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Chapter 1

Background and Motivation

There is a flaw in the very foundations of Logic Programming: Prolog is nondeclarative. Of course,
everyone knows that real Prolog as it is used is nondeclarative. Prolog programs abound with
cuts, var tests, asserts, and all kinds of ugly warts. Everyone agrees that Prolog should be more
declarative and much research time has been spent, and spent productively, trying to remedy these
problems by providing more declarative alternatives. But I believe that there is a more serious
flaw closer to the heart of Prolog, right at its very center, and this flaw has caused a number
of problems in logic programming. I'm convinced that we must address this flaw, before we can
proceed together productively with logic programming. Of course, whether this is a “flaw” is in the
eye of the beholder; we all have arguments over whether a particular behavior is a bug or a feature.
As is clear from my presentation, I think I've found a bug; some of you will think it’s a feature.
Wherever we stand on this issue, however, I believe we must be clear about its implications. Only
then will we be able to communicate effectively about where LP is and where it should go.

Let me also mention that I am by no means pointing out something new, unknown to the
community; rather I'm trying to raise our consciousness about an inconsistency and its implications.

The problem is the very semantics of logic programming. The foundational results of our field
show that for pure horn clauses, the following are equivalent: logical implication, SLD resolution,
and the least fixpoint of the T}, operator. And logic programming basically “works” because SLD
corresponds to computation (i.e. Prolog) and to logical implication (truth in models).

But there is a fly in the ointment, the dirty secret that we Prolog aficionados try to keep in
the closet but Prolog programmers are all too aware of. Let’s look more carefully at the full SLD
tree, the foundation for us Prolog hackers. There are three kinds of paths in an SLD tree: 1) those
ending in success, 2) those ending in failure, and 3) those not ending. The foundational results tell
us that those ending in success correspond exactly to those instances of the query that logically
follow from the program. This is fine and dandy and certainly something we want and need. But as
programmers, that’s not enough. We programmers also want, need actually, to distinguish between
paths that end in failure and paths that don’t end at all. When we run a program, and it responds
‘no’, we may accept that response as a good answer to our query. But if it goes into an infinite
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loop never coming back with an answer at all, we decide we have a bug in our program and set out
to fix it.

So the problem with SLD is not that it doesn’t do the right things for success, but that it
doesn’t do the right thing with the other two possible outcomes. Note that this has nothing to do
with how we search the SLD tree, e.g. unfairly with depth first search or fairly with breadth-first
search; it’s a property of the tree itself. And it has nothing to do with the fact that our theory
deals best with ground programs and Prolog programs deal with variables. The problem concerns
which paths in the SLD tree are finite and which are infinite.

In Prolog, as compared with other languages, it seems easier to write partially correct pro-
grams, programs that, if they halt, they give the right answers. This comes from the power of
declarative programming. But it seems much harder to write and reason about totally correct
programs, programs that halt in all (the right) cases. So it may be the case that what we gain from
declarativeness in our ability to reason about the partial correctness of Prolog programs, we lose
in the difficulty of reasoning about total correctness. Theoreticians may accept partial correctness
as good enough; but we users have to know precisely how partial.

And sadly, the problems show up for very simple programs. The issue is clearly seen in transitive
closure. Consider the definition:

tca(X,Y) :- a(X,Y).
tca(X,Y) :- a(X,Z), tca(Z,Y).

Prolog programmers know that this definition is fine when the predicate “a” stands for “parent”,
and then “tca” is “ancestor”. But what happens if “a” is defined by the following facts?

a(1,1).
a(2,1).

Consider what happens when we ask the query: :- tca(1,2). Prolog (that is SLD resolution)
goes into an infinite loop. Are we as programmers happy? Do we say that since it hasn’t returned,
it must mean that you can’t get to 2 from 1 in this graph? Not at all. We turn back to fix the
program, probably modifying it by adding a loop-check. That is, we add a list of nodes to the
predicate “tca”, which contains the nodes already visited. Then before continuing to search from a
node, we check that it has not already been visited. We’re not happy until our program responds
‘no’ to our query. So clearly the semantics of our programming language is going to have to account
for this. And it does. We can’t depend on the previously referenced foundational results to give
a semantics for pure Prolog as a programming language, where we want to know what both ‘yes’
and ‘no’ answers mean. The theory must somehow be extended. This was done by Clark who
defined the completion of a program. The semantics of (pure) Prolog programs is normally taken
to be the logical implications of the completion (plus some standard axioms such as the unique
names axiom.) To find the completion of our tca/2 program, we first convert the two implication
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rules for tca/2 into the equivalent one implication with a disjunction in the antecedent, and then
we turn the implication into a biconditional. We do a similar transformation for a/2. Then we
take the meaning of the program to be the logical implications of these biconditionals (including
the standard axioms). And it is the case that ~ tca(1,2) is not logically implied by this theory
(and neither is tca(1,2), of course.) So the completion semantics correctly tells us that SLD will
not terminate for this query. And indeed Prolog theoreticians (as well as the programmers) know
that tca/2 as defined above is NOT a general definition for transitive closure. (But note that it is
transitive closure if the graph is acyclic. Maybe this is OK, since it is often the case that algorithms
for constrained data are simpler, but here it could be rather confusing, I think.)

But in any case the Prolog community was (mostly) happy with this situation, until the database
people showed up and asked the obvious question: Why doesn’t the obvious two-line definition of
tca/2 indeed mean transitive closure? (To some of us, it felt somewhat as though they were
pointing out that the emperor had no clothes.) They pointed out that if one uses the fixed point
characterization from the original foundation trilogy, instead of the SLD characterization, it does.
Indeed, transitive closure is only the beginning; there are many advantages in using this semantics.
All programs without function symbols are terminating, and many simple programs now have
a natural programmers’ semantics. Indeed DCG’s now do mean the corresponding context free
languages, whereas under the completion semantics they don’t always. But even more important
is what this fixpoint semantics does to the theory of programs. The theory is much simpler,
and accords with theory already developed. E.g., automata theory (e.g. CFL’s) is now correctly
reflected in LP. And also interestingly, this semantics leads the way for a theory of default negation,
which has blossomed. This is because if we have a better idea of when things are known false, the
theory describing such negative knowledge is simpler, more interesting, and perhaps even more
useful.

Actually, the situation for the completion is somewhat worse than implied by the transitive
closure example. There are programs for which Prolog goes into an infinite loop even though the
completion of the program determines all goals. And this is not because Prolog is depth-first; it’s
because its selection rule is left-to-right. To get Prolog actually to display the behavior predicted
by the completion, one would have to interleave computations of all goal orderings, and fail a goal
if any of the interleavings failed. This is hardly an attractive alternative for Prolog implementors
Or programiners.

So I personally think minimal model semantics (i.e., the fixpoint semantics) is better than the
completion semantics for logic programming. I think the completion semantics is a bug, which
should be fixed, and it should be fixed by taking the fixpoint semantics. There are those who either
don’t think this is a bug, or don’t think that this is a reasonable fix. I certainly accept that the
point is arguable. Going to the fixpoint semantics is a big step for at least two reasons:

Objection 1: It violates a principle dear to the hearts of some theoretically inclined logic programmers, that
the meaning of a program consists of the logical implications of the theory of the formulas
making up the program (or a simple transformation of them).

Objection 2: It violates a principle dear to the hearts of some practically inclined logic programmers (like
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me), that a program should have the well-known procedural semantics, i.e., be executable by
SLD resolution (and WAM engines).

The first objection is real and in some sense is not satisfactorily solvable, I believe. We know
that there is no first-order theory that characterizes transitive closure (the usual Prolog loop-check
program requires default negation.) I will discuss some implications of this later, and try to claim
that things aren’t so bad, but I can’t say they aren’t true. Basically, the purpose of this entire book
is to claim that the second objection can be overcome. It is overcome by using OLDT resolution in
place of SLD resolution in the foundational theorems. OLDT is a resolution strategy very similar
to SLD, but one that avoids redundant computation by remembering subcomputations and reusing
their results to respond to later requests. This remembering and reuse has been called memoization,
tabling, lemmatization, caching, well-formed substring tables, and probably a number of other
names. With OLDT instead of SLD, the foundational theorem can be even stronger, including a
theorem relating OLDT failure leaves and the fixpoint definition.

OLDT terminates (i.e., has only success and failure leaf nodes) for all queries to programs
that have finite minimal models, i.e. that have a least fixpoint of finite size. This guarantees total
correctness for the transitive closure definition (over finite graphs). Actually, even more can be said:
OLDT terminates for all queries to programs for which only a finite portion of the minimal model
is looked at; that is, for all programs with the bounded term size property (BTS). BTS is slightly
circular, and undecidable, but to me intuitively says that any finitary, constructive definition will
terminate. (Admittedly, this is also somewhat circular.)

One thing that happens when we do not have first-order theories to explain our semantics, i.e.
the first objection above, is that we may leave the realm of r.e. sets. That is, if we did have a
first-order theory to explain the semantics, then we’d know that a theorem-prover could enumerate
the theorems and the semantics would be r.e. However, by going to the minimal model semantics,
we may (and do, when we add negation) get non-r.e. sets. That is, we leave the realm of the
computable sets. This might give pause to someone interested in computation, because then we
can write programs that aren’t in principle computable. Note that this isn’t a problem for totally
correct programs (which will be recursive programs), which are those we usually want to write. I
guess that just as we rely on the programmer to write programs that are terminating, we must rely
on the programmer to write programs that are computable.

SLDNF was the obvious (and perhaps only reasonable) extension of SLD to include default
negation. If we are to base our new logic programming on OLDT, the question arises as to how
OLDT should be extended to handle negation. Given the theory of default negation developed
over the last several years, it seems that the well-founded semantics is the appropriate semantics
to compute for logic programs with unconstrained negation. (The other possible semantics is the
partial stable model semantics, but this is NP complete for propositional programs, so may be
not particularly appropriate for a basic computational mechanism.) For OLDT there have been
several proposals for computing the well-founded semantics, in particular WELL! and XOLDTNF,
which are quite similar. The one I'm proposing here is SLG, which I claim is the (or a) right one.
The simplest reason that SLG is better than the previous two is that they are exponential for
general propositional normal programs, whereas SLG is polynomial. Also SLG produces a residual
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program when there are undefined atoms in the well-founded models, and this residual program
can be further processed to find certain partial stable models. So in many cases SLG could be used
as a preprocessor for a partial stable model evaluator.

SLG implements the procedural interpretation of Horn clauses, with the addition of tabling.
This is a more complex procedural interpretation than SLDNF (and the procedural interpretation
of negation makes it even more complex), but I think it is indeed a procedural interpretation and
I think it is acceptable. But this is not enough to respond fully to objection 2 above. The Prolog
programmers want to know if SLG can be implemented so that it is efficient enough to compete
with Prolog, (or actually efficient enough to compete with C++, perhaps our ¢rue competitor.) I
think the answer is ‘yes’. Actually, even more than that, I think it will be the case that we will be
able to construct an engine that for many useful problems will be significantly faster than Prolog.
And these problems will be in what has historically been logic programming’s core applications:
natural language, Al search, and databases. The examples in this book will indicate in detail where
some of the problems lie. There is much work to do, but I will claim that results we already have
in the XSB project indicate that it will definitely be possible.

The approach is to take SLG as the basic computation strategy, and to use SLDNF as an
optimization. So when SLDNF can be proved to have the same behavior as SLG, then we can
use it and get current Prolog speeds. To do this we need an implementation that fully and closely
integrates SLG and SLD, allowing them to be used interchangably and intermixedly. And that is
what SLG resolution supports and its implementation in XSB achieves.



Chapter 2

Introduction to Prolog

This chapter introduces the Prolog programming language. Here we will explain a bit of how Prolog
works. It is not intended to be a full description of how to become an expert Prolog programmer.
For that, after reading this chapter, you should refer to another book, such as Programming in
Prolog by Clocksin and Mellish, or if you are already very familiar with Prolog, you might look at
The Craft of Prolog by Richard O’Keefe. While this is an introduction to Prolog, even experts may
find something of interest in this chapter, since I explain Prolog in a somewhat unusual way, that
may give new insights to old Prolog programmers.

Prolog’s name is short for “Programming in Logic” (or really for Programmation Logique?”)
As its name suggests, Prolog is firmly based on logic, and Prolog programs can be understood as
statements in a formal logic. I.e., a Prolog program can be thought of as a set of statements in
first-order logic, and the meaning of the program is the set of true implications of those logical
statements. This is the approach that is usually taken to describe Prolog programming to novices.
However, the amazing thing about logic programming to me is not that it is logic, but that it
is programming. These Prolog programs are not only statements in a logic but they are also
statements in a programming language. This is referred to in the biz by saying that Prolog programs
have a procedural interpretation (i.e., as programs) as well as a declarative interpretation (i.e., as
statements in a logic.) The introduction to Prolog that I give here will emphasize its procedurality.
This may be anathema to some Prolog purists (and it certainly would have been to me a while
ago) but I now feel that this is the best way to introduce logic programming to computer scientists
who already know about programming. We will build on your understanding of programming, and
use that to lead to logic.

2.1 Prolog as a Procedural Programming Language

Prolog, as a programming language, is a little unusual. It can be understood as a standard pro-
cedural language with two unusual properties. It is a procedural language like C or Algol. One
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programs in a procedural language by writing procedures that carry out particular operations. One
specifies what a procedure is to do by using primitive statements and by invoking other procedures.
Prolog procedures have only local variables and all the information that a procedure can use or
produce must be passed through its arguments.

C can be viewed as a procedural language by thinking of using it without functions; i.e., all
functions return void, and information is passed to and from functions through their arguments
only.

In Prolog, procedures are called predicates. The two unusual aspects of Prolog are:

1. Prolog has assign-once variables, and

2. Prolog is nondeterministic.

2.1.1 Assign-once Variables

By saying that Prolog has assign-once variables, I mean that any particular variable in a Prolog
procedure can only ever get one value assigned to it. A Prolog variable at any point in execution
either has a value, which can thereafter never be changed, or it has not yet been given a value.
This may seem to be an incredibly strong restriction. In C, for instance, one usually programs by
setting a variable’s value and then changing it during the execution of the program. For example,
to sum up an array of numbers, one sets the accumulator variable to 0 and the loop variable to
1, and then increments the loop variable to step through the array modifying the accumulator at
each step. How in the world could this be done with assign-once variables? The secret is that it
can be done easily through the use of recursion.

So let’s write a simple Prolog program to see how we can do something interesting with only
assign-once variables. Let’s consider the problem of adding up the numbers in a list. Prolog is a
list-processing language, similar to Lisp. Its primary data structure is the tree (called a term), a
very common form of which is the list. There are three basic data types in Prolog: 1) integers, 2)
floating point numbers, and 3) atoms. The first two should be self-explanatory. Atoms are simply
symbols that represent themselves. Prolog terms (trees) are constituted of integers, floats, atoms
and other terms.

A list in Prolog is written with square brackets and with its elements separated by commas.
For example the following are lists:

(1,2,3] [aa,bbb,d] [1 [[2,bl,or,not,[2,b]]

The first is a list of integers, the second a list of atoms, the third is the empty list consisting of no
elements, and the fourth is a list containing four elements, the first and last being themselves lists.
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So let’s now write a program in a made-up procedural language (that is not Prolog, but some-
what similar) and see if we can sum up the elements of an integer list with assign-once variables.

sum(List,Sum) :-
if List = []
then Sum := 0
else Head := head(List)
Tail := tail(List)
sum(Tail,TailSum)
Sum := TailSum + Head

The first line (preceding the :-) declares the name of the procedure and its formal parameters.
The remaining lines (following the :-) make up the body of the procedure definition. We have
assumed the existence of two functions, head and tail, to extract the first element of a list, and
the remainder of the list after the head is removed, respectively. Sum is a recursive procedure. It
takes a list of numbers as its first argument and returns the sum of the numbers in its second. It
first checks to see if the list is empty. If so, it sets the sum to 0 and returns directly. If not, it
saves the first element of the list in a local variable, Head, and then calls sum recursively on the
tail of the list, getting the sum of the rest of the list in the local variable TailSum. It then adds
Head to TailSum to get the value for Sum, which it sets and returns. Notice that no single variable
gets two different values. The variable Sum is not set and then changed; each recursive invocation
has a different Sum variable and each gets set only once, to its appropriate partial sum. Note also
that the loop variable in the iterative version of summing an array is here replaced by the variables
containing each sublist. So here too there is no need to have multiply assigned variables. Instead of
one variable getting many values, we can instead uses many variables, each getting one value. (Let
me point out for those of you who may be worried about efficiency that this is a conceptual point;
it may well be that the underlying implementation of such a program would actually use just one
location for all the Sum variables.)

So we see that we are able get by in this case with assign-once variables. It turns out that this
idea of using recursion and the multiple variables at the different recursion levels is very general.
This is not just a trick that works in this case only, but is an example of a very general technique.

Now having assign-once variables gives rise to a very interesting phenomenon: assignment can
be symmetrical in Prolog. That is, Prolog doesn’t have to treat the left and the right sides of an
assignment differently, as must be done in normal procedural languages such as C or Java. As a
matter of fact, Prolog doesn’t have to treat tests and assignments differently either. I.e., Prolog
doesn’t need two operators, say == for testing and = for assignment as C does; it needs only one.

Let’s first consider assignment. Consider the following assignments:

>
]
(e)]
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We’ll assume that neither X nor Y have been assigned a value before this sequence is executed. So
X gets the value 5 by the first statement, and then Y is assigned the value of X, so Y gets the value
5 as well. Now consider the following statements:

The first statement again assigns 5 to X. Now consider the second. X has the value 5 and Y has no
value. Since Prolog is an assign-once language, X can get only one value and it already has it, so
we know we can’t change it. But Y doesn’t yet have a value. So the only reasonable thing to do is
to set Y to be b, i.e., to X’s value. Note that this sequence of assignments has the same net effect
that the previous sequence had.

