphical
debugger may show variables from the environment this way.

Note that if the program was started in debug mode, all data remains ac-
cessible through extra ‘debug’ choicepoints that also facilitate ‘retry’ at goals
that were started deterministically. Figure 6 illustrates the problem using an
explicit call to garbage_collect/0 and trace/0. Explicitly calling trace/0 is
common practice to start debugging in a very specific state. The explicit call to
garbage_collect /0 is there only to illustrate what happens if GC was invoked
at that specific point, while the system still operates in no-debug mode.

Precise Garbage Collection in Prolog 11
test -
read_line_to_codes(user_input, List),

all_spaces(List).

all_spaces([]).

all_spaces([0’ |T]) :- !, all_spaces(T).
all_spaces(_) :- garbage_collect, trace, fail.
1 7- test.
| : XX.
Call: (11) fail ? goals
[11] fail

[10] all_spaces(’<garbage_collected>’)
[1] ’$toplevel’
Call: (11) fail ?

Fig. 3. The debugger showing a garbage collected argument

7 Evaluation

Our evaluation considers four aspects: time, space, implementation effort and
maintenance. In the tradition of SWI-Prolog, we consider mainly real and large
applications. We selected the following applications because of diversity, size and
the amount of garbage collection involved: CHAT80 (Pereira & Warren, 1986)
running its test-suite in a forward chaining loop to force GC, Back52 (Thomas
Hoppe et all., 1993) running its test suite, CHR compiler (Tom Schrijvers) com-
piling itself, k123.pl (Peter Vanbroekhoven) and pgolf.pl (Mats Carlsson).

The results are shown in Tab. 2. The first set of columns describe the overall
timing, the last set describes characteristics of the code scanning version only
and is discussed in Sect. 7.3. All timings are executed on an AMD Athlon X2
5400+; 64-bit Linux 2.6 using the 64-bit development version of SWI-Prolog
based on 5.6.55. Reported time is in seconds. Frequency stepping was disabled
during the tests.

7.1 Time evaluation

Table 2 shows that the overall execution time is only slightly affected by our
changes. Note that the logic to trigger GC depends on the amount of memory
that is accessible after the previous GC and therefore different effectiveness of
GC leads to unpredictable overall behaviour of the program in terms of time
and number of garbage collections.

We obtained a detailed breakdown of the garbage collector using valgrind
[12] with the callgrind tool and kcachegrind to explore the results. The overhead
of analysing instructions is approximately 1% of the garbage collector marking

12 Jan Wielemaker and Ulrich Neumerkel

Test [Time #GC GCLeft GCTime[Angcan AvgCls Avglnstr
Without code scanning
k123 8.88 164 1,594,534 1.35
chat80| 2.56 109 18,661 0.10
back52| 2.31 406 5,589 0.17
pgolf [13.22 537,328,689 3.44
chr 6.41 36 3,466,387 1.17
With code scanning

k123 8.71 209 1,111,646 1.20 1.51 0.09 12.10
chat80| 2.42 111 12,301 0.08 1.68 0.60 14.52
back52| 2.21 420 3,360 0.15 1.56 0.12 11.19
pgolf [11.06 537,151,304 3.19 142 0.01 12.37
chr 6.29 38 3,265,471 1.15 1.91 0.32 14.52

Table 2. Effects of code scanning. Time is the total execution time (including GC
time); #GC the number of garbage collections; GCLeft the average amount of memory
(heap+trail) immediately after GC and GCTime the time spent on GC. AvgScan is
the average number of continuation points that must be explored for an environment;
AwvgCls the average number of additional clauses scanned; Avglnstr the average number
of instructions scanned before reaching the end of the clause.

time. These timing are slightly distorted because gcc’s inline function optimiza-
tion needs to be disabled to analyse the breakdown of execution time over the
various functions.

