Prolog-based RDF storage and retrieval

Jan Wielemaker®, Guus Schreiber?, and Bob Wielinga!

! University of Amsterdam
Social Science Informatics (SWI)
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands
{jan,wielinga}@swi.psy.uva.nl
2 Vrije Universiteit Amsterdam
Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
schreiber@cs.vu.nl

Abstract. The semantic web is a promising application-area for the
Prolog programming language for its non-determinism and pattern-
matching. In this position paper we briefly describe our choices and
results in dealing with RDFS. We also outline problems and possible
directions for handling OWL.

1 Requirements

It is very hard to set requirements for handling RDF triples and the seman-
tic web languages RDFS and OWL without an application domain in mind.
Size as well as dynamic modification of the ABox and TBox as well as the rea-
soning performed (RDF, OWL/DL, OWL/Full or a subset thereof) have great
impact on suitable technology. In our application domain, the annotation of
multi-media objects using background ontologies we anticipate the use of ap-
proximately 1.5 million triples TBox and a similar amount annotations (ABox)
for a realistic application. We wish to be able to run this application on hardware
with 512 Mb core and reasonable application startup time. As we use several
external ontologies in one application, the meta-vocabulary of these ontologies
must be unified. This is accomplished using rdfs:subProperty0f and therefore
this relation must be handled efficiently.

2 Storage and indexing

After experiments with plain Prolog representations we have developed an RDF
store using in-memory tables that are tightly integrated to the SWI-Prolog
internals through the Prolog foreign language interface. The indexing of the
in-memory store, which is implemented in the C-language to realise optimal
memory use and performance, is optimised to deal with the semantics of the
rdfs:subProperty0f relation. Subjects and resource Objects use the immutable
Prolog atom-handle as hash-key. Literal Objects use a case-insensitive hash to

2 Wielemaker, Schreiber and Wielinga

speedup case-insensitive lookup of labels, a common operation in our applica-
tion domain. The Predicate field needs special attention due to the requirement
to handle subProperty0f efficiently. The storage layer has an explicit represen-
tation for all known predicates which are linked directly in a hierarchy built
using the subProperty0f relation. Each predicate has a direct pointer to the
root predicate: the topmost predicate in the hierarchy. If the top is formed by a
cycle an arbitrary node of the cycle is flagged as the root, but all predicates in
the hierarchy point to the same root as illustrated in Fig. 1. Each triple is now
hashed using the root-predicate that belongs to the predicate of the triple.

‘Root’ Property

— rdfs:subPropertyOf Preds
------» cached ‘root’ predicate

Fig. 1. All predicates are hashed on the root of the predicate hierarchy.

The above representation provides fully indexed lookup of any instantiation
pattern, case insensitive on literals and including sub-properties. As a compro-
mise to our requirements, the storage layer must know the fully qualified resource
for subProperty0f and must rebuild the predicate hierarchy and hash-tables if
subProperty0f relations are added to or deleted from the triple store. The pred-
icate hierarchy and index are invalidated if such a triple is added or deleted. The
index is re-build on the first indexable query. We assume that changes to the
subProperty0f relations are infrequent.

Application startup would be uncomfortably slow when reading the triples
from RDF/XML. Therefore we use a binary format for caching purposes. The
binary format load 22 times faster than the RDF/XML source, which is mainly
caused by storing resource identifiers only once and therefore reducing the num-
ber of atom-lookup operations while loading the triples.

3 Query API

The store is designed to use Prolog as the query API, where complex queries are
expressed as Prolog predicates using primitives provided by the store. A subset
of the query primitive we currently provide are given in Tab. 1. This query API
provides natural queries for RDFS.

Prolog-based RDF storage and retrieval 3

rdf(?Subject, ?Predicate, ?0Object)
Elementary query for triples. Subject and Predicate are atoms representing the fully
qualified URL of the resource. Object is either an atom representing a resource or
literal(Text) if the object is a literal value.

rdf_has(?Subject, ?Predicate, ?Object, - TriplePred)
This query exploits the rdfs:subProperty0f relation. It returns any triple whose
stored predicate equals Predicate or can reach this by following the transi-
tive rdfs:subProperty0f relation. The actual stored predicate is returned in
TriplePred.

rdf_reachable(?Subject, +Predicate, ?Object)
True if Object is, or can be reached following the transitive property Predicate
from Subject. Either Subject or Object or both must be specified. If one of Subject
or Object is unbound this predicate generates solutions in breath-first search order.
It maintains a table of visited resources, never generates the same resource twice
and is robust against cycles in the transitive relation.

Table 1. API summary for accessing the triple store

The main problem is that proper goal-ordering in a conjunction is important
for good performance.

4 Scalability

We have tested memory requirements and performance using a test-set of 1.5
million triples originating from WordNet, [1] AAT [2] and ULAN [4] on desktop
equipped with an AMD Athlon 1600+ and 2 GB memory. The key figures are
summarised below.

— Memory requirements and scalability limits
e £ 80 Mb per 10° triples
e Max: +4 x 107 on 32-bit hardware

— Performance (AMD 1600+)
e 2 us first answer, 0.7 us per alternative
e Load RDF/XML: + 12,500 triples/sec
e Internal format: + 300,000 triples/sec

5 Towards OWL

The current implementation support efficient handling of rdfs:subProperty0f
and to a lesser extend general transitive predicates. This is sufficient for RDF'S,
but cannot deal efficiently with reasoning anticipated in OWL. Instead of just
handling transitive properties, the search involves owl:sameAs, owl:inverseOf,
symmetric properties and many more. There are various options to deal with
this explosion:

4 Wielemaker, Schreiber and Wielinga

— Possibly some of these relations can be handled efficiently by extending the
indexing of the store and/or perform some degree of forward reasoning. For
example triples of symmetric predicates are hashed on the same key and
therefore a search can exploit symmetric predicates at very low cost. By
adjusting indexing we can make sure predicates and their inverse are hashed
on the same key too. Low-level support for owl:sameAs is worth considering,
though we anticipate that adding and deleting triples with this relation is
frequent in our domain and therefore efficient incremental algorithms are
needed for these operations.

— Tabling [3] is a Prolog extension to deal in a very dynamic way with nor-
mally not terminating recursive computation and avoid unnecessary re-
computation. Although provided by only a few Prolog implementations, it
may be worth considering.

— Constraint Logic Programming (CLP) is possible another interesting tech-
nique to improve declarativeness and performance, especially when reasoning
about OWL descriptions.

References

1. G. Miller. WordNet: A lexical database for english. Comm. ACM, 38(11), November
1995.

2. T. Peterson. Introduction to the Art and Architecture Thesaurus. Oxford University
Press, 1994. See also: http://www.getty.edu/research/tools/vocabulary/aat/.

3. I. V. Ramakrishnan, Prasad Rao, Konstantinos Sagonas, Terrance Swift, and
David S. Warren. Efficient tabling mechanisms for logic programs. In Leon Ster-
ling, editor, Proceedings of the 12th International Conference on Logic Programming,
pages 697-714, Cambridge, June 13-18 1995. MIT Press.

4. ULAN: Union List of Artist Names. The Getty Foundation. URL:
http://www.getty.edu/research/tools/vocabulary/ulan/, 2000.