This suggests how we can treat both sides of an assignment in the same way. If one of the
variables has a value and the other doesn’t, then assign the value that the one has to the other. If
neither variable has a value yet, then make it so that whenever one of them gets a value, the other
gets that same value. If they both have a value, then if it’s the same value, then the assignment is
a no-op. If the two values are different, then there is a problem since neither can get a new value.
In this case we say the computation fails. (We will talk more about failure later.)

Notice that this definition of “assignment” means that any ordering of the same (or symmetric)
assignments gives the same result. For example, consider the different ordering of our assignments
above:

Again assuming that X and Y start with no values, the first statement causes Prolog to bind X and
Y together, so that whenever one of them gets a value, the other will also get that same value.
Then the second statement causes X to get the value 5, and so Y gets that value, too. So after these
two assignments are executed, both X and Y have the value 5, exactly as they do after the previous
two versions of these assignments. This is also a very general phenonemon: with this meaning of
assignment, any ordering of any set of assignments gives the same result.

So let’s rewrite our sum program with these ideas in mind. We will use = for our symmetric
assignment statement. (From now on, all our programs will be syntactically correct Prolog, and
XSB, programs, so you can type them into XSB and try them out. [sidebar] to explain how to
create files, consult them, and run defined predicates).

sum(List,Sum) :-
List = []
-> Sum = 0
; List = [Head|Taill,
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sum(Tail,TailSum),
Sum is TailSum + Head.

I’'ve changed the syntax for if-then-else to Prolog’s syntax, using -> and ;. Here we’ve said that
Sum = 0; using the properties of symmetric assignment, we could just as well have said that
0 = Sum. Consider the symmetric assignment: List = [Head|Tail]. The structure on the right is
how one constructs a list from a head element and a tail list. (In Lisp it is known as cons.) So our
symmetric assignment here is even more powerful. We know that the variable List has a list as its
value. So this assignment assigns both variables Head and Tail so that they get the values of the
first element of List and the tail of List, respectively. We can see that symmetric assignment is
here extended to matching. We match the value in the variable List, which is a list, to the structure
[Head|Taill. Head and Tail are the only variables without values, so the symmetric assignment
will fill them in with the appropriate values to make the List and the [Head|Tail] structure the
same. This matching process, which we have been referring to as “symmetric assignment”, is called
unification.

Notice that we’ve used the same operation of unification, List = [], in the test of the if-then-
else. Here we see a use of failure. Recall that we said that if a symmetric assignment cannot be
made because the two sides have values that are different, then the assignment (or unification)
fails. The if-then-else construct does the unification and if it succeeds, then it executes the then
statement (which follows the ->); if it fails, it executes the else statement (which follows the ;.) So
even the boolean test of an if-then-else can use our universal unification operation.

Notice, however, that we have not used unification for the last statement that adds Head to the
partial sum. This is because here we don’t want to match the two sides, since Prolog considers the
right side to be a tree (with + at the root and with two leaves of TailSum and Head.) So here we
must use an operation that explicitly asks for the tree on the right to be evaluated as a numeric
expression. In Prolog that operation is named is.

As another example, consider the append procedure:

append(L1,L2,1L3) :-

L1 = []

-> L3 =12

;L1 = [XIL1t],
append(L1t,L2,L3t),
L3 = [X|L3t].

This is a procedure that takes two lists and concatenates them together, returning the resulting
list in its third argument. This definition says that if the first list is empty, then the result of
concatenating L1 and L2 is just L2. Otherwise, we let X be the head of the first list and L1t be its
tail. Then we concatenate L1t and L2, using append recursively, to get L3t. Finally we add X to
the beginning of L3t to construct the final result, L3.

Consider the following version of append:



CHAPTER 2. INTRODUCTION TO PROLOG 11

append(L1,L2,L3) :-
L1 = [XIL1t]
-> L3 = [X|L3t],
append (L1t,L2,L3t)
; L3 = L2

This one looks rather strange, but it also works. We’ve used the boolean test unification also to
deconstruct the list. (This is probably a poor idea in real Prolog programming.) The other perhaps
stranger (but less bad) difference is that we’ve moved the construction of the output list L3 to before
the recursive call to append. You might wonder how we can construct a list before we have its
components. But with unification, that works just fine. The intuition is that if a variable can get
only one value, it doesn’t really matter when it gets it. So it is often the case that unifications can
be moved earlier. What happens here is that the list cell is constructed before the call to append,
and then the recursive call to append will fill in the tail of that cell with the appropriate value.

We'’ve looked at assign-once variables and seen how they lead to symmetric assignment, which
leads to unification. Next let’s consider the other unusal property of Prolog programs, the fact that
they can be nondeterministic.

2.1.2 Nondeterminism

C is a deterministic programming language (as are Java and most any other language you are
familiar with); at any point in the execution of a C program there is exactly one next step, which
seems reasonable since the machines we execute these programs on are (essentially) deterministic.
Prolog, however, is nondeterministic. There are points in the execution of a Prolog program when
there are multiple legal next steps. The way this is specified in Prolog is to give multiple definitions
of the same procedure. For example, we could write a procedure to find both square roots of a
positive real number by:

a_sqrt(X,Y) :-

X >0,

Y is sqrt(X).
a_sqrt(X,Y) :-

X >0,

Y is -sqrt(X).

a_sqrt takes a number and returns its square root. Here we want it to return both square roots,
one positive and one negative. We can do that by giving two definitions of a procedure a_sqrt. A
C compiler would complain that the procedure is multiply defined, but Prolog accepts such multiple
procedure definitions happily. The first definition checks that the input argument is greater than 0,
and if so uses a Prolog primitive builtin to calculate the positive square root. The second definition
does the same, but returns the negation of the positive square root. In Prolog terminology, each
definition is called a “clause”, so a_sqrt is defined by two clauses.
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Prolog execution as the execution of multiple machines

The way to understand how Prolog handles multiple procedure definitions is first to think of how
a deterministic procedural machine executes a procedural program. It maintains a state (usually
a stack of activation records) and executes instructions which update that state, calling subpro-
cedures, performing the indicated operations, and returning from subprocedures. To introduce
nondeterminism into this picture, we consider what happens when a machine encounters a pro-
cedure that has multiple definitions. At this point it duplicates itself, creating a copy for each
definition, and each copy continues by executing the definition it is assigned to. Recall that an
execution may fail when it does a unification that discloses an inconsistency. When this happens,
we can think of the machine as simply disappearing. So we can think of a Prolog execution as a
set of executing deterministic machines; whenever any one of them encounters a procedure call of a
multiply defined procedure, it forks into multiple machines; whenever a machine fails, it disappears
out of existence. The answer to a Prolog program is the set of answers returned by all the individual
machines that make it to the final instruction of the program, i.e., that return successfully from
the initial procedure call.

So if we invoke the a_sqrt procedure defined above with the following procedure call statement:
:— a_sqrt(13,Y).

we will get two answers:

>3
[

= 3.6055;
= -3.6055;

<
|

Let’s revisit the append program we wrote above. Instead of using an if-then-else construct
there, we can now use nondeterminism. Consider:

append(L1,L2,L3) :-
L1 =[],
L3 = L2.
append(L1,L2,1L3) :-
L1 = [X|L1t],
append(L1t,L2,L3t),
L3 = [X|L3t].

Notice that for whatever the list that is assigned to the variable L1, exactly one of the two procedure
definitions will fail, and the other will succeed. The first will succeed only if L1 is the empty list,
and the second will succeed only if L1 is a nonempty list. This program is essentially equivalent to
the one above with the if-then-else.

Actually we can now improve this new append program. Consider how a normal procedural
programming language passes parameters to procedures. One way is to do it by assignment: local
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variables are allocated for each formal parameter and the actual parameters are assigned to local
variables on invocation. So assignment is used for passing parameters. Prolog can pass parameters
this way as well, but instead of using assignment, it uses its symmetric assignment operation,
unification (or matching.) So rather than doing a unification in the body of a procedure definition,
we can simply put the values to be unified in the place of the formal parameters. So, for example,
in the first procedure definition for append, rather than assigning the actual parameter to a local
variable L1 and then checking it against the empty list, we can directly check the first argument
against the empty list as follows:

append ([],L2,1L3) :-
L3 = L2.

This looks very odd for a conventional procedural language, having a constant in the place of a
formal parameter, but with Prolog’s symmetric assignment, it works fine. It simply unifies the
empty list with the first actual parameter at the time of invocation.

As a matter of fact, whenever we have an explicit unification of a variable with another term,
we can replace all occurrences of the variable with the term and eliminate the explicit unification.
So we can replace L3 by L2 in the above clause and we get simply:

append([],L2,L2).

(When a definition has no body operations, we don’t even write the :-.) This procedure definition
has no operations in its body. In a traditional procedural language, it would be a no-op, but in
Prolog it actually does some work through the unification of its arguments when it is invoked.

The same idea for eliminating explicit unifications can be used on the second clause for append,
and we obtain the usual Prolog definition of append:

append([],L2,L2).
append ([X|L1t],L2, [X|L3t]) :-
append (L1t ,L2,L3t).

2.1.3 Executing Programs in XSB

Now, we can load this definition into XSB and then call it in various ways to experiment with how
it works. So we put this definition into a file called, say, appendfile.P. (The *.P’ suffix indicates to
XSB that this is a file containing source code.) We run XSB and then compile the file and load it
into XSB by:

% xsb
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XSB Version 1.4.1 (94/11/21)

[sequential, single word, optimal mode]

| 7- [appendfile].

[Compiling ./appendfilel

[appendfile compiled, cpu time used: 0.901 seconds]
[appendfile loaded]

yes
| 7-

The XSB system top-level prompt is ‘| 7- ’, which is printed when XSB is waiting for the user
to enter something. Here we’ve entered the filename in a list. This requests the system to compile
and load the indicated file, which the system then does. The compilation creates an object file, in
this case named appendfile.xwam. Then the XSB loader is called to load that file into XSB’s space.
(If the last-change date of the object file is more recent than the last-change date of the source file,
then the compiler is not called, but the object file is loaded.) So now we have the append program

in XSB memory and we can ask XSB to execute it. We do this by entering a call at the top-level
prompt, as follows:

| ?- append([a,b,c],[d,e],X).

X = [a,b,c,d,e]

XSB calls the append procedure and executes it, passing the two lists in and when append returns,
X has been assigned the answer, which XSB prints. It’s possible that there is more than one answer
(as would be the case with a_sqrt above), so XSB waits to let the user ask for another answer, if
desired. To request another answer, the user enters a ‘;’ (and then <ret>), to which XSB responds
with the next answer, if any. Here the result is as follows:

| ?- append([a,b,c],[d,e],X).
X = [a,b,c,d,e];

no

XSB has responded with ‘no’ and then returned with the top level prompt. This is because, in this

case, there is just one answer so asking for another results in the response of ‘no’, meaning “no
more answers’..

We could, of course, ask for different invocations of append, giving it different lists, but we can
also give different forms of invocations. The unification of Prolog allows us to call some procedures
in perhaps a surprising variety of different ways.
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For example, we can enter the following query (i.e., procedure invocation) and will get the
indicated result from XSB:

| ?- append([a,b,c],[d,el,[a,b,c,d,e]).

yes
| 7-

Here we’ve given the answer. XSB simply verifies that the answer is correct, and indicates it is by
responding ‘yes’. In this execution, unifications that set variable values in the previous execution
simply verify that the variables already have the correct values. If the values don’t check out, as
they won’t in this following case:

| ?- append([a,b,c],[d,el,[a,b,c,d]).
no
| 7=
XSB gives a response of ‘no’ indicating that the first two arguments do not concatenate to form

the third.

Actually, Prolog can respond to even stranger invocations of our append procedure. Consider
the following invocation:

| ?- append(X,Y,[a,b,c]).

Here we are asking for what two values will concatenate together to form the list [a,b,c]. The
tokens beginning with capital letters, X and Y, are variables, and we are asking the system to fill
them in with correct values. (A variable starts with an upper-case letter, and an atom starts with
a lower-case letter. We’ve been using this convention all along, and it is important to know.)

Prolog can answer this query reasonably. There are four possible pairs of lists that do concate-
nate together to produce [a,b,c], and Prolog will produce them:

| ?- append(X,Y,[a,b,c]).

X=1

Y = [a,b,c];
X = [a]

Y = [b,c];
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X = [a,b]
Y = [c];

X = [a,Db,c]
Y = [1;

no

Here XSB produced the first answer and then waited for my response. I responded with a ;, and
it responded by producing the next answer. We continued until all the answers were produced.
Since Prolog is nondeterministic, queries that have multiple correct answers are reasonable to ask.
In this case Prolog answers the query correctly and reasonably.

Let’s consider another simple (and well known) Prolog program known as member. Member is a
binary predicate, i.e., it is a procedure with two arguments. It is given an element and a list, and
it checks to see whether the element is a member of the list:

member (X, [X|L]).
member (X, [Y|L]) :-
member (X,L) .

The first clause says that X is a member of a list whose head is X, an unexceptional statement. The
second clause X is a member of a list if X is a member of the tail of the list.

Example executions of member are:

| ?- member(2,[1,2,3]).

yes
| ?- member(2,[1,3,4]).

no
| ?- member(X,[1,2,3]).

X =1;
X =2;
X = 3;
no

| 7-
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Notice that we can use member to generate all the elements of a list.

(Aside: If you tried to compile this member program exactly as it is written here, you noticed
that the XSB compiler issued some warning messages. The first message says that the variable L in
the first clause appears only once in that clause. Such a variable is called an anonymous variable.
An anonymous variable is just a placeholder, since the value that it might get is never used anywhere
else, because the variable appears nowhere else. In such cases you are encouraged to use a slightly
different notation: instead of starting anonymous variables with upper-case letters, start them with
underscores (-), or simply use an underscore alone. Each occurrence of the underscore symbol
is a distinct (unnamed) variable. The compiler will not complain if you begin the name of an
anonymous variable with an underscore. I strongly suggest following this convention; it will save
untold grief that you’ll otherwise suffer when you mistype variable names. So an equivalent, but
syntactically improved, version of member is:

member (X, [X|_L]).
member (X, [_YIL]) :-
member (X,L) .

End of aside.)

As a final example of a simple Prolog list-processing predicate, consider the procedure reverse,
which is given a list and returns a list that contains the elements of the input list, but in the reverse
order.

reverse([],[]).

reverse([X|IL],R) :-
reverse(L,RL),
append (RL, [X],R) .

The first clause says that if the input list is empty, then the resulting list is also the empty list.
The second clause says that if the input list has head X and tail L, then first reverse the tail L of the
input list obtaining RL, and then add X to the end of RL. The predicate append is used to add this
element to the end of the reversed sublist. Notice that we must use [X] as the second argument of
append, not just X, because append expects a list there, not an element.

An example of executing reverse is:

| ?- reverse([1,2,3],R).
R = [3,2,1];

no
| 7-
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exactly as expected. You might reasonably think that we should also be able to ask the following
query:

| ?- reverse(X,[1,2,3]).

X = [3,2,1];

And it looks as though everything works fine. However, what has really happened is that after the
system produced the expected answer, I asked it for another answer. It should have simply said
“no”, but instead it went into an infinite loop and didn’t respond at all. To understand why Prolog
behaves like this, we have to understand more clearly exactly how it goes about evaluating queries.

[add an example to introduce ; and disjunction.]

2.1.4 The Scheduling of Machine Execution in Prolog

Recall that above we described a conceptual model of how Prolog executes nondeterministic pro-
grams by talking of a growing and shrinking set of deterministic procedural machines. In order to
completely understand how Prolog executes these nondeterministic programs, we must look more
carefully at how this growing and shrinking set of machines is actually executed. Clearly Prolog
is not executed by actually having a set of hardware machines that grows and shrinks. (While it
would be nice, the physics of such machines has not yet been worked out.) Instead these multiple
machines must somehow be simulated, or emulated, by a single hardware machine having just one
processor.

The Prolog engine keeps track of the states of these multiple machines and uses them to sim-
ulate the machine executions. Let’s first consider the way Prolog keeps track of the state of a
single machine. We can model execution of a single machine by “expanding” procedures. When a
procedure is called, the actual parameters are matched with the formal parameters. All variables
that get values in the matching process, occurrences in the body of the procedure being called and
variables in the calling procedure, are replaced by those values. And the procedure call is replaced
by the body of the procedure. The explanation is complex but the idea is simple: procedure calls
are replaced by procedure bodies, with the variables appropriately set. For example.....

Now that we have seen how a single machine executes, the real question is in what order does
it emulate the multiple machines. Clearly when a query first starts, there is just one machine to
execute it. What happens when that machine encounters a procedure defined by multiple clauses?
At that point there are several machines to be executed. In what order does Prolog execute them?
IL.e., how are they scheduled?

The formal counterpart of Prolog execution is the SLD search tree. Each node in the search
tree corresponds to a state of one of the machines. Each path through the search tree corresponds
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to the execution sequence of one of the machines. A branching node in the tree corresponds to a
choice point, when a machine is duplicated to create instances of itself that will explore the various
alternatives.

Let’s look at a simple example to see how this works for the append program when it is called
with a final list and it is asked to find all pairs of lists that concatenate to form the given list.

Consider the query:
| 7- append(X,Y,[a,b]).