7.2 Space evaluation

Our approach based on marking accessible data by scanning the VM instructions
obviously reaches the ‘precise’ result as defined in the introduction for the heap
and trail stack. It does not provide the optimal result for the environment stack.
Only the approach as taken by SICStus is optimal here in the sense that the stack
contains no variables that are not accessible, while using our marking approach
the variables remain in the environment, bound to ’<garbage_collected>’.
Environment stack usage is in practice rarely a bottleneck and our deficiency is
a constant amount rather than the difference between finite and infinite stack
usage.

Table 2 also explains why precise GC is not widespread. Except for mem-
ory usage of the k123.pl test, we find no noticeable differences in the memory
usage after GC. The k123 program is a small program (75 lines after cleanup
of unreachable code). The central predicate mmul/3 in Fig. 4 is deterministic.
Lacking temporary registers and environment trimming, the old SWI-Prolog,
could not dispose the intermediate matrices.

Implementation and maintenance Only the code for marking environments and
clearing uninitialised variables was extended from originally 150 lines (C), to 557
including comment and debugging statements. Total implementation effort was

Precise Garbage Collection in Prolog 13

mmul (M, M6) :-
mmul (M, M, M1), mmul (M1, M1, M2), mmul (M2, M2, M3),
mmul (M3, M3, M4), mmul(M4, M4, M5), mmul(M5, M5, M6).

Fig. 4. Main routine of k123.pl

4 days. One of the problems associated with VM instruction interpretation is
maintenance that results from changing the instruction set. SWI-Prolog main-
tains information of the instruction format for each instruction. This is used to
list VM instructions, deal with saving and loading and simplifies VM instruction
scanning as it allows enumerating the instructions using a generic loop. Four
instructions have variable length data associated with them (packed string and
unbounded integer) and need (uniform) special attention.

In addition to the generic code walking, 36 out of 89 instructions require
special attention as described in table Tab. 3. The table states the number of
instructions the marking algorithm needs to understand, the number of groups
of instructions that require different treatment (especially the variable accessing
functions are often handled using the same code) and the number of lines of
C-code involved.

Description instructions groups lines
Identify flow control 6 5 44
Realise initialization of uninitialised variables 3 1 10
Identify variable access for marking (body) 14 6 30
Identify variable access for marking (head) 13 6 27

Table 3. Statistics on interpreting VM instructions

7.3 Discussion

Before we arrived at the current implementation we had two worries: prohibitive
costs of multiple scans of the same code from different continuations and pro-
hibitive scans of code from multiple clauses to identify the still-reachable argu-
ments. Column AwvgCls of Tab. 2 (page ??) indicates that scanning alternative
clauses is cheap, while the value of equal GC behaviour between in-clauses dis-
junctions and alternative clauses is obvious.

Our first prototype avoided multiple scans of the same code from different
continuations. Not correctly dealing with early-reset, this code was flawed and
abandoned. Nevertheless, it executed the above programs correctly and we ob-
tained statistics on its effectiveness. On the above test cases, multiple scans
increase the number of scanned instructions by 0, 58%, 7%, 7% and 3% (same
order as Tab. 2). As the scanning itself is responsible for less than 1% of the

14 Jan Wielemaker and Ulrich Neumerkel

time of the mark phase, it is considered neglectable. This conclusion can also be
drawn from column AwvgScan and Avglnstr together with the 1% time spent on
code scanning.

8 Conclusions

We have defined a set of five properties, each of which accompanied with a very
simple test case, that must be satisfied to deal with infinite (lazy) datastructures
in Prolog. We have proven that such datastructures are of significant practical
value as they can be used to realise processing a repositionable input stream
using the full power of non-deterministic grammar rules (DCGs). The majority
of Prolog implementations that provide the required attributed variables to re-
alise a lazy datastructure does not provide the required precise garbage collector.
Precise GC can be realised using a VM that uses registers to pass arguments,
implements environment trimming and codes in-clauses disjunction using anony-
mous predicates. Our case study indicates that other virtual machines can be
remedied by scanning virtual machine instructions to identify reachable vari-
ables in the environment. This technique is viable for any Prolog system based
on emulating virtual machine instructions. Next to supporting infinite datas-
tructure, the approximately 1% extra cost in the marking phase is more than
compensated for in the compacting phase of the garbage collector.