First we have to determine a way to represent the states of the individual procedural machines.
The state of execution of a procedural program is normally kept by a current instruction pointer
and a stack of activation records associated with active procedures, which indicate values of local
variables and also where to return when the procedure exits. For our Prolog programs we will use
a very abstract representation that will enable us to understand the machine’s operations without
getting lost in encoding details. We will keep an instance of the variables of the original query and
the sequence of procedure calls that remain to be done to complete the machine’s computation. So
the initial state of the machine is:

answer (X,Y) :- append(X,Y,[a,b]).

We use the : - to separate the query variables, which are grouped by answer, from the sequence of
procedure calls that remain to be done. Initially the only thing to be done is the initial procedure
call. We move a machine to its next state by taking the first procedure call after the :- in the
machine state, matching it against the head of the chosen clause that defines the procedure, and
replacing that call by the body of the clause, with the variables appropriately updated. Thus one
step of computation replaces a procedure call by the sequence of procedure calls that make up the
body of its definition, with the variables appropriately updated according to the parameter passing
method.

So let’s now consider the execution of the above query. The execution will be a tree of machine
states, with the above machine state at the root. This tree is shown in Figure 2.1.

Prolog generates this tree in a top-down left-to-right order. The left-to-right order of children of
a node corresponds to the order in which clauses for the called procedure appear in the text of the
program. This is implemented in the Prolog engine by maintaining a stack of alternatives; whenever
new alternative computation states are generated, it pushes them onto the stack, and whenever
it needs another alternative, it takes the top one from the stack. So the Prolog engine begins by
taking the first (and only) state off the stack and matching the first procedure, append (X, Y, [a,b]),
with the heads of the appropriate procedure definitions (i.e., clauses). For each one that matches, it
pushes a new state on the stack, replacing the procedure call by the body of the procedure, updating
the variables accordingly. Now this first procedure call matches both clauses, so we generate two
new states as children of the root state:
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answer(X,Y) :- append(X,Y,[ab])

answer([],[ab]) :- answer([a|L 1ta],L 2a) :- append(L 1ta,L 2a,[b])

answer([d],[b]) :- answer([a,b|L 1tb],L 2b) ;- append(L 1tb,L 2b,[])

answer([a,b],[]) :-

Figure 2.1: Computation tree for the query: append(X,Y,[a,b]).

answer ([], [a,b]) :- .
answer([a|Lltal ,L2a) :- append(Lita,L2a,[b]).

The second state comes from the second clause, and the procedure call is replaced by the single
procedure call in the body of the second clause defining append. The first state comes from the first
clause, which has no procedure call in its body, so this state has no procedure call to do, and thus
is a successful final state of the Prolog program. The arguments of the answer template contain
the values of the variables of the original query, and so constitute the final answer of this machine.
Here they are [] and [a,b], which do indeed concatenate to generate [a,b], as expected. Prolog
will print this answer out, remove this state from the stack and continue expanding the next state
on the top of the stack, here the second child of the root node.

Now consider that state:
answer ([a|L1ltal ,L2a) :- append(Llta,L2a,[b]).

It was generated by matching the original procedure call with the second clause for append. In a
procedural language, whenever a procedure is called, the procedure gets a new set of local variables,
and in Prolog it is the same. I've indicated that here by giving the variables in the clause new
names, by adding ‘a’ to the end of their original names. Each time I take a clause, I'll have to
rename the variables to new ones, so we don’t have unintended collisions, and I'll do this by adding
a new letter suffix.

Again Prolog expands this state by replacing the first procedure call by the bodies of matching
clauses. Again both clauses for append match this one so we get two new states on the stack:

answer([a],[b]) :- .
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answer ([a,b|L1tb] ,L2b) :- append(L1tb,L2b,[]).

The top one is again an answer, since it has no procedures left to call, and its values for the
result variables are: [a] and [b], which again do concatenate to form the desired [a,b].

After the answer is printed and the state removed from the stack, the next state:
answer ([a,b|L1tb] ,L2b) :- append(L1tb,L2b,[]).

is expanded. Now this procedure call matches only the first of the append clauses; the second fails
to match because the third argument in the call is [] but in the procedure head is [X|L3t]. So
the new stack is just:

answer ([a,b], []) :- .

The top state is an answer, which gets popped and displayed, and then the stack is empty, indicating
that Prolog has completely finished traversing the computation tree and thus with evaluating the
query. It has simulated all the deterministic procedural machines to completion.

Stepping back a bit and thinking about the computation tree, we can quite easily describe the
tree by giving an operation that can be applied to a subtree to extend it. Then we can define the
tree as the result of applying this operation to an initial (trivial) tree, and all resulting trees until
no operation is applicable. This operation is called PROGRAM CLAUSE RESOLUTION.

Definition 2.1.1 (Program Clause Resolution) Given a tree with a node labeled

A:—A, Ay, ..., Ay, and a rule in the program of the form H : —Bj, Bo, ..., By, and given that
H and Bj match with matching variable assignment €, then add a new node as a child of this one
and label it with (A : —Bj, B, ..., By, Ag, ..., A,)0, if it does not already have a child so labeled.
Note that the matching variable assignment is applied to all the goals in the new label.

Notice that the entire tree of Figure 2.1 is developed by applying this rule to the trivial tree
consisting of the single node answer (X,Y) :- append(X,Y, [a,b]). So we can think of Prolog as
applying this PROGRAM CLAUSE RESOLUTION rule over and over again (in a top-down backtracking
manner) to the initial query to trace out the computation tree.

The example we have used here has a relatively simple execution and Prolog executions can get
considerably more complex, but all the basics have been illustrated.

2.2 Grammars in Prolog

Next we turn to more complex examples of Prolog programming. Prolog was originally invented
as a programming language in which to write natural language applications, and thus Prolog is a
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very elegant language for expressing grammars. Prolog even has a builtin syntax especially created
for writing grammars. It is often said that with Prolog one gets a builtin parser for free. In this
section we will see why this claim is made (and sometimes contested).

Consider the following simple context-free grammar for a small fragment of English.

S — NP VP

NP — Det N
VP — TV NP
VP — V

Det — the

Det — a

Det — every

N — man
N — woman
N — park
TV — loves
TV — likes
V — walks

In this grammar we can derive such simple sentences as:

a man loves the woman
every woman walks
a woman likes the park

We can write a simple Prolog program to recognize this language, by writing a recursive descent
parser. We first must decide how to handle the input string. We will use a list in Prolog. For
each nonterminal we will construct a Prolog procedure to recognize strings generated by that
nonterminal. Each procedure will have two arguments. The first will be an input parameter
consisting of the list representing the input string. The second will be an output argument, and
will be set by the procedure to the remainder of the input string after an initial segment matched
by the nonterminal has been removed. An example will help clarify how this works. The procedure
for np would, for example, take as its first argument a list [a,woman,loves,a,man] and would
return in its second argument the list [loves,a,man]. The segment removed by the procedure,
[a,woman], is an NP. The Prolog program is:

s(S0,8) :- np(S0,S1), vp(S1,8).
np(S0,8) :- det(S0,S1), n(S1,S).
vp(80,8) :- tv(S0,S1), np(S1,S).
vp(S0,8) :- v(80,8).

det(S0,S) :- SO=[thelS].
det(S0,S) :- SO=[alS].
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det(80,8) :- SO=[everylS].
n(S0,S8) :- SO=[man]|S].
n(S0,S) :- SO=[woman|S].
n(S0,8) :- SO=[park|S].
tv(S0,S) :- SO=[loves|S].
tv(S0,S) :- SO=[likes|S].
v(S0,S) :- SO=[walks|S].

The first clause defines procedure s, for recognizing sentences. An input list SO is passed into
procedure s, and it must set S to be the remainder of the list SO after a sentence has been removed
from the beginning. To do that, it uses two subprocedures: it first calls np to remove an NP, and
then it calls vp to remove a VP from that. Since the grammar says that an S is an NP followed by
a VP, this will do the right thing. The other rules are exactly analogous.

Having put this program in a file called grammar.P, we can load and execute it on our example
sentences as follows:

% xsb

XSB Version 1.4.1 (94/11/21)

[sequential, single word, optimal mode]

| 7- [grammar] .

[Compiling ./grammar]

[grammar compiled, cpu time used: 1.14 seconds]
[grammar loaded]

yes
| ?- s([a,man,loves,the,woman], []).

yes
| 7- s([every,woman,walks], []).

yes
| 7- s([a,woman,likes,the,park],[]).

yes
| ?- s([a,woman,likes,the,prak],[]).

no
| 7-

When the string is in the language of the grammar, the program will execute successfully through
to the end, and the system produces ‘yes’. If the string is not in the language, as in the final
example where ‘park’ was misspelled, the system answers ‘no’. We called the s procedure with the
input string as first argument and we gave it the empty list as second argument, because we want
it to match the entire input string, with nothing left over after seeing an s.
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The grammar above is called a Definite Clause Grammar (DCG) and Prolog supports a special
rule syntax for writing DCGs. The syntax is simpler, much closer to the syntax one uses in writing
context-free grammar rules. When using the DCG syntax, the programmer doesn’t have to write
all the string variables threaded through the nonterminal procedure calls; the compiler will do it.
Here following is the same Prolog program as above, but witten as a DCG:

s ——-> np, Vp.
np --> det, n.
vp ——> tv, np.

vp ——> V.
det --> [the].
det -—> [a].

det --> [every].
n --> [man].

n --> [woman].

n --> [park].

tv --> [loves].
tv -——> [likes].
v ——> [walks].

Notice that these “procedure definitions” use the symbol -=> instead of : - to separate the procedure
head from the procedure body. The Prolog compiler converts such rules to (almost) exactly the
program above, by adding the extra arguments to the predicate symbols and treating the lists as
terminals. The “almost” is because it really translates, for example, a single word list [loves]
above to the procedure call >C’ (80, loves,S), and includes the definition of this new predicate as:

’C? ([Word|String] ,Word,String) .

This gives exactly the same effect as the Prolog program for the grammar given above.

Consider another example grammar, this one for simple arithmetic expressions over integers
with operators + and *:

expr —--> term, addterm.
addterm --> [].

addterm --> [+], expr.

term --> factor, multfactor.
multfactor --> [].

multfactor --> [*], term.
factor --> [I], {integer(I)}.
factor --> [’(°], expr, [’)’].

There are several things to note about this DCG. Notice that the list entries, representing terminals,
need not appear alone on right-hand-sides of DCG rules, but may accompany nonterminals. Also
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notice the first rule for factor; it has a variable (I) in a list, which will cause it to be matched
with, and thus set to, the next input symbol. The following procedure call is enclosed in braces.
This means that it matches no input symbols and so its translation to Prolog does NOT result in
the string variables being added. It remains just a call to the Prolog procedure with one argument:
integer (I). The integer procedure is a Prolog builtin which tests whether its argument is an
integer. Note also that we must quote the parentheses in the final rule. Otherwise, Prolog’s reader
would not be able to parse them correctly as atoms.

Consider some example executions of this grammar:

% xsb

XSB Version 1.4.1 (94/11/21)

[sequential, single word, optimal mode]

| 7- [grammar].

[Compiling ./grammar]

[grammar compiled, cpu time used: 1.309 seconds]
[grammar loaded]

yes
| ?- expr([4,*,5,+,1]1,[1).

yes
l 7- eXpr([11+131*1,(,121+14,;);] s [])-

yes
| 7- expr([4,5,%],[1).

no
| 7-

This grammar is not the most obvious one to write down for this expression language. It is
specially constructed to avoid being left recursive. We mentioned above that we were writing a
recursive descent parser for the grammar, and that is what one gets for a DCG from Prolog’s
execution strategy. Prolog execution of the underlying deterministic machines and its use of a
stack to schedule them naturally yields a recursive descent parser. And it is well known that a
recursive descent parser cannot handle left-recursive grammars; it will go into an infinite loop on
them. So in Prolog we must avoid left-recursive grammars.

Also a recursive descent parser can be quite inefficient on some grammars, because it may
re-parse the same substring many times. In fact, there are grammars for which recursive descent
parsers take time exponential in the length of the input string. When using DCGs in Prolog, the
programmer must be aware of these limitations and program around them. It is for this reason
that some people respond to the claim that “You get a parser for free with Prolog” with “Maybe,
but it’s not a parser I want to use.”
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(Another example for adding arguments and using word/3 instead of strings?).

2.3 Prolog as a Database Query Langauge

Prolog is an elegant language for database queries. In fact if one constrains Prolog programs to use
only atoms, integers and reals (no lists or complex terms) and disallows recursive definitions, one
gets a database language that is equivalent to a powerful subset of SQL. In this section we will see
how this is so.

A relation in relational database theory is a set of tuples. A common example of a database
relation is the employee relation, which contains a tuple for each employee in a company. Each
tuple might contain fields for: employee number, last name, first name, street address, city, state,
zipcode, department number, hire date, and salary. It could, of course, contain many more. We can
represent a set of tuples in Prolog as a highly nondeterministic procedure, the procedure returning
every one of the tuples in the relation.

employee (193, ’Jones’,’John’,’173 Elm St.’,’Hoboken’,’NJ’,

12345,1,°25 Jun 93’,25500).
employee(181,’Doe’,’Betty’,’11 Spring St.’,’Paterson’,’NJ’,

12354,3,°12 May 91°,28500) .
employee (198, ’Smith’,’Al’,’2 Ace Ave.’,’Paterson’,’NJ’,

12354,3,°12 Sep 93°,27000) .

(and more...)

And we might have a department relation which contains for each department, a tuple that
gives its number, name, and employee number of its manager.

department (1, ’Grocery’,181).
department (3, ’Deli’,193).
department (5, ’Produce’,199).

Given these basic relations (also called extensional relations), we can define other relations using
Prolog procedure definitions to give us answers to questions we might have about the data. For
example, we can define a new relation containing the names of all employees making more than
$28,000:

well_paid_emp(First,Last) :-
employee(_Num,Last,First,_Addr,_City,_St,_Zip,_Dept,_Date,Sal),
Sal > 28000.
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As another example, we could ask for the name of the manager of the Deli department:

deli_manager(First,Last) :-
department (_Deptno, ’Deli’ ,MgrID),
employee (MgrID,Last,First,_Addr,_City,_St,_Zip,_Dept,_Date,_Sal).

Here we first call the department relation to find the employee number of the manager of the Deli
department; then we call the employee relation to find the first and last names of the employee
with that number.

(Should we introduce negation here? Without recursion, it is pretty easy. Would have to talk
about safety.)

2.4 Deductive Databases

By staying with the simple data types, but adding recursion to this database language, one gets a
language called (positive?) Datalog, which is the language underlying deductive databases. Deduc-
tive databases are an extension of relational databases which support more complex data modeling.
In this section we will see how simple examples of deductive databases can be represented in Prolog,
and we will see more of the limitations of Prolog.

A standard example in Prolog is a geneology database. An extensional relation stores the
parent relation: parent(X,Y) succeeds with X and Y if X has parent Y. (Maybe do an example
consisting of some English monarchs?) Given this parent relation, we can define the ancestor
relation as follows:

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

This says that X has ancestor Y if X has parent Y; and X has ancestor Y if there is a Z such that
X has parent Z and Z has ancestor Y. Given a definition for the parent relation as follows:

parent (elizabeth_II, charles_77).
etc.

we can query about ancestors, such as:

:— ancestor(elizabeth_II,X).

and find all of Queen Elizabeth’s ancestors.
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This works very nicely in Prolog, since the parent graph is (essentially) a tree. However, if we
try the same definition of transitive closure for a graph that is not acyclic like a tree, we can be in
trouble. Say we have a relation owes(X,Y) which indicates that X owes money to Y, and we want
to define a predicate avoids(X,Y), meaning that X tries to avoid running into Y. The definition
is that people avoid someone to whom they owe money, and they avoid anyone that someone to
whom they owe money avoids:

avoids(X,Y) :- owes(X,Y).
avoids(X,Y) :- owes(X,Z), avoids(Z,Y).

This definition has the same form as the ancestor definition. The problem here is that the owes
relation may be cyclic. It is possible for Andy to owe money to Bill, Bill to owe money to Carl and
Carl to owe money to Bill:

owes (andy,bill).
owes (bill,carl).
owes (carl,bill).

and if we ask who Andy avoids:

| 7- avoids(andy,X).

we get:

| 7- avoids(andy,X).

X = bill;
X = carl;
X = bill;
X = carl;
X = bill;
X = carl;
X = bill;

an infinite loop.
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Figure 2.2: Graph on which Prolog is exponential

If we would like to use Prolog as an engine for deductive databases, this shows up a serious
problem: that a user can write a simple specification (using only atoms and variables) and yet
Prolog won’t give an answer, but will wander off to (or toward) infinity. One couldn’t afford to
give such a system to a naive database user. There it is important that any query come back with
some answer. Think of an SQL system that sometimes went into an infinite loop. It wouldn’t be
much used, and certainly not by naive users.

This problem of infinite looping is a well-known problem in Prolog and Prolog programmers
learn to program around it. The usual fix is to add an extra argument to the avoids/2 predicate
that keeps the list of people encountered in the process of finding the avoidees. Then if one of them
is encountered again, the search is made to fail at that point, since it is known that all avoidees
from that one have already been found. IL.e.,

avoids(X,Y,L) :- owes(X,Y), \+ member(Y,L).
avoids(X,Y,L) :- owes(X,Z), \+ member(Z,L), avoids(Z,Y,[ZIL]).

Here we’ve used the Prolog predicate member/2, and the Prolog builtin, \+, which implements not.
\+ member (Y,L) succeeds just in case member (Y,L) fails, and fails if it succeeds. Now with this
program and the corresponding query, we get:

| ?- avoids(andy,X,[]).

X = bill;
X = carl;
no

| 7-

This fix works to avoid the infinite loop, but it sometimes has some undesirable properties. There
are graphs for which the computation will be exponential in the number of arcs. Consider the
case in which Andy owes money to Bill and Bob, and Bill and Bob owe money to Carl; Carl owes
money to Dan and Dave, and Dan and Dave owe money to Evan; Evan owes money to Fred and
Frank, and Fred and Frank owe money to George; and so on. The graph of the owes relation can
be pictured as in Figure 2.2. On this graph, this query will be exponential. This graph is acyclic,
so the original, simpler Prolog program for transitive closure would terminate. But it (and the
member-enhanced version, too) would recompute the same answers again and again. It would in
effect turn this (essentially) linear list into a tree.
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2.5 Summary

So we have seen that Prolog is an interesting language that combines logic and computation. Some
programs are very simple and elegant and execute very reasonably, such as the append program
or the member program. Other programs, such as those derived from context-free grammars, are
very simple and elegant, but sometimes have undesirable computational properties. For example,
some context-free grammars have recognition times that are exponential in the length of the input
string. This is clearly undesirable, since we know that there are recognition algorithms that work
for all context-free grammars in at worst cubic time. And even worse, for some grammars, such
as left-recursive grammars, Prolog will go into an infinite loop, not returning an answer at all. We
also saw the same problem with the Datalog language. Perfectly good specifications might end up
with (very) bad computational behavior. Before we tackle this problem directly, we first develop
in the next chapter the theory underlying Prolog and its semantics: the theory of first-order logic.

2.6 Exercises

1. Write and TEST Prolog definitions for the following predicates. You will be graded on the
simplicity and elegance of your solutions, AND how well you test them. You can download
XSB from xsb.sourceforge.net for unix (for which you must configure and compile, according
to instructions) or for Windows (as a zip file that unzips to a set of directories with an
executable in XSB/config/i686-pc-cygwin/bin/xsb.exe). Contact me if you need help.

(a) member(Element,List) iff Element is a member of the list List.
Give a query that uses it to produce all members of a list that are greater than some
integer.

(b) last(Element,List) iff Element is the last element of list List.
(
(

)
c) consecutive(X,Y,L) iff X and Y are consecutive elements (in that order) of list L.
d) delete_first(X,Li,Lo) iff list Lo is list Li with the first occurrence of X removed.
)
)

e) delete_all(X,Li,Lo) iff list Lo is list Li with all occurrences of X removed.

f) append(L1,L2,L3) iff list L3 is the result of concatenating list L1 and L2. ***Use it to
split a list into all pairs of sublists that concatenate to produce the given list.

(g) sublist(SLL) iff list Sl is a (contiguous) sublist of list L.

(h) i intersect(L1,L2,I) iff T is the list that is the intersection of the lists L1 and L2.
(Assume L1 and L2 do not have duplicates within themselves but may be in any
order. Produce in I one list that contains all the elements in any order that are in
both L1 and L2.)

ii. intersect(L1,L2,I) iff T is the list that is the intersection of the lists L1 and L2.
(Assume L1 and L2 are in increasing order (using @j). The list representing the
intersection should also be in order.)

(
(

(i) reverse(L,R) iff list R is the reverse of the list L. What is the complexity of your solution
for a list of length n? Explain.
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(j) palindrome(L) iff the list L is a palindrome, i.e. reads the same backwards and forwards.

(k) permutation(L1,L2) iff list L2 is a permutation of list L1. (It should be able to generate
all permutations.)

(1) split(E,L,P1,P2) iff lists P1 and P2 are a partition of list L of integers, such that all
elements of P1 are less than or equal E and all elements of P2 are greater than E.

(m) quick_sort(L,S) iff S is the sorted version of the list L of integers. The idea of quicksort is
1) to choose an element from the list; 2) split the list into two lists putting all elements
smaller than (or equal to) the chosen element into the first list and the others into the
second (Hint: Use split/4 for this); 3) recursively sort the two sublists; and 4) concatenate
the two sorted sublists (putting the chosen element back in the middle).

2. Consider the very simple ”English” grammar we discussed in the chapter:

s —-=> np,Vvp.
np --> det,n.
vp --> tv,np.

vp ——> V.
det --> [the].
det -—> [a].

det --> [every].
n -—> [man].

n --> [woman].
n ——> [park].

tv --> [loves].
tv -——> [likes].
v --> [walks].

Extend this grammar to include some prepositional phrases, as ”in the park”. Also include
several proper names, such as john, mary, and rohit. You should add them to the grammar
in a natural way so that they follow the (simple syntactic) rules of English grammar. For
example, prepositional phrases can modify nouns and they can modify verb phrases.

Example sentences that you should be able to process include:

(a) a man walks to the park

(b) the man in the park likes mary

(c) the man saw a woman in the park with a telescope

(d)
)
)

d) the man in the park with a telescope walks

e) the man walks in the park with a telescope

(
(f

(Add the necessary words to their appropriate categories.)

many, many more, some of which may not make much sense but are “syntactically” OK.

Test your grammar on these examples and others of your own choosing.



CHAPTER 2. INTRODUCTION TO PROLOG

3. Extend your grammar of the previous problem to construct a parse tree for each sentence
recognizes.

32

it

Run your parser to construct parse trees for each of the example sentences of problem 1, and
for several others of your own choosing. Does your parser produce multiple different parses

for some of your examples? Should it? Discuss.

2.7 Exercise Discussion

The usual definition of reverse, using append (and called naive reverse) does not work for all calling
modes. It only uses unification so why doesn’t it work in all calling modes as append/3 does?

Consider the following definition:

reverse(L,R) :- same_length list(L,R), reversel(L,R).

same_length_list([],[]).
same_length_list([_|L1],[_IL2]) :- same_length list(L1,L2).

reversel ([1,[1).
reversel ([X|L],R) :- reversel(L,Rhs), append(Rhs, [X],R).

reversel /2 is the standard definition of naive reverse. This reverse works in all directions. Even:

| ?- reverse(L,R).

gives correct answers. We could also use the linear version of reversel, with an accumulator:

reversel([]1,R,R).
reversel ([X|L],S,R) :- reversel (L, [X]|S],R).

and calling reversel(L,[],R) in the body of reverse. (Note that same_length_list is done only once

and is linear, so this definition of reverse has the complexity of the reversel definition.)

To come up with this definition, I was thinking of the definition of naive reverse and why we
couldn’t interchange the two calls in the body of the recursive rule and put the append first. And
the problem is that with the direct call (with first argument bound and second a variable) we get

a call of the form

append (-, [+],-)
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(where - indicate variables and + indicates a bound value.) But there are infinitely many pairs
of lists that stand in this relationship, so Prolog is necessarily in an infinite loop. So why do we
need to look at only finitely many of these lists? Because we know the length of the resulting list.
So by setting the resulting list to be of the right length (the same as the input list), we can make
that call have only finitely many (in fact, only 1) solutions. So that’s how I came to this definition.
Which also points out that for the naive definition, we might as well interchange the body calls
and actually do the append first, which will make the definition tail recursive and save space. Of
course its time complexity is still quadratic



Chapter 3

Introduction to First-Order Logic

This chapter introduces the basics of logic needed to understand the foundations of Prolog and
logic programming. We start with Propositional Logic and then move to first-order logic.

Real World Situation Statements

|[Pic of person | === |’’a red block is |
|looking at a table | | on the table’’ |
|with blocks on it | A
|with balloon saying| person

‘‘a red block is on | with

the table’’ and I L \ What statements are about
another person (with| = ————————————m—-

IL on chest) looking|-------------—- | Table with |
lat them I | blocks |
Fig 11

Figure 11 shows in cartoon form what logic tries to do. On the left is a real-world situation of
a person looking at a table with blocks on it and saying that “a red block is on the table”. There
ia another person, our erstwhile logician, looking at this situation and trying to understand what’s
going on with the use of language. The logician separates this mixed-up real-world situation into
several parts to study them. First she pulls herself out of the situation so she can study it “from
outside”. Second she separates the statement into one component and the part of the real world
that the statement is about into another component. Her idea is that a statement is true or false
when looked at in the context of the real-world component. For example, when we look at the
table with the blocks, we will see that either the statement “a red block is on the table” is a true
statement about that situation, i.e., there is indeed a block on the table whose color is red; or it is
a false statement about that situation, i.e., looking at the blocks and table, we see that none of the

34
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blocks are red. So the meaning of a statement with respect to a real-world situation is either true or
false, depending on whether the statement makes a true or false assection about that world. This
is called a correspondence theory of meaning, since statements “mean” true or false depending on
how they “correspond” with a world situation.

As an aside, note that there are other possible theories of language meaning. As of this writing,
there is a US presidential nominating process going on. It is rather clear to me that the language
used in that process does not depend on a correspondence theory of meaning. A suprisingly large
number of utterances and clearly not true with respect to the world situation, so claiming that
politicians make statements that are true is certainly not an adequate account of language in that
context. Another theory of language, going by the name of “speech-acts”, models statements as
efforts by one person to cause another person to construct in his head certain beliefs. I suspect
political discourse is much better modeled by such a theory of language. Of course there is the
question of what a belief is, and the formaliztion of that may require some correspondence theory
of a belief and the world. End of aside.

Returning to our logician (whose role we now play), the problem is how to formalize the language
and the world situation in such a way that we can precisely say when a sentence is true (or false)
in a world situation. To do this, we need to precisely formalize the language component, which is
called the syntax of the system, and the real world component, which is call the semantics of the
system. And then we have to define a function that takes a sentence in the syntax and a world
situation in the semantics, and produces either true or false. This is the meaning (or semantic)
function of the framework.

After we do this, another question arises: Can we deduce the truth values of some sentences
given knowledge of truth values of other sentences? This is a question of deduction. Knowing that
some sentences are true an a given situation, can we deduce that some other sentence is true in
that same sitution? And can we do this without knowing what the situation is? A very simple
(yet powerful) example of this is the following: Say we know that we are in a situation in which
the sentence “it is raining” is true; furthermore we know that in all situations the sentence “If it is
raining, then the grass is wet” is true. Then we should be able to conclude that we are in a situation
in which the sentence “the grass is wet” is true. And we know this entirely from the form of the
syntax of the sentences, and their meanings with respect to their truth values in situations. This is
an example of deduction, and we want the logical system of meaning we construct to support such
reasoning.

To summarize, a logic (or logical theory of meaning) has three components: 1) a syntax that
defines the well-formed sentences of the language of the logic, 2) a model-theoretic semantics that
defines what models of real-world situations are appropriate for the logic language and how those
models make the well-formed sentences true or false, and 3) a theory of deduction that gives rules
that apply to sentences that preserve some aspects of their truth. We will look first at propositional
logic and its components, and then at first-order logic.
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3.1 Propositional Logic

Propositional logic takes simple declarative sentences as basic and combines them with sentential
operators: “and”, “or”, and “not” (and perhaps others). For example, we might have basic sen-
tences like “John is going to the store”, “It is raining”, and “It is daytime”. Propositional logic
has basic connective words: “and”, “or”, and “not”. We can combine the basic sentences to make
larger sentences using the basic connective words. For example, we could say: “John is going to
the store and it is daytime”, or “It is not raining or it is daytime”.

3.1.1 Syntax

In propositional logic we are interested is the connective words, and not particularly in how meaning
is given to the basic declarative sentences. So we will simply represent the basic sentences by letters:
P,q,I,s,.... We construct more complex sentences using the connectives to get sentences like: not(p),
p or g, p or (q and not(p)), etc.

So the syntax of propositional logic is very simple, and can be given by the following grammar:

Sent --> Conjsent

Sent --> Sent or Conjsent

Conjsent --> Primesent

Conjsent --> Conjsent and Primesent
Primesent --> Basicsent

Primesent --> not Primesent
Basicsent --> Prop_sym

Basicsent --> ( Sent )

3.1.2 Semantics

The meaning of a sentence in a world is a truth value: true or false. l.e., given a world, each
sentence is either true or false in that world. So we will think of a world as assigning to each
basic sentence a truth value, i.e., true or false. l.e., a world determines a truth assignment to the
propositional symbols (which represent the basic sentences). For example for the basic sentences
(propositions) given above, “It is raining” and “It is daytime”, one world might assign “true” to
the first and “false” to the second. This would be the world in which it is a wet night. A given
set of n propositional symbols can distinguish 2" different worlds, one for each truth assignment to
that set of propositional symbols.

Given the meanings of the propositional symbols, we want to give meanings to the compound
sentences, those made up from basics propositional symbols using the propositional connectives.
So let P be the set of proposition symbols, and M : P — {true, false} be a truth assignment
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(associated with some possible world; i.e., we think of M as representing a possible world.) We
can extend M to the set of all sentences, i.e., the compound sentences involving the connectives,
as follows:

M(and(S1,S82)) true, if M(S1)=true and M(S2)=true,

false, otherwise

M(or(S1,82)) = true, if M(S1)=true or M(S2)=true, or both
= false, otherwise

M(not(S)) = true, if M(S)=false
false, otherwise.

Given a propositional sentence, we canconsider its truth value in each possible world, i.e., for
each truth assignment to the propositional symbols in the sentence. For example, consider (not p

or q).

P | q || not p or q
true | true || true
true | false || false
false | true || true
false | false || true

Here we have set out all four of the truth assignments (worlds) for the basic propositional
symbols, p and q, one in each row. And then in the third column, we have entered the corresponding
truth value of the compound sentence (not p or q) in that world. This is known as a truth table for
(not p or q), and we can make a truth table for any (complex) sentence in the propositional logic.
If the sentence has n different propositional variables, its truth table will have n + 1 columns and
2™ rows.

A sentence whose truth table has a last column of all true is called a tautology. One whose
last column is all false is called a contradiction. A sentence that is a contradiction is said to
be unsatisfiable since no world can satisfy it, i.e., make it true. For example, (b or not b) is
a tautology. And (p and not p) is a contradiction. Notice that if an arbitrary sentence Q is a
tautology, then (not (Q)) is a contradiction.

Tautologies are of particular interest. Say we know that (not (A) or B) is a tautology, for some
particular sentences A and B. Say further that we don’t know everything about our current world,
but we do know that it makes A true. Then we also know that our current world, whatever it is,
makes B true. (Exercise, why?) We often write a formula of the form (not(A) or B) as (A — B),
read A implies B, or if A then B. We can extend the logic with this implication operator as a new
connective.



CHAPTER 3. INTRODUCTION TO FIRST-ORDER LOGIC 38

3.1.3 Deduction

So to be able to reason about what is true in our current world, without know everything about
the world, it is useful to know the tautologies. Now we can always determine if a sentence is a
tautology by building its truth table. But a truth table is exponentially large. Is there a way to
determine whether a sentence is a tautology without having to construct the entire truth table,
just by looking at the sentence itself and maybe related sentences?

There are many different ways to tackle this problem. We will look at one particular approach.
First we will consider sentences that have identical truth tables; such sentences are called equiva-
lent, indicated by <. There are a number of important equivalences; some useful ones are listed
here:

1. A < notnot A

2. Aor(B and C) <= (Aor B) and (A or C)

w

. not(A and B) <= not(A) or not(B)

4. not(A or B) <= not(A) and not(B)

Now given any sentence, we can use these equivalences, iteratively, to transform it into an equivalent
sentence of the following form (called conjuctive normal form): all “not” operators are immediately
over propositional symbols, and no “or” is inside the scope of an “and. For example, not(A and (B
or not(C))), can be transformed as follows:

not(A and (B or not(C)))
<= not(A) or not(B or not(C))
<= not(A) or (not(B) and not(not(C)))
<= not(A) or (not(B) and C)
<= (not(A) or not(B)) and (not(A) or C)

We call a propositional symbol or the negation of a propositional symbol a “literal”. We can see
that, for any sentence, we can find an equivalent sentence that is a conjunction of disjunctions of
literals. We can think of a sentence in this conjunctive normal form as a set of “clauses”, one clause
for each conjunct, and each clause consisting of a set of literals. So for the example above, not(A
and (B or not(C))) is equivalent to the set of clauses {{not(A),not(B)}, {not(A),not(C)}}. A set of
clauses is true if all the clauses are true (corresponding to the conjunctions in the conjunctive normal
form) and a single clause is true if any one (or more) of the literals in it is true (corresponding
to the disjunction in the equivalent sentence.) A literal is true in the expected cases: if it is a
propositional symbol then it is true just in case the propositional symbol is true; if it is the not of
a propositional symbol, then it is true just in case the propositional symbol is false.

Now we will present a method (called resolution) to determine whether a set of clauses is a
contradiction, i.e. is unsatisfiable. That means that every row of its truth table is false. Given such
a method, we can use it to determine whether an arbitrary sentence is a tautology, as follows. We
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take the formula, put a mot around it, convert it to an equivalent sentence in conjunctive normal
form (using the equivalences above) and then apply resolution, which will tell us whether it is a
contradiction. If it is, then the original sentence is a tautology.

Note that any clause that has both a literal and its complement is satisfied by every truth
assignment. Thus we can delete such a clause (a tautology) from any set of clauses without
affecting that set’s unsatisfiability. From now on we will assume no clause in a clause set contains
both a literal and its complement.

As mentioned resolution works on clauses. The idea is, given a set of clauses, to choose two from
the set that can be resolved, form their resolvant, which is a new clause, and add the resolvant to
the original set of clauses. And continue doing this until the empty clause is generated, or until no
new clauses can be generated. If the empty clause is generated, then the original set of clauses is
a contradiction.

So we need to define the “resolvant” of two clauses. Consider two distinct clauses, one of which
contains a proposition symbol P and the other of which contains the literal not(P). These clauses
can be resolved and the resolvant is all the literals in either of the two clauses excluding the literals
P and not(P). For example, the two clauses: {p,not(q)} and {not(p),not(q),r}, can be resolved
on p in the first clause and not(p) in the second, producing the resolvant: {not(q),r}. Notice that
we treat the clauses as sets and thus don’t have multiple copies of a literal in a clause.