The current version of SWI-Prolog is shipped with the described enhance-
ments to the garbage collector and a library to use DCGs on repositionable input
streams.

Acknowledgements

We would like to thank Mats Carlsson for explaining to one of the authors how
the reachability problem is solved in SICStus Prolog, Bart Demoen for explaining
some folklore and the bitmap technique and Paulo Moura for investigating the
state of the art in some popular Prolog systems as shown in Tab. 1. Vitor Santos
Costa has confirmed property 1 for YAP, which is planned to be fixed soon.

References

1. Karen Appleby, Mats Carlsson, Seif Haridi, and Dan Sahlin. Garbage collection
for Prolog based on WAM. Communications of the ACM, 31(6):719-741, 1988.

2. Yves Bekkers, Olivier Ridoux, and Lucien Ungaro. Dynamic memory management
for sequential logic programming languages. In Workshop on Memory Manage-
ment, 1992. LNCS 627.

3. D. L. Bowen, L. M. Byrd, and WF. Clocksin. A portable Prolog compiler. In L. M.
Pereira, editor, Proceedings of the Logic Programming Workshop 1983, Lisabon,
Portugal, 1983. Universidade nova de Lisboa.

4. Kevin A. Buettner. Fast decompilation of compiled prolog clauses. In Ehud Y.
Shapiro, editor, ICLP, volume 225 of Lecture Notes in Computer Science, pages
663-670. Springer, 1986.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Precise Garbage Collection in Prolog 15

Luis Fernando Castro and Vitor Santos Costa. Understanding memory manage-
ment in Prolog systems. In Philippe Codognet, editor, ICLP, volume 2237 of
Lecture Notes in Computer Science, pages 11-26. Springer, 2001.

Bart Demoen. Dynamic attributes, their hProlog implementation,
and a first evaluation. Report CW 350, Department of Com-
puter Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =

http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

Bart Demoen, Paul Tarau, and Geert Engels. Segment order preserving copying
garbage collection for wam based prolog. In Symposion on Applied Computing
(SAC), pages 380-386. ACM, 1996.

Paulo Moura et. al. Prolog, 2006. ISO/IEC DTR 132113:2006.

Manuel V. Hermenegildo, Daniel Cabeza Gras, and Manuel Carro. Using attributed
variables in the implementation of concurrent and parallel logic programming sys-
tems. In ICLP, pages 631-645, 1995.

Christian Holzbaur. Metastructures versus attributed variables in the context of
extensible unification. In PLILP, volume 631, pages 260-268. Springer-Verlag,
1992. LNCS 631.

Serge Le Huitouze. A new data structure for implementing extensions to prolog.
In PLILP, volume 456, pages 136—-150. Springer-Verlag, 1990. LNCS 456.
Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Jeanne Ferrante and Kathryn S. McKinley,
editors, PLDI, pages 89-100. ACM, 2007.

Ulrich Neumerkel. Extensible unification by metastructures. In Maurice
Bruynooghe, editor, Proceedings of META90, Workshop on Meta-Programming
in Logic, Leuven, Belgium, April 1990.

Ulrich Neumerkel. The binary WAM, a simplified Prolog en-
gine. Technical report, Technische Universitdt Wien, 1993.
http://www.complang.tuwien.ac.at/ulrich /papers/PDF /binwam-nov93.pdf.

Paul Tarau and Michel Boyer. Elementary logic programs. In PLILP, pages 365—
381. Springer-Verlag, 1990. LNCS 456.

Paul Tarau and Ulrich Neumerkel. A novel term compression scheme and data
representation in the binwam. In PLILP, pages 73-87. Springer-Verlag, 1994.
LNCS 844.

Philip L. Wadler. Fixing some space leaks with a garbage collector. Software
Practice and Ezperience, 17(9):595-609, 1987.

Neng-Fa Zhou. Garbage collection in B-Prolog. In Proc. of the First Workshop on
Memory Management in Logic Programming Implementations, 2000.