Do a larger example:

Soundness

If we are given a set of clauses that is satisfiable, i.e. for which there exists a truth assignment
that makes them all true, then if we form a resolvant from that set and add it back to the set,
that new set of clauses is also satisfiable. This follows because consider the truth assignment that
makes the entire set of clauses true; it must make both the two clauses that we resolved true. And
it must make the propositional symbol we resolved on either true or false. If it makes it true,
then it makes its negation false. Then for the clause containing the negation to be true, some
literal in it other than that negation must be true. That literal is in the resolvant and so the
resolvant is true. Alternatively the satisfying truth assignment might make the proposition symbol
we resolve on false. If so, then some other literal in its clause must be true (since the clause is true.)
And that literal will be in the resolvant making the resolvant true. So adding resolvants preserves
satisfiability of a set of clauses. If we eventually can get the empty clause, which is unsatisfiable,
then the original set of clauses must be unsatisfiable. (If you're not clear on why the empty clause
must be unsatisfiable, you can back up one step, and see that the only way we can generate the
empty clause through resolution is by resolving two singleton clauses of the form {p} and {not(p)}.
An it’s easy to see that no truth assignment can make both these clauses true.) So this argument
shows that our tautology testing procedure is sound, i.e., if it says a sentence is a tautology, then
it is indeed a tautology.
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Completeness

But we would also like for our procedure to be complete, i.e., if indeed the original sentence is a
tautology, then our procedure will indeed tell us so. It turns out that resolution is indeed complete.
The proof is not difficult so we will look at it.

Consider an arbitrary sentence. Let pl,p2,p3, ..., pn be all the proposition symbols that appear
in it. Consider the following tree built from these symbols:

(]
/ \
P p
/ \ / \

“q q “q q

/ 0\ / N\ / 0\ / N\
“r r “r r “r r “r r
/\ /N /\ /\ /\ /\ /\ /\
“"ss “"ss "ss “ss "ss “"ss "ss “ss

(We note that this tree is not an execution tree of any kind. It is not used for computation in
any way.)

Each path from the root to a leaf corresponds to one truth assignment to the proposition
symbols {p, g, r, s}, the truth assignment that makes all the literal on the path true.

Now consider the following example clauses:

1. {p,r}
2. {~p,r s}
A~ a~r}
A}

. {Np7NS}

(=2 N2 S N OV

. Ag,~ 1, s}

N

Ap,g,~r}

We can use each clause to eliminate various truth assignments represented in the tree as not
satisfying the clause (and thus not satisfying the set of clauses.)

For each clause, find all paths from the root down to a node such that the complement of every
literal in the clause is in the path (and this is not true for any shorter path.) Mark all such nodes
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with an ’X’. Do that for every clause in the clause set. Note that any root to leaf path (i.e. truth
assignment) that has an X on some node cannot satisfy the set of clauses, because it will make the
clause that generated the X false. And note conversely that any root-to-leaf path that does not
have a node marked with an X will make all the clauses true and so is a satisfying truth assignment.
So an unsatisfiable set of clauses will have a tree in which every root-to-leaf path contains a marked
node. Consider the subtree from the root down to the first marked node on each path, i.e., a subtree
with all its leaves marked and no internal nodes marked. In this tree, there must be a node with
both children being leaves. Let the children correspond to not(P) and P for some P. These child
nodes were caused to be marked by two clauses, one of which contains not(P) and one of which
contains P. These two clauses are resolvable, and will produce a new resolvant clause that would
cause some ancestor of these two nodes to be marked.

These observations show that the resolution closure of a set of unsatisfiable clauses must contain
the empty clause, the only clause that marks the root of the tree. If it didn’t, there would be a
resolution that could be done, and thus the set wouldn’t be closed.

So the reolution strategy for determining unsatisfiability is sound and complete.

Resolution is highly explosive, there being many different choices for what clauses to resolve and
on what literals to resolve them at every step. It turns out that there are a variety of restrictions
one can place on the order of generating resolvants that reduce the combinatorial explosion and
yet retain the soundness and completeness of the method. Much research has gone into finding
such constraints. Another direction for finding efficient deduction strategies has been to restrict
the form of the allowable clauses in some way. With a restricted set of clause forms, and restricted
ways to apply resolution, efficient strategies do sometimes exist.

3.1.4 Horn Clauses

In this section we consider clauses of a particular form, called Horn clauses. A clause is a Horn
clause if it contains at most one positive literal. So the following are examples of Horn clauses:

{"p,q,7r, s}
{"p}

{s}

{"p,q}
{"p,"q,7r, s}
{3

and the following are not Horn clauses:

{"p,q,r,s}
{s,t}
{p,"q,7r,"s,u’
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A Horn clause that does contain a positive literal is called a Definite Horn Clause or just a Definite
Clause. So the first, third and fourth example Horn clauses above are definite clauses.

Now consider resolution among a set of Horn clauses. For two clauses to resolve, one must
contain a positive literal, i.e. one must be a definite clause. Also note that the resolvant of two
Horn clauses is itself a Horn clause, so Horn clauses are closed under resolution. Also note that
resolving two definite clauses together can never directly produce the empty clause, since one (and
exactly one) of the positive literals will appear in the resolvant. One way to do resolution with Horn
clauses is to start with a nondefinite clause and resolve it with a definite clause to generate another
nondefinite clause. Then we use that just-generated nondefinite clause and resolve it against some
definite clause to get a new nondefinite clause, and we continue in this way, always using the
just-generated resolvant as one clause used to generate the next resolvant. This is called a linear
strategy. It turns out that this is also a complete strategy for Horn clauses.

Consider the example, where for convenience we put the positive literal of definite clauses first:

1. {"p,7r}

2. {p, "t}

3. {p, "q, "r, “s}
4. {q, “r}

5. {r}

6. {s, “q}.

Consider the following resolution tree:

1. {"p,7r}
w/2. / \ w/3.
{"t,"r} {"q,7r, s}
lw/4.
{"r,”s}
w/5.
{"s}
w/6.
{"q}
[w/4.
{"r}
[w/5.
{

This is a tree in which the root is a nondefinite clause and all the nodes are labeled with resolvants
and each edge is labeled with the number of the clause that the parent resolved with to generate
the child.

Notice that we kept the order of the clauses in generating the resolvant and put the nega-
tive literals of the definite clause before the remaining negative literals of the nondefinite clause
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(eliminating subsequent duplicates.) And we always chose the first literal in the nondefinite clause
to resolve on. This is called SLD resolution for Horn clauses, and it turns out to be sound and
complete. (A proof is beyond what I want to do here, but can be found in the literature, or re-
constructed by looking an all possible resolution trees and determining that any general resolution
sequence that leads to the empty clause, can be transformed into one that is in the form here.)

There is another way to write Horn clauses; we can write them as implications. We can define
implication (->), read “implies”, by:

P->Q=="P\/Q
and reverse implication (->), read “if”, by:
P<-Q==P\/ "Q

Note that the propositional sentence p <= (q/\r/\s) is logically equivalent to (p\/~"q\/"r\/ s,
and is equivalent to the Horn clause:

{p,"q,"r, s}

So definite Horn clauses are implications in which a conjunction of positive literals imply a single
positive literal.

Explain (and give example) how SLD resolution (not eliminating redundant literals) is what
Prolog does (for predicates without any arguments). Prolog searches the tree of SLD resolution
derivations in depth-first order.

Horn Clauses, Unit Resolution

Another strategy for resolution with Horn clauses is called unit resolution. In unit resolution every
resolution step involves one clause that has only one positive literal.

So for example:

. {"p,"s}

. {p,7q, 7}
. {p,~s}

. {q,7s, "t}
. {r}

. {s}

ad WN - O

and the following unit resolutions:
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and 4 --> {p,"q}
and 5 --> {q, "t}
and 5 --> {p}
and 5 --> {"p}
10. 8 and 9 -—> {}

© 0 N O
O N W+~

It turns out that unit resolution is complete for Horn clauses.

We think of the indefinite clause as the Goal: it is (the negation of) what we want to prove is
logically implied by the truth of all the definite clauses. SLD resolution is called a backward chaining
strategy and Unit resolution is called a forward chaining strategy. If we think of our Horn clauses
as implications, we can see why: SLD resolution starts from the Goal and reasons backwards using
the implications in a backward direction, from consequence to antecedent, to determine what we
have yet to establish in order to establish our goal. In Unit resolution we reason starting from facts
we know (the unit clauses) and reason forward to derive everything we can conclude, eventually
hoping to prove the Goal.

3.2 First Order Logic (FOL)

Propositional logic is very limited in what it can represent and reason about. Taking simple declar-
ative sentences as primitive, and thus not having the ability to look inside and analyze components
of simple sentences is very restrictive. First order logic remedies this by allowing primitive declar-
ative sentences to be further decomposed into statements about objects and relationships among
objects. For (a classic) example, the sentence “Socrates is a man” in propositional logic is primitive,
but in first order logic we can further analyze it and say, essentially, that Socrates is a thing in the
set of things called “man”, written man(Socrates). And we can analyze the sentence “All men are
mortal” as saying that if something is in the set of men, then it is the set of mortal things, written
all(X,man(X) -> mortal(X)). The advantage of this is that now we can reason about objects
and their relationships. For example from these two first-order sentences, we can logically conclude
that Socrates is mortal, written mortal(Socrates). In propositional logic, this kind of reasoning can
not be modeled.

3.2.1 Syntax

The syntax of FOL is:

term_list --> term, term_tail.

term_tail --> [].
term_tail --> [’,’], term_tail.
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term --> [Atom], {fun_sym(Atom}}, opt_par_term_list.
term --> [X],{var_sym(X)}.

opt_par_term_list --> [].
opt_par_term_list --> [’ (’], term_list, [’)’].

atomic_formula --> [Pred], {pred_sym(Pred)}, opt_par_term_list.

formula --> atomic_formula.

formula --> [not],formula.

formula --> formula, [’\/’], formula.

formula --> formula, [’/\’], formula.

formula --> [for_all], [X],{var_sym(X)},formula.
formula --> [there_exists], [X],{var_sym(X)},formula.
formula --> [’ (’], formula, [’)’].

In this prolog-like representation, we assume that the function symbols (used in terms) come
from some set of symbols, represented in Prolog with the predicate fun_sym. Similarly predicate
symbols come from some fixed set as do variables, and the variable symbols (called variables) and
the function symbols are disjoint.

Assuming that the appropriate symbols are in the appropriate sets (and variables are symbols
starting with upper-case letters), examples of terms are:

father(michael)
sum(1,3)
sum(5,prod(6,succ(3)))

Examples of atomic formulas are:

man (socrates)

mortal (socrates)

employee(john,deere,93,124000,°101 Elm Street’,’Stony Brook’,’NY’,11794)
loves(X,madonna)

Examples formulas are:

mortal (socrates)
man(socrates) /\ mortal(socrates)
for_all X (not(man(X)) \/ mortal(X))

We can define various syntactic properties of formulas that come in handy.
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A variable occurrence is free in a formula if it does not appear in the scope of a quantifier
binding that same variable. It is bound otherwise.

A formula is closed if it contains no free occurrence of any variable. It is open otherwise.

3.2.2 Semantics

The semantics of FOL is given using FOL structures (sometimes called models.) A structure
provides a meaning for each function symbol and predicate symbol in the language. Each function
symbol and predicate symbol comes with an “arity”, a natural number that corresponds to the
number of terms that follow them in a parenthesized list in the syntax. (We assume, for simplicity
now, each symbol has a fixed arity and appears only in the context of that many following terms.)
A structure comes with a domain of objects, say D. A structure gives an n-ary function on D as the
meaning of a function symbol of arity n. A 0-ary function symbol is called a constant and appears
without any following parenthesized list. For example, “socrates” is a constant. So in particular,
a structure assigns a constant to an element of D. A structure gives an n-ary relation on D as the
meaning of a predicate symbol of arity n.

We use structures to give meaning to first-order formulas. But first-order formulas contain
variables, and we need a way to give meanings to variables. We do this with a “variable assignment”,
which is an assumption of what values the variables take on. A variable assignment is a function
from variables into the domain D of objects of the structure, i.e., VA:Vars->D. Now given a structure
and a variable assigment VA, we can assign meanings to formulas of FOL.

We’ll write a simple Prolog specification to show how meaning is defined. A model M determines
a domain, a function mapping and a predicate mapping. We represent that as the following Prolog
facts:

%% given by the model

model_domain(0bj) . % for every object 0Obj in the domain
model (FunctionSym,ArgList,0bj) . % to define every function symbol
model (PredicateSym,Arglist,TruthValue). % to define every predicate symbol

So for example, for a model of arithmetic, we would have facts like: model_domain(0),model_domain(1),
model_domain(2), and so on for the domain elements. For functions we would have model (+, [0,0],0),
model (+,[1,0],1), model(+,[1,1],2) and so on. For the less-than predicate symbol, we would
have model(<, [0,0],false), model(<, [0,1],true), model(<,[1,0],false), and so on. Of
course, these sets are infinite, so we cannot actually write them down as Prolog programs. But the
Prolog specification should be clear; it’s just that there would be infinitely many answers to some
queries.

Consider constant symbols in our arithmetic language. Let’s say that we use boolean nota-
tion. So our model must also give a meaning to these 0-ary function symbols making up boolean
representation of numbers. That would be done with the facts such as: model(’11°,[],3) and
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model (°101°,[],5). We would also have the facts model(’0’,[],0) and model(’1’,[],1) and
it is important to note that the first entry in these facts is a symbol, often called a numeral, here a
sequence of the 0 and 1 symbols. The last element in these facts is a number, the abstract concept
regardless of what notation we use to refer to it.

Now given that representation of a model, we can define the concept of the meaning of a formula
in a model under a variable assignment. We will assume that a variable assignment is represented
as a list of Var=0bj records. First we have to define the meaning of a term in a model under a
variable assignment. Such a meaning will be an object in the model. The definition is as follows:

%% meaning of a term in a model under a variable assignment
term_means (Term,VA,Obj) :-
var_sym(Term) ,
member (Term=0bj,VA) .
term_means (Term,VA,Obj) :-
Term =.. [FunSym|Arguments], % e.g. f(a,X,g(b)) =.. [f,a,X,g(b)]
term_means_list (Arguments,VA,Objs),
model (FunSym, [0bjs] ,0bj) .

%% meaning of a list of terms

term_means_list([],_,[]1).

term_means_list([Term|Terms],VA, [0bj|0bjs]) :-
term_means (Term,VA,Obj),
term_means_list(Terms,VA,Objs).

So the meaning of a term is found by using the model to get the meaning of constant symbols, using
the variable assignment to get the meanings of variables, and using the model’s function definitions
to find the result of applying a function to its arguments.

Then given the meaning of terms, we can define the meaning of a formula in a model under a
truth assignment as follows:

%)% meaning of a formula in a model under a variable assignment
formula_means(AFmla,VA,TVal) :- % atomic formula
Fmla =.. [PredSym|Args], % e.g. psym(a,X,g(b)) =.. [psym,a,X,g(b)]
term_means_list(Args,VA,Objs),
model (PredSym,0bjs,TVal) .
formula_means(A /\ B,VA,TVal) :-
formula_means(A,VA,TVall),
formula_means(B,VA,TVal2),
/\(TVall,TVal2,TVal).
formula_means(not(A),VA,TVal) :-
formula_means(A,VA,TVall),
not(TVall,TVal).
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formula_means(exists(V,Fmla),VA,TVal) :-

(model_domain(0bj), % try any domain object
replace_assignment (V=0bj,VA,NewVA), % for this variable
formula_means (Fmla,NewvA,true) % and if it makes subformula true

->TVal = true
; TVal = false
).

%% replace a single assignment with another
replace_assignment (V=0bj,VA,NewVA) :-
append (Prefix, [V=_|Suffix],VA),
append (Prefix, [V=0bj|Suffix] ,NewVA).

%% and truth table
/\ (true,true,true).
/\(true,false,false).
/\(false,true,false).
/\(false,false,false).

%% or truth table
not (true,false).
not (false,true).

To find the meaning of an atomic formula, we find the meanings of its arguments using the term
meaning function, and then use the model to see whether that tuple of objects is in the relation
that the model associates with that predicate symbol. The meaning of and formulas is clear. The
meaning of an exists formula is true if we can find some domain object in the model, that when
we assign it to the correspoding variable in a new variable assignment (leaving all other individual
assignments the same), that variable assignment makes the subformula true.

(Do some examples.)
Properties of FOL formulas:

Two FOL formulas are logically equivalent if in every structure and for every variable assignment,
they have the same meaning.

The meaning of a closed formula (one with no free variables) is independent of the variable
assignment. We normally work with closed formulas, sometimes called sentences.

FOL equivalences (or definitions):

not(forall(X,Fmla)) == exists(X,not(Fmla))
not(exists(X,Fmla)) == forall(X,not(Fmla))
forall(X,Fmlal) /\ forall(X,Fmla2) == forall(X,Fmlal/\Fmla2)
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if X is not free in Fmla2 then

forall(X,Fmlal) \/ Fmla2 == forall(X,Fmlal\/Fmla2)
exists(X,Fmlal) \/ forall(X,Fmla2) == exists(X,Fmlail\/Fmla2)
if X is not free in Fmla2 then

exists(X,Fmlal) /\ Fmla2 == exists(X,Fmlal/\Fmla2)

Given a quantified formula such as forall (X,Fmla), we can choose a new variable not appearing
in Fmla, say Y, and replace every free occurrence of X in Fmla with Y getting Fmla|X<-Y, and then
forall(Y,Fmla|X<-Y) is logically equvalent to forall(X,Fmla).

3.2.3 Deduction

We will again use resolution for our deduction method. Recall that reslution works on formulas in
clausal form. In FOL we will call an atomic formula or a negation of an atomic formula a literal.
And again a clause will be a set of literals. Now a set of clauses is true if they are true under all
variable assignments. A single clause is true under a variable assignment if some literal in it is true
under that variable assignment. This definition allows us to think of the variables in clauses as
being universally quantified.

So we would like to find, given an arbitrary FOL formula, an equivalent clausal form. This turns
out not to be possible, but we can find a clausal form that is satisfiable just in case the original
formula is satisfiable, and that is sufficient for our purpose of deduction.

So given an arbitrary FOL formula, we first find a form in prenex normal form (PNF), meaning
all the quantifiers have outermost scope, and the nonquantifier “matrix” is in conjunctive normal
form. For example the formula:

forall(X,exists(Y,p(X) /\ (not(q(X) \/ r(X,Y)))))

is in PNF. Now given any FOL formula, we can find an equivalent one in PNF. First we “standardize
the variables apart”, which means that we change bound variables to ensure that no two distinct
quantifiers in the formula bind the same variable. This can always be done by choosing new variables
and changing one of the bound variables to the new variable (including all free occurrences in the
scope of that binding quantifier). Then we can first push all negations over quantifiers, using the
equivalences above, and over “and” and “or” using DeMorgans laws (as for propositional logic),
eliminating double negations as necessary. Next we have to pull quantifiers out of conjunctions
and disjunctions. Given a formula of the form: (P /\ exists(X,Q)), we can transform it to
exists(X,P /\ Q), since X does not appear in P (since all variables are standardized apart.) And
similarly we can move all quantifiers out over “and” and “or”. So for any FOL formula, we can
find an equivalent formula in PNF.

For example, consider the formula for “every man loves a woman”:
forall (X,man(X)->exists(Y,woman(Y)/\loves(X,Y))).We can find the following chain of equiv-
alences:
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forall (X,man(X)->exists(Y,woman(Y)/\loves(X,Y)))

==> forall(X,not(man(X))\/exists(Y,woman(Y)/\loves(X,Y)))

==> forall(X,exists(Y,not(man(X)) \/ (woman(Y)/\loves(X,Y))))

=> forall(X,exists(Y, (not(man(X))\/woman(Y)) /\ (not(man(X))\/loves(X,Y))))

and the final formula is in PNF.

Now if the formula in PNF has only universal quantifiers, then we are done. The “matrix” of
the prenex formula directly provides the set of clauses, since the assumption on the meaning of
variables in a set of clauses is that they are universally quantified over the entire set. But what
happens if we have existential quantifiers in the quantified prefix, as in the above example?

Here, we are not able to find a logically equivalent formula, in general. However we can find
another formula that will be satisfiable if and only if the PNF formula is satisfiable. And for use
in resolution theorem proving that is just what we need.

So consider the PNF formula we have:

forall (X,exists (Y, (not (man(X))\/woman(Y)) /\ (not(man(X))\/loves(X,Y))))

which says, “for every X there is a Y such that some property holds,” in this case that Y is a
woman that the man X loves. So let’s consider a function “lovee” that for every man chooses a
woman that he loves. So perhaps lovee(john)=mary where “john loves mary”. Now consider the
formula:

forall (X, (not(man(X))\/woman(lovee(X))) /\ (not(man(X))\/loves(X,lovee(X)))))

We have eliminated the existential quantifier on Y, and replaced every occurrence of Y in the
quantified formula with “lovee(X)”. The claim is: there is a structure that satisfies the first formula
if and only if there is a structure that satisfies the second. Consider the “if” direction and assume
that there is a structure satisfying the second formula. Then that structure will satisfy the first
formula, since the witness for the truth of the exists subformula is given by looking at where the
“lovee” function takes the object that the variable assignment assigns to X. Since “lovee” is a
function, there will always be such an object, and the second formula ensures that the subformula
will be true using that object. Now for the “only if” direction, the truth of the first formula
guarantees that there is a total function that takes any X to some Y satisfying the subformula. So
there is a function, which can be assigned to the “lovee” function symbol in a new structure that
will cause the second formula to be satisfied.

This is an example of a general transformation, called “Skolemization”. For any formula in PNF
with an existential quantifier in the prefix, we can eliminate the outermost existential quantifier by
introducing a new “Skolem” function symbol, with arity equal to the number of universal quantifiers
that include the existential formula in their scope (i.e. to the left of the existential.) We then replace
every occurrence of the existentially quantified variable with the term consisting of the new function
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symbol applied to all the enclosing universally quantified variables. This gives us another formula
that is satisfiable if and only if the original one is satisfiable. By iterating this process, we can
eliminate all existential quantifiers and find a formula with only universal quantifiers. And that
formula can now be used to generate the equivalent set of clauses.

For example for our “every man loves a woman” formula, the set of clauses is:

{(not (man(X)) ,woman(lovee (X))},
{not (man (X)) ,loves(X,lovee (X))}
}

Resolution in FOL

Resolution in FOL works with first-order clauses, i.e., sets of first-order atom formulas and their
negations. So the clauses contain variables. We can informally think of a clause with variables
as being shorthand for the whole set of clauses one for each way to substitute values for (i.e.,
instantiate) the variables in the clause consistently. In this way, we can think of the “real” clauses
as actually being variable-free in which case they are just propositional clauses, (of course with the
complication that there may be infinitely many clauses.) But our intuition should be that when we
manipulate these first-order clauses, we are intuitively manipulating their (infinitely many) ground
instantiations, i.e., instances with no variables.

So as an example, consider the first-order clauses:

{loves(john,X), “woman(X)}
{~loves(Y,pat)}

Thinking of these as representing their ground instances, we can see that the first clause includes the
instance {loves(john,pat), “woman(pat)} (since X can be instantiated to pat, and the second
clause includes the instance {"loves(john,pat)} since Y can be instantiated to john. These
(instantiated) clauses contain complementary literals and so we can resolve them (as propositional
clauses) to obtain a new clause: {“woman(pat)}. And note that this fact does indeed follow from
the two first-order clauses.

Now consider a more complicated case:

{loves(Z,X) ,1likes(Z,X)}
{"loves(Y,pat)}

Now the first clause has an instance: {loves(Z,pat),likes(Z,pat)} which stands for many
ground clauses, one for each value substituted for Z. And the second clause {~loves(Y,pat)}
stands for many ground clauses, one for each value substituted for Y. Note that for any value, if we
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substitute it for Z in the first and X in the second, we get two resolvable clauses, and their resolvants
are all the clauses we can get by substituting something for Z in {likes(Z,pat)}. And note that
we can find this clause directly by matching loves(Y,pat) of the second clause with loves(Z,X) of the
first, to find the minimal instantiations necessary to make them the same. Then we can apply those
instantiations to all the literals in both clauses. Then these clauses can resolve directly generating
a new first-order clause representing all the ground resolvants. This is the idea behind first-order
resolution.

There a a few things we must be careful about. The matching operation is called unification,
and given two atomic formulas, it finds a most general term that is an instance of both formulas.
This term is called a most general unifier (mgu). It turns out that given two terms if an mgu exists,
it is unique.

There are several algorithms for finding the mgu. One approach is to work with a set of pairs
of terms, which we try to unify. If all pairs are identical, we are done and the terms are unifiable.
If there is a pair neither of whose components is a variable and whose function symbols are not the
same, then we are done and the terms are not unifiable. If one component of some pair is a variable
and the variable does not occur in the term it is paired with, but does appear in some term in some
other pair, then replace that variable by its paired term in all terms in all other pairs in the set.
(Note that this will eliminate all other occurrences of that variable.) If there are two nonvariable
terms that are paired and have the same main function symbol, then pair all the corresponding
arguments of the two terms and replace the original pair by that set of pairs. Repeat until done.
The most general unifier is determined by the remaining set of pairs. At least one of each final pair
is a variable.

(More precise definition and give several examples)
Examples...

Two clauses are called variants of each other if they are identical up to renaming of variables.
Notice that the result of replacing a clause in a set of clauses by a variant preserves its meaning.

Now we can define the first-order resolvant of two first-order clauses. Two clauses resolve if they
contain complementary literals, and the atomic formulas of those literals unify (after standardizing
their variables apart.) The resolvent is obtained by taking the union of the resolved clauses minus
the resolved-upon literals and applying the mgu substitution to that result.

So the resolution refutation algorithm for FOL is now the “same” as the propositional algorithm.
Close the set of clauses under this definition of resolution. If the closure contains the empty clause,
then the original set is unsatisfiable.

Example:

Consider the example clauses, which we number for future reference:

1. { ap(n,X,X) }
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2. { ap(c(X,V,Z,c(X,W)), "ap(Y,Z,W) }
3. { "ap(c(a,c(b,n)),c(d,n),r) }

Consider the following sequence of resolution steps to determine that these clauses are incon-
sistent.

3. { "ap(c(a,c(b,n)),c(d,n),A) }
resolve this with 2 using mgu:
X=a, Y=c(,n), Z=-c(d,n), A =c(a,W)
obtaining:
4. { "ap(c(b,n),c(d,n),w) }
resolve this with 2 again (with all variables primed) using mgu:
X =b, Y =n, Z2 = c(d,n), W=c(b,W)
obtaining:
5. { "ap(n,c(d,n),W’) }
resolve this with 1 using mgu:
X =c(d,n), W = c(d,n)
obtaining:

6. {12

Since we derived the empty clause, these clauses are inconsistent. Notice that we can look to
see what instantiation of the variable A it was that resulted in the inconsistency, by looking at the
mgu’s involved:

A = c(a,W) from the first mgu

W= c(b,W) from the second, and
W’ = c(d,n) from the last
yielding

A = c(a,c(b,c(d,n)))

Now note that we can write clauses 1 and 2 in implicational form:

ap(Y,Z,W) -> ap(c(X,Y),Z,c(X,W))
ap(n,X,X)

or in reverse implicational form, and expanding the predicate name of ap:

append(c(X,Y),Z,c(X,W)) :- append(Y,Z,W).
append (nil,X,X).

This is actually the append program, where we are representing the empty list with the constant
nil, and using ¢/2 as the list constructor.
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Horn Clauses, SLD

The definition of Horn clauses applies to first-order clauses: A clause is a Horn clause if it contains at
most one positive literal. Resolution can be specialized to Horn clauses just as in the propositional
case, and for Horn clauses we specialize general resolution to SLD resolution.

Examples:

Prolog as FO Horn Clauses

Prolog is depth-first search through the tree of SLD-resolution proofs.

Consider:

{anc(X,Y), “parent(X,Y)}

{anc(X,Y), “parent(X,Z), “anc(Z,Y)}
{parent(e,t)?}

{parent(t,d)}

{parent (t,p)}

{parent(d,h)?}

{parent (h,m)}

This is the clause version of our old friend, the Prolog program for defining ancestor.
Show the SLD tree, and Prolog evaluation.
Limitations of Prolog/SLD and what can be done

Prolog has infinite loops, as we’ve seen. There are trivial Horn clause programs that make perfect
sense logically, but put SLD (and thus Prolog) into an infinite loop. E.g. p :- p. But maybe more
importantly

{anc(X,Y), “parent(X,Y)}
{anc(X,Y), ~“parent(X,Z), “anc(Z,Y)}

if parent is cyclic. Or

{anc(X,Y), “parent(X,Y)}
{anc(X,Y), "anc(X,Z), “parent(Z,Y)}



CHAPTER 3. INTRODUCTION TO FIRST-ORDER LOGIC 95

which logically is just as good as the previous definition.

Other natural examples from the previous chapter are: a) the expression grammar and b) the
simple English grammar as extended in the exercises. The expression grammar we gave has the
wrong associativity for the + and * operators; they are normally considered to be left associative
(e.g., 1+2+3 is considered as (142)+3 and not 14+(2+3)), but the grammar used right-associativity.
Had we used the natural grammar for left associative operators, we would have had a left-recursive
grammar, and Prolog goes into an infinite loop for such grammars. Similarly for the simple English
grammer in which we wanted to say that a noun phrase is a noun phrase followed by a preposi-
tional phrase. The natural rule to do this, verb—np —; np, pp.—, again left-recursive. So adding
prepositional phrases in a way that Prolog could handle them required some rather complicated,
and perhaps non-intuitive, machinations.

(Read intro now.)

Let’s consider only Datalog programs, which are Horn clauses with only constants and variables
(i.e., no function symbols of arity greater than 0.)

We can define an operator, called the Tp operator, on sets of ground atomic formulas as follows:

Tp(S) = {H : there is a ground instance, H :- B1,B2,...,Bn, of a rule,
and for each Bi, Bi is in S}

This is one-step of inference: if we assume all the facts of set S are true, and the rules are true,
then Tp(S) is what we can infer to be true in one step. We can infer what is true in any number
of steps beginning from no assumptions as follows:

S_0 = Tp([1).
S_1 = Tp(S_0).
S_2 = Tp(S_1).
S_n = Tp(S_n-1).

And then we take the union of all the S;. This will give us all the atomic formulas that must be
true in every structure that makes all the rules true. This process essentially produces the “least
Model” of the program. For Datalog programs, this process is finite. S; C S;11 for every i, so the
sequence is monotonically increasing. Since there are only finitely many possible ground atomic
formulas for a finite Datalog program, this sequence must eventually reach a fixed point where

Sk1 = Sk-
(Do ancestor example.)

Bottom-up computation starts with the facts and derives new facts using the rules. The idea is
that you start assuming that you don’t know anything: i.e., that all the relations (corresponding
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to the rule heads and facts) are empty. Then you add tuples to those relations as is required by
the rules. The simple example is:

Program:

e(a,b).

e(a,c).

e(c,d).

e(d,f).

pX,Y) :- e(X,Y).

p(X,Y) :- p(X,2),e(Z,Y).

So there are two relations (sets of ordered pairs) defined by this program: e/2 and p/2. We
start assuming they are empty:

e/2
p/2

]
A A
S

Now we use the current tuples in e/2 and p/2 (none, at the moment) to see if these tuples and the
rules and facts force us to add more tuples. Well, the 4 facts for e in the program force us to add
those pairs to the relation e/2. So we get

e/2 = {<a,b>,<a,c>,<c,d>,<d,f>}
p/2 = {1}

Now we do it again, to see if we need to add more tuples, using these current sets. So since we
have <a,b> in e/2 and the first p-rule says that p(X,Y) if e(X,Y), we must add <a,b> to p/2. And
similarly for the other pairs in e/2, so now we get:

e/2 = {<a,b>,<a,c>,<c,d>,<d,f>}
p/2 = {<a,b>,<a,c>,<c,d>,<d, >}

OK, do it again. Now we have <a,c> in p/2 and <c,d> in e/2, and the second p/2 rule says that
p(X)Y) if p(X,Z) and e(Z,Y). so with X=a,Z=c and Y=d, we have to add <a,d> to p/2. And
similarly for <c,d> in p/2 and <d,£> in ¢/2, that same rule requires that we add <c,£> to p/2. So
at this point we get:

e/2
p/2

{<a,b>,<a,c>,<c,d>,<d,f>}
{<a,b>,<a,c>,<c,d>,<d,f>,<a,d>,<c,f>}

And then again: now we have <a,d> in p/2 and <d,£> in /2, so the second p/2 rule requires that
we add <a,f> to p/2, and we get:
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e/2
p/2

{<a,b>,<a,c>,<c,d>,<d,f>}
{<a,b>,<a,c>,<c,d>,<d,f>,<a,d>,<c,f>,<a,f>}

and now we can’t get anything new. We just get pairs we already have, so we have hit the fixed
point, and are done.

The Tp operator takes a current set of relations for the predicates in the program, and uses the
rules of the program P and the tuples in the set of relations, and generates a new set of relations.
It does this the way we did in each step above: Look for instantiated rules where we have facts for
all the atomic formulas on the right-hand side of a rule, and then add the left-hand side. So for
example, what we did above, in terms of the T’ operator:

Tp(e/2={ },p/2={ }) = T1 = (e/2= {<a,b>,<a,c>,<c,d>,<d,f>}, p/2={ })
Tp(T1) = T2 = (e/2= {<a,b>,<a,c>,<c,d>,<d,f>},
p/2= {<a,b>,<a,c>,<c,d>,<d,f>})

Tp(T2) = T3 = (e/2= {<a,b>,<a,c>,<c,d>,<d,f>},

p/2= {<a,b>,<a,c>,<c,d>,<d,f>,<a,d>,<c,f>})
Tp(T3) = T4 = (e/2= {<a,b>,<a,c>,<c,d>,<d,f>},

p/2= {<a,b>,<a,c>,<c,d>,<d,f>,<a,d>,<c,f>,<a,>})
Tp(T4) = T4

and we reached the fixed point. Notice that we started with the empty relations and at each step
applied the the previous step. This will always generate a non-decreasing sequence of sets. If there
are only finitely many possible tuples, it will always stop at some point, and we will have reached
a fixed point.

Now if want to determine if a query is implied by a program, find the LFP of the program using
the T'p operator, and see if the query is in the LFP. So this is another proof technique for Datalog
programs. (It is directly extensible to all Horn clause programs, but then the LFP may be infinite.)

So this shows that for Datalog programs we don’t have to live with the infinite loops of Prolog.
There is an alternative.

But there are problems with the T» approach: it is not goal-directed. E.g., to find my ancestors,
we have to find everybody’s ancestors. That can be a lot of unnecessary work.

We can see a similar (the same) phenonomenon with inductively defined functions. Recall from

high school how we defined the factorial function, n!

0!
n!

1
nx(n-1)! if n>0

There are two ways to think about evaluating, say 5!: We can think “bottom-up”:
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0!
3!

1, 1! = 1x0!=1x1=1, 2! = 2*%1!1=2x1=2,
3x21=3%2=6, 4! = 4x3!=4x6=24, 5! = 5x4!1=5x24=120.

Or we can compute it “top-down” as a functional programming language would by:

51 = Bx4! = 5% (4%31) = 5x(4%(3%2!)) = 5k (4*(3%(2%11))) = 5x(4*x (3% (2% (1*0!)))) =
Ex (4% (3% (2% (1%1)))) = 5x(4*x(3%(2%1))) = 5k (4*x(3%2)) = 5x(4*x6) = 5x24 = 120.

For factorial, these two ways of computing it do essentially the same amount of work. But
consider a definition of fibonacci:

fib(0) = 1
fib(1) =1
fib(n) = fib(n-1) + fib(n-2) if n>1

Computing this top-down takes exponential work. (Do example)
Computing it bottom-up takes linear work. (Do example)

So it seems that bottom-up can be much better than top-down. But consider the definition:

0
1 + 1g(n//2) if n>1. (where // is integer division)

1g(1)
1g(n)

Computing this bottom up takes linear work, but computing it top-down takes only log work.
So in this case top-down is much better than bottom-up. So it’s clear that neither bottom up nor
top-down is uniformly better than the other. The question is whether we can come up with a single
evaluation strategy that gets the best of both strategies, for example would be linear on the given
definition for the fibonacci function and log on the definition of the lg function.

In the case of evaluting Datalog programs, there are two approaches (which turn out to be
essentially the same approach): Tabling, and magic sets. Tabling modifies Prolog backward chaining
evaluation to remember goals and answers to avoid rederiving redundant goals. Magic sets modifies
the Tp approach to add filtering predicates so that only essential goals are derived.

We will look at the Tabling approach.

3.3 Exercises

1. Prolog has infix operations that allow you to write propositional expressions, such as (p /\ q \/ not(p /
We will use this syntax to represent propositional expressions, with /\ meaning ”and”, \/
meaning "or” and not meaning "not”.
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We will represent a truth assignment as a list, such as:
[p=true,q=false,r=false]

where each element in the list defines the mapping of a propositional symbol to true or false.

Write a Prolog predicate eval_tv(PropExp,TruthAsgn,TV) which takes a propositional ex-
pression, PropExp, and a truth assignment in TruthAsgn, and returns the truth value of that
expression under that truth assignment in TV.

For example

| 7- eval_tv((p /\ q \/ not(q \/ p)),[p=false,q=false],TV).
TV = true ;

no
| ?-

2. Extra Credit: (Not for the squeamish. Only for those with time and interest.) Write a
predicate that, given a propositional formula, will print out its truth table.

Prolog has builtin predicates write(Term) that writes the term Term, and nl, which writes
out a newline. Try for example:

| ?- write(hello),nl,write(world).

3. Write a DCG to recognize and parse propositional sentences.

4. Write a Prolog predicate prop_clause/2 that takes a propositional formula (using /\, \/,
and not, as in the previous problems and produces an equivalent list of clauses. A clause
is represented as a list of literals. This predicate should in effect convert the propositional
formula into conjunctive normal form and then produce the resulting list of clauses. (You do
not have to create the CNF form if you find a more direct way to get the same result.)

5. Write a Prolog predicate resolve/1 that takes a list of clauses, such as those generated in
problem 1, applies the resolution strategy, succeeding if the clauses are unsatisfiable, and
failing otherwise.

One way to write resolve is as a recursive predicate that chooses a pair of resolvable clauses,
generates the resolvent, adds it to the set of clauses if it’s new, and recurses, until the
empty clause is generated, or no new clauses can be generated. Now you need to choose
only one resolvable pair at each step; you don’t want to backtrack and choose all pairs
nondeterministically. To do this in Prolog, you can use a metapredicate, once/1, which when
applied to a predicate call, will return only the first answer the call generates.

So for example, we get:

| ?- once(member (X, [a,b,c])).
X = a;

no

| 7-
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Using once/1, you can choose only one of the many ways resolvants might be generated at
each step.

(a) Add writeln/1 calls at appropriate places in your code so that you can see, for each the
resolvant, what clauses were used to generate it.

(b) Test your program with reasonable clause sets. Come up with an interesting example
with some semantics for the propositions, and explain what your proof system does.

6. This problem involves representing a first-order structure in a Prolog program and evaluating
the meaning of formulas in such a structure.

(a) Consider the representation of a first-order structure in Prolog. For our problem, the
structure will be an abstraction of a simple world with several people in it and several
relations relating the people. We use the following representation:

i.

ii.

iii.

To represent the domain, we will use a unary Prolog predicate, dom/1, which will
return each element of the domain. So, for example, the fact:

dom(1).

would indicate that 1 is in the domain of the structure.

To represent the relations, we will use a binary predicate, relation/2, which returns
pairs in which the first is a predicate symbol (of arity n) in the language, and the
second is a list of length n representing a tuple in the corresponding relation. So,
for example, the fact:

relation(<, [3,17]).

would indicate that the predicate symbol < is mapped to a relation that contains
the ordered pair <3,17>.

To represent the functions, we will use a binary predicate, function/2, which returns
pairs in which the first is a function symbol (of arity n) in the language, and the
second is a list of length n+1 representing the function arguments and its value for
those arguments in the graph of the corresponding function. So, for example, the
fact:

function(+,[2,3,5]).
would indicate that + is a function symbol in the language that is mapped by the
structure to a binary function that, given arguments 2 and 3, returns 5.

Task: Give definitions of these three Prolog predicates for a first-order structure repre-
senting the following situation:

i.

ii.

iii.

There are 4 people: john_jones, mary_smith, bill_rogers, jane_doe.

john_jones and bill_rogers are men, where men are represented by a unary relation
symbol 'man’. mary_smith and jane_doe are women, where women are represented
by a unary relation symbol 'woman’.

Some people love other people, represented by a binary relation symbol 'loves’. In
particular john_jones loves mary_smith and she loves him back. And bill_rogers loves
jane_doe, but jane_doe loves john_jones.
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iv. Every person has a spouse, represented by a unary function symbol 'spouse’. In par-
ticular, john_jones and mary_smith are married (and thus are each other’s spouses)
and bill_rogers and jane_doe are also married.

(b) Write first-order formulas (in the language above) to represent the meanings of the
following English sentences. (You may use implication (->) as a logical connective, if
you wish.) The constants we have in the logic are "John’, "Mary’, *Jane’, and ’Bill’ (which
refer to the obvious objects in the structure), the unary predicate symbols are ‘'man’ and
'woman’, the binary predicate symbol ’loves’, the unary function symbol ’spouse’.

i. John loves Mary.
ii. Bill loves Jane but Jane loves John.
iii. Mary loves a man.
iv. Jane does not love her spouse.
v. Every man loves his spouse.
vi. Not every woman loves her spouse.
vii. Every man loves a woman. (i.e., for every man there is a woman that he loves)

viii. There is a man that every woman loves.

(¢) We will represent first-order formulas in Prolog as shown in the following examples.

forall(x1l,exists(y2,loves(xl,y2)))
forall(x1l,not(man(x1))\/exists(y,woman(y)/\loves(xl,y)))
forall(x,loves(x,spouse(x)))

So variables are represented by Prolog atoms that begin with the letters x, y, or z followed
by a (possibly empty) sequence of digits.

Universal quantification is represented by the Prolog term with forall at the root and
its left child a variable, and its right child a formula. And existential quantification is
similar.

The representation of terms and the other form of formulas should be clear from the
examples.

Task: Write a Prolog predicate:

mean_fmla(+Formula,+VariableAsgn,-TV)

that takes a first-order formula, a variable assignment, and returns true if the formula
is true in the structure represented by the Prolog predicates dom/1, relation/2 and
function/2. A variable assignment is represented as a list of terms Varable=Object.
For example, a variable assignment for the structure of problem 1 might look like:
[x=john_jones,yl=jane_doe]. We will assume that VariableAsgn has terms for every
variable that appears free in Formula.

We will need an auxiliary predicate, call it mean_term, where mean_term(+4Term,+ VariableAsgn,-
ODbj) takes a first-order logical term, a variable assignment, and returns the object that
term means in the structure defined by dom/1 and friends.

We will need a Prolog predicate to break apart a term that is an atomic formula (or a
function application) into its components. We use the builtin (infix) predicate =.. as
the following example shows:
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| 7- loves(john,spouse(x2)) =.. Term.

Term = [loves,john,spouse(x2)];

no

| 7-

So given a left-hand argument of a term (tree), =.. breaks it apart into a list, where the
first element of the list is the atom at the root of the term tree, and the tail of the list
is a list of the terms that are the immediate children of the root. =.. works in either

direction, i.e., it will also construct a term tree from a list representing the root atom
followed by its children (but we don’t need that direction in this problem.)

Task: Define the necessary predicates in Prolog, run mean_fmla/3 on all the example
formulas you came up with in problem 2 just above. Make up some other formulas,
including some that are false in the structure of problem 1, and run mean_fmla on them,
explaining why they get the answers that they do.



Chapter 4

Tabling and Datalog Programming

In the previous chapter we saw several limitations of Prolog. When we considered grammars in
Prolog, we found that the parser provided by Prolog “for free” is a recursive descent parser and
not one of the better ones that we’d really like to have. When looking at deductive databases,
we found that some perfectly reasonable programs go into an infinite loop, for example transitive
closure on a cyclic graph. We had to go to some lengths to program around these limitations, and
even then the results were not completely satisfying.

XSB implements a feature not (yet) found in many other Prolog systems. It is the notion of
tabling, also sometimes called memoization or lemmatization. The idea is very simple: never make
the same procedure call twice: the first time a call is made, remember all the answers it returns,
and if it’s ever made again, use those previously computed answers to satisfy the later request. In
XSB the programmer indicates what calls should be tabled by using a compiler directive, such as:

:— table np/2.

This example requests that all calls to the procedure np that has two arguments should be tabled.
Predicates that have such declarations in a given program are called tabled predicates.

A simple example of a use of tabling is in the case of a definition of transitive closure in a graph.
Assume that we have a set of facts that define a predicate owes. The fact owes (andy,bill) means
that Andy owes Bill some money. Then we use owes to define a predicate avoids as we did in the
previous chapter. A person avoids anyone he or she owes money to, as well as avoiding anyone they
avoid.

:— table avoids/2.
avoids(Source,Target) :- owes(Source,Target).
avoids(Source,Target) :-
owes (Source,Intermediate),
avoids(Intermediate,Target).

63
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Here we are assuming that the edges of a directed graph are stored in a predicate owes/2. The
rules in this program are the same as those used in Prolog to define ancestor. The difference is that
in XSB we can make the table declaration, and this declaration guarantees that this predicate will
be correctly computed, even if the graph in owes/2 is cyclic. Intuitively it’s clear that any call to
avoids will terminate because there are only finitely many possible calls for any finite graph, and
since tabling guarantees that no call is ever evaluated more than once, eventually all the necessary
calls will be made and the computation will terminate. The problem with Prolog was that in a
cyclic graph the same call was made and evaluated infinitely many times.

Indeed, executing this program on the graph:

owes (andy,bill).
owes(bill,carl).
owes(carl,bill).

for the query avoids (andy,X), which we saw go into an infinite loop without the table declaration,
yields the following under XSB:

warren}, xsb

XSB Version 1.4.2 (95/4/6)

[sequential, single word, optimal mode]

| 7- [graph].

[Compiling ./graph]

[graph compiled, cpu time used: 0.589 seconds]
[graph loaded]

yes
| ?- avoids(andy,Y).

Y = bill;
Y = carl;
no

| 7-

XSB tabled execution as the execution of concurrent machines

We understood a Prolog evaluation as a set of executing deterministic procedural machines, increas-
ing in number as one of them executes a multiply-defined procedure, and decreasing in number as
one of them encounters failure. Then we saw how it was implemented by means of a depth-first
backtracking search through the tree of SLD computations, or procedure evaluations. To add the
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avoids(andy,Y @) :- avoids(andy,Y a)

avoids(andy,Y @) :- owes(andy,Y a) avoids(andy,Y a) :- owes(andy, | ntb),avoids(intb,Y a)

avoids(andy,bill) :- avoids(andy,Y a) :- avoids(bill,Ya)

Figure 4.1: Tree for avoid(andy,Ya) goal server

concept of tabling, we have to extend our computational model. Tabling execution is best under-
stood as computation in a concurrent programming language. Nontabled predicates are evaluated
exactly as in SLD, with the intuition of a procedure call. Evaluating a tabled predicate is un-
derstood as sending the goal to a cacheing goal server and then waiting for it to send back the
answers. If no server for the goal exists, then one is created and begins (concurrently) to compute
and save answers. If a server for this goal already exists, none needs to be started. When answers
become available, they can be (and eventually will be) sent back to all waiting requesters. So tabled
predicates are processed “asynchronously”, by servers that are created on demand and then stay
around forever. On creation, they compute and save their answers (eliminating duplicates), which
they then will send to anyone who requests them (including, of course, the initiating requester.)

Now we can see tabled execution as organized around a set of servers. Each server evaluates a
nondeterministic procedural program (by a depth-first backtracking search through the alternatives)
and interacts with other servers asynchronously by requesting answers and waiting for them to be
returned. For each answer returned from a server, computation continues with that alternative.

The abstraction of Prolog computation was the SLD tree, a tree that showed the alternative
procedural machines. We can extend that abstraction to tabled Prolog execution by using multiple
SLD trees, one for each goal server.

Let’s trace the execution of the program for reachability on the simple graph in owes/2, given
the query :- avoids(andy,Ya). Again, we start with a query and develop the SLD tree for it
until we hit a call to a tabled predicate. This is shown in Figure 4.1. Whereas for SLD trees, we
used a pseudo predicate ans to collect the answers, for SLD trees for goal servers, we will use the
entire goal to save the answer, so the left-hand-side of the root of the SLD tree is the same as the
right-hand-side. Computation traces this tree in a left-to-right depth-first manner.

So the initial global machine state, or configuration, is:
avoids(andy,Ya) :- avoids(andy,Ya).

Then rules are found which match the first goal on the right-hand-side of the rule. In this case
there are two, which when used to replace the expanded literal, yield two children nodes:

avoids(andy,Ya) :- owes(andy,Ya).
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avoids(bill,Ya) :- avoids(bill,Y a)
avoids(bill,Y a) :- owes(bill,Y a) avoids(bill,Y a) :- owes(hill,Intb),avoids(intb,Y a)

avoids(bill,carl) :- avoids(bill,Y a) :- avoids(carl,Y q)

Figure 4.2: Tree for avoid(bill,Ya) goal server
avoids(andy,Ya) :- owes(andy,Intb),avoids(Intb,Ya).

Computation continues by taking the first one and expanding it. Its selected goal (the first on
the right-hand side) matches one rule (in this case a fact) which, after replacing the selected goal
with the (empty) rule body, yields:

avoids(andy,bill) :-

And since the body is empty, this is an answer to the original query, and the system could print
out Y=bill as an answer.

Then computation continues by using the stack to find that the second child of the root node:
avoids(andy,Ya) :- owes(andy,Intb),avoids(Intb,Ya).

should be expanded next. The selected goal matches with the fact owes (andy,bill) and expanding
with this results in:

avoids(andy,Ya) :- avoids(bill,Ya).

Now the selected goal for this node is avoids(bill,Ya), and avoids is a tabled predicate.
Therefore this goal is to be solved by communicating with its server. Since the server for that goal
does not exist, the system creates it, and schedules it to compute its answers. This computation is
shown in Figure 4.2.

This computation sequence for the goal avoid(bill,Y) is very similar to the previous one for
avoid(andy,Y). The first clause for avoids is matched, followed by the one fact for owes that has
bill as its first field, which generates the left-most leaf of the tree of the figure. This is an answer
which this (concurrently executing) server could immediately send back to the requesting node in
Figure 4.1. Alternatively, computation could continue in this server to finish the tree pictured in
Figure 4.2, finally generating the right-most leaf:

avoids(bill,Ya) :- avoids(carl,Ya)
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avoids(carl,Y d) :- avoids(carl,Y d)
avoids(carl,Yd) :- owes(carl,Ya) avoids(carl,Y ) :- owes(carl,Intb),avoids(intb,Y @)

avoids(carl,hill) :- avoids(carl,Ya) :- avoids(bill,Ya)

Figure 4.3: Tree for avoids(carl,Ya) goal server

avoids(andy,Y @) :- avoids(andy,Y a)

avoids(andy,Y @) :- owes(andy,Y a) avoids(andy,Y a) :- owes(andy,|ntb),avoids(intb,Y a)
avoids(andy,bill) :- avoids(andy,Y a) :- avoids(bill,Ya)
avoids(andy,carl) :-

Figure 4.4: Updated tree for avoid(andy,Ya) goal server

Now since the selected goal here is tabled, the server for it is queried and its response is awaited.
Again, there is no server for this goal yet, so the system creates one and has it compute its answers.
This computation is shown in Figure 4.3.

This computaton is beginning to look familiar; again the form of the computation tree is the
same (because only one clause matches owes(carl,Y)). Again an answer, avoids(carl,bill),
is produced (and is scheduled to be returned to its requester) and computation continues to the
right-most leaf of the tree with the selected goal of avoids(bill,Ya). This is a tabled goal and so
will be processed by its server. But now the server does exist; it is the one Figure 4.2. Now we can
continue and see what happens when answers are returned from servers to requesters. Note that
exactly when these answers are returned is determined by the scheduling strategy of our underlying
concurrent language. We have thus far assumed that the scheduler schedules work for new servers
before scheduling the returning of answers. Other alternatives are certainly possible.

Now in our computation there are answers computed by servers that need to be sent back
to their requesters. The server for avoids(bill,Ya) (in Figure 4.2) has computed an answer
avoids(bill,carl), which it sends back to the server for avoids(andy,Ya) (in Figure 4.1). That
adds a child to the rightmost leaf of the server’s tree, producing the new tree shown in Figure 4.4.
Here the answer (avoids(bill,carl)) has been matched with the selected goal (avoids(bill,Ya))
giving a value to Ya, and generating the child avoids(andy,carl) :-. Note that this child is a
new answer for this server.

Computation continues with answers being returned from servers to requesters until all answers
have been sent back. Then there is nothing left to do, and computation terminates. The trees of
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the three servers in the final state are shown in Figure 4.5. Duplicate answers may be generated
(as we see in each server) but each answer is sent only once to each requester. So duplicate answers
are eliminated by the servers.

Let’s be more precise and look at the operations that are used to construct these server trees. We
saw that the SLD trees of Prolog execution could be described by giving a single rule, PROGRAM
CLAUSE RESOLUTION, and applying it over and over again to an initial node derived from the
query. A similar thing can be done to generate sets of server trees that represent the computation
of tabled evaluation. For this we need three rules:

Definition 4.0.1 (Program Clause Resolution) Given a tree with a node labeled

A:—Ay, As, ..., A,, which is either a root node of a server tree or A; is not indicated as tabled.
Also given a rule in the program of the form H : —By, Bs,. .., Bg, (with all new variables) and
given that H and B; match with matching variable assignment 6, then add a new node as a child
of this one and label it with (A : —By, Bs,..., Bk, Ag,..., Ay)0, if it does not already have a child
so labeled. Note that the matching variable assignment is applied to all the goals in the new
label.

Definition 4.0.2 (Subgoal Call) Given a nonroot node with label A : —Ay, As, ..., A,, where
Aj is indicated as tabled, and there is no tree with root Ay : —Ajp, create a new tree with root

A1 : —Al.

Definition 4.0.3 (Answer Clause Resolution) Given a non-root node with label

A:—Ay, Ay, ..., A,, and an answer of the form B : — in the tree for A;, then add a new node
as child of this node labeled by (A : —As, ..., A,)0, where 6 is the variable assignments obtained
from matching B and A; (if there is not already a child with that label.)

So for example the trees in Figure 4.5 are constructed by applying these rules to the initial tree
(root) for the starting goal. XSB can be understood as efficiently constructing this forest of trees.
We have seen that XSB with tabling will terminate on a query and program for which Prolog will
loop infinitely. It turns out that this is not just an accident, but happens for many, many programs.
For example, here we've written the transitive closure of owes using a right recursive rule, i.e., the
recursive call to avoids follows the call to owes in the second rule defining avoids. We could also
define avoids with a rule that has a call to avoids before a call to owes. That definition would
not terminate in Prolog for any graph, but with tabling, it is easily evaluated correctly.

4.1 More on Transitive Closure

We saw in the previous section how XSB with tabling will correctly and finitely execute a transitive
closure definition even in the presence of cyclic data. Actually, this is only a simple example of the
power of tabled evaluation.
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avoids(andy,Y a) :- avoids(andy,Y a)

avoids(andy,Y a) :- owes(andy,Y a) avoids(andy,Y a) :- owes(andy,|ntb),avoids(intb,Y a)
avoids(andy,hill) :- avoids(andy,Y a) :- avoids(bill,Y a)
avoids(andy,carl) :- avoids(andy,bill) :-

avoids(bill,Ya) :- avoids(bill,Ya)

avoids(bill,Y a) :- owes(hill,Y a) avoids(bill,Y a) :- owes(hill,Intb),avoids(intb,Y a)
avoids(bill,carl) :- avoids(hill,Y a) ;- avoids(carl,Y a)
avoids(bill,bill) :- avoids(bill,carl) :-

avoids(carl,Y @) :- avoids(carl,Y @)

avoids(carl,Y ) :- owes(carl,Y a) avoids(carl,Y a) :- owes(carl,Intb),avoids(intb,Y a)
avoids(carl,bill) :- avoids(carl,Ya) :- avoids(bill,Y a)
avoids(carl,carl) :- avoids(carl,bill) :-

Figure 4.5: Final state for all goal servers for query avoids(andy,Ya)
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avoids(andy,Y a) :- avoids(andy,Y a)

avoids(andy,Y a) :- owes(andy,Y a) avoids(andy,Y a) :- avoids(andy,Int), owes(Int,Y a)

avoids(andy,hill) :-
Figure 4.6: Beginning of evaluation of avoids(andy,Ya) for left-recursive transitive closure definition

avoids(andy,Y a) :- avoids(andy,Y a)

avoids(andy,Y a) :- owes(andy,Y a) avoids(andy,Y a) :- avoids(andy,Int), owes(Int,Y a)

avoids(andy,hill) :- avoids(andy,Y a) :- owes(bill,Ya)

Figure 4.7: More of the evaluation of avoids(andy,Ya) for left-recursive transitive closure definition
We can write another version of transitive closure:

:— table avoids/2.
avoids(Source,Target) :- owes(Source,Target).
avoids(Source,Target) :-
avoids(Source,Intermediate),
owes (Intermediate,Target) .

This one is left recursive. A Prolog programmer would not consider writing such a definition, since
in Prolog it is guaranteed to be nonfinite. But with tabling, this definition works fine. As a matter
of fact, it is generally a more efficient way to express transitive closure than is right recursion. In
this section we will look at various versions of transitive closure and compare their efficiency.

Let’s consider the evaluation of the same avoids query on the same owes data as above, but
using the left-recursive definition of avoids.

Figure 4.6 shows the state of the initial server when it first encounters a request to a server. Note
that this time the request to a server is to the server for avoids(andy,Ya), and this is the server
itself. (The names of the variables don’t matter when finding a server; they are just “placeholders”,
so any server with the same arguments with the same pattern of variables works.) The server does
have an answer already computed, so it can send it back to the requester (itself), and that results
in the tree of Figure 4.7. Now the new leaf, created by the returned answer, can be expanded
(by PROGRAM CLAUSE RESOLUTION) yielding a new answer, avoids(andy,carl). This answer
can be returned to the (only) requester for this server, and that generates a second child for the
requester node; this state is shown in Figure 4.8.
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avoids(andy,Y a) :- avoids(andy,Y a)

avoids(andy,Y a) :- owes(andy,Y a) avoids(andy,Y a) :- avoids(andy,Int), owes(Int,Y a)
avoids(andy,hill) :- avoids(andy,Y a) :- owes(bill,Ya) avoids(andy,Y a) :- owes(carl,Y a)
avoids(andy,carl) :-

Figure 4.8: More of the evaluation of avoids(andy,Ya) for left-recursive transitive closure definition

avoids(andy,Y a) :- avoids(andy,Y a)

avoids(andy,Y a) :- owes(andy,Y a) avoids(andy,Y a) :- avoids(andy,Int), owes(Int,Y a)
avoids(andy,hill) :- avoids(andy,Y a) :- owes(bill,Ya) avoids(andy,Y a) :- owes(carl,Y a)
avoids(andy,carl) :- avoids(andy,bill) :-

Figure 4.9: Final forest for avoids(andy,Ya) for left-recursive transitive closure definition

Now this node can be expanded (by Program Clause Resolution) to obtain the tree of Figure
4.9 Here we have generated another answer, but it is the same as one we’ve already generated, so
returning it to the requester node will not generate any new children. All operations have been
applied and no more are applicable, so we have reached the final forest of trees, a forest consisting
of only one tree. Note that we have the correct two (distinct) answers: that andy avoids bill and
andy avoids carl.

The right-recursive definition and the left-recursive definition of avoids both give us the correct
answers, but the left-recursive definition (for this query) generates only one tree, whereas the right
recursive definition generates several. It seems as though the left-recrsive definition would compute
such queries more efficiently, and this is indeed the case.

Consider transitive closure over an owes relation that defines a cycle. E.g.,

owes(1,2).
owes(2,3).
owes (3,4).

owes (99,100).
owes (100,1).
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defines a graph with a cycle of length 100. How would the trees in the forest look after evaluation of
a query to avoids(1,X) using the right-recursive transitive closure definition? For each n between
1 and 100, there is a tree with root: avoids(n,Y). And each such tree will have 100 leaf answer
nodes. So the forest will have at least 100? nodes, and for a cycle of length n the forest would be
of size O(n?).

What does the forest look like if we use the left-recursive definition? It has one tree with root,
avoids(1,Y), and that tree has 100 answer leaves. Generalizing from the tree of Figure 4.9, we
see that it is a very flat tree, and so for a cycle of length n, the tree (forest) would be of size O(n).
The left-recursive definition is indeed the more efficient to compute with. Indeed the complexity
of a single-source query to the left-recursive version of transitive closure is linear in the number of
edges in the graph reachable from the source node.

4.2 Other Datalog Examples

In the previous section we saw how tabling can finitely process certain programs and queries for
which Prolog would go into an infinite loop. Tabling can also drastically improve the efficiency of
some terminating Prolog programs. Consider reachability in a DAG. Prolog will terminate, but it
may retraverse the same subgraph over and over again.

Let’s reconsider the mostly linear owes graph at the end of the previous chapter (shown in Figure
2.2) on which Prolog had exponential complexity. Consider evaluating the query avoids(andy,X)
with the left-recursive tabled definition of transitive closure. The forest for this evaluation will
again consist of a single tree, and that tree will be very flat, similar in form to the one of Figure
4.9. Thus tabled evaluation will take linear time. So this is an example in which Prolog (with its
right recursive definition) will terminate, but take exponential time; XSB with the left-recursive
definition and tabling will terminate in linear time.

The “doubly-connected linear” graph used here may seem unusual and specially chosen, but
the characteristics of the graph that cause Prolog to be exponential are not that unusual. Many
naturally occurring directed graphs have multiple paths to the same node, and this is what casues
the problem for Prolog. [For example, consider a graph (generated by graph-base [?]) that places
5-letter English words in a graph with an edge between two words if one can be obtained from the
other by changing a single letter.... (get example from Juliana, and see how it works.)

Transitive closure is perhaps the most common example of a recursive query in Datalog, but
other query forms can be encountered. Consider the definition of same_generation. Given binary
relations up and down on nodes, define a binary relation on nodes that associates two nodes if one
can be reached from the other by going n steps up and then n steps down, for some n. The program
is:

same_generation(X,X).
same_generation(X,Y) :-
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up(X,Z1),
same_generation(Z1,Z2),
down(Z2,Y).

The name of the predicate arises from the fact that if we let up be defined by a “parent_of”
relation and down be defined by the “child_of” relation, then same_generation/2 defines people in
the same generation.

[to be continued...]

4.3 Some Simple Graph Problems

4.3.1 Stongly Connected Components in a DAG

Consider the problem of finding connected components in a directed graph. Assume we have a
node and we want to find all the nodes that are in the same connected component as the given
node.

The first thought that comes to mind is: given a node X, find those nodes Y that are reachable
from X and from which you can get back to X.

sameSCC(X,Y) :- reach(X,Y), reach(Y,X).
So we will assume that edges are given by an edge/2 relation:

:— table reach/2.
reach(X,X).
reach(X,Y) :- reach(X,Z), edge(Z,Y).

Indeed given a node X, this will find all nodes in the same strongly connected component as X,
however it will in general take O(n * e) time, where n is the number of nodes and e is the number
of edges. The reason is that given an X, there are n possible Z values and for each of them, we will
find everything reachable from them, and each search can take O(e) time.

However, we can do better. It is known that this problem can be solved in O(e) time. The idea
is, given a node X, to find all nodes reachable from X following edges forward. Then find all nodes
reachable from X following edges backward (i.e., follow edges against the arrow.) Then intersect
the two sets. That will be the set of nodes in X’s SCC, because if Y is in both these sets, you
can follow the edges forward from X to Y and then since there is also a backwards path from X to
Y, there is forward path from Y to X, so you can get from X to Y and back to X following edges
forward. So the program that does this is:
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% sameSCC(+X,-Y)
sameSCC(X,Y) :- reachfor(X,Y), reachback(X,Y).

:— table reachfor/2, reachback/2.
reachfor(X,X).
reachfor(X,Y) :- reachfor(X,Z),edge(Z,Y).

reachback (X,X).
reachback(X,Y) :- reachback(X,Z),edge(Y,Z).

Let’s now consider its complexity to see why it is O(e). For a fixed value X, the computation
of the query reachfor(X,Y) takes O(e) time. Then we may have O(n) calls to reachback(X,Y)
(one for each Y) but they all use one underlying call to reachback(X,_) which takes O(e) and is
done only once. So when we add all that up (assuming a connected graph), we get O(e) time.

(NOTE:DSW expand with ideas for when back-edge needs to be relative to nodes reachable
from a source; as when edge is a state transition function. Need subsumption, but can use a “poor

o)

man’s” subsumption... It only uses a subsuming call if that call is already completed.)

4.3.2 Connected Components in an Undirected Graph

Another problem is to find connected components in an undirected graph. The usual procedural
algorithm is linear in the number of edges. One starts by ordering the nodes. Then proceed by
taking the next unmarked node, calling it a leader, and marking it and all nodes reachable from it.
This is continued until all nodes are marked.

This seems to be a difficult problem to solve in linear time with a pure datalog program. The
following program solves this by using an “inflationary not” operator, which is definable using XSB
primitives (as is shown.)

(NOTE:DSW-ix, expand,or delete.)

:— table leader/2.

leader(N,T) :-

for(I,1,31), % total number of nodes = 31

inot(leader(I,_)), % not yet determined whether leader or not

(N=I, T=true % so it must be a leader

reachable(I,N), T=false Y% and then mark all reachable as nonleaders.

).

inot(Q) :-
excess_vars(Q, [1,[],Vars),
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get_calls(Q,S,R),
is_most_general_term(Vars),
get_returns(S,R),

t,

fail.
inot ().

for(I,I,H) :- I =< H.
for(I,L,H) :- L < H, L1 is L+1, for(I,L1,H).

:— table reachable/2.
reachable(X,Y) :- edge(X,Y).
reachable(X,Y) :- reachable(X,Z),edge(Z,Y).

4.4 Genome Examples

[We need to get the semantics of the genome queries from Tony. Does anybody remember?]

4.5 Subsumptive Tabling

[Maybe introduce subsumptive tabling here? Then later chapter on applications of it. Maybe
Anderson(?) pointer analysis. And meta-interpreter to see it’s doing “linear” bottom-up evaluation
of propositional horn clauses, when called with open call.]

4.6 Inferring When to Table

Up to now whenever we wanted calls to a predicate to be tabled, we explicitly coded a table
directive to indicate the specific predicate to table. There is a facility in XSB for the programmer
to direct the system to choose what predicates to table, in which case the system will generate
table directives automatically. There are two directives that control this process: auto_table/0
and suppl_table/1. When such a directive is placed in a source file, it applies to all predicates in
that file when it is compiled.

auto_table/0 causes the compiler to table enough predicates to avoid infinite loops due to
redundant procedure calls. The current implementation of auto_table uses the call graph of the
program. There is a node in the call graph of a program for each predicate, P/N, that appears in
the program. There is an edge from node for predicate P/N to the node for predicate Q/M if there is
a rule in the program with an atom with predicate P/N in the head and a literal with predicate Q/M
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in the body. The algorithm constructs the call graph and then chooses enough predicates to table
to ensure that all loops in the call graph are broken. The algorithm, as currently implemented
in XSB, finds a minimal set of nodes that breaks all cycles. The algorithm can be exponential
in the number of predicates in the worst case!. If the program is a Datalog program, i.e., it has
no recursive data structures, then auto_table is guaranteed to make all queries to it terminate
finitely. Termination of general programs is, of course, undecidable, and auto_table may or may
not improve their termination characteristics.

The goal of auto_table is to guarantee termination of Datalog programs, but there are other
uses tabling. Tabling can have a great effect on the efficiency of terminating programs. Example
4.6.1 illustrates how a multiway join predicate can use tabling to eliminate redundant subcompu-
tations.

Example 4.6.1 Consider the following set of relations describing a student database for a college:

1. student(Stdld,StdName, Yr): Student with ID StdId and name StdName is in year Yr, where
year is 1 for freshman, 2 for sophomores, etc.

2. enroll(Stdld,Crsld): Student with ID Stdld is enrolled in the course with number CrsId.

3. course(Crsld,CrsName): Course with number CrsId has name CrsName.

We define a predicate yrCourse/2, which, given a year, finds all the courses taken by some student
who is in that year:

yrCourse (Yr,CrsName) :-
student (StdId,_,Yr), enroll(StdId,CrsId), course(CrsId,CrsName).

Note that it will most likely be the case that if one student of a given year takes a course then many
students in the same year will take that same course. Evaluated directly, this definition will result
in the course name being looked up for every student that takes a given course, not just for every
course taken by some student. By introducing an intermediate predicate, and tabling it, we can
elminate this redundancy:

yrCourse(Yr,CrsName) :-
yrCrsId(Yr,CrsId), course(CrsId,CrsName).

:- table yrCrsId/2.
yrCrsId(Yr,CrsId) :-
student (StdId,_,Yr), enroll(StdId,CrsId).

The algorithm to find such a minimal set of predicates corresponds to the feedback vertex set problem and is
NP-Complete [2].
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The intermediate predicate yrCrsId is tabled and so will eliminate duplicates. Thus course will
only be accessed once for each course, instead of once for each student. This can make a very large
difference in evaluation time.

In this example a table has been used to eliminate duplicates that arise from the database
operations of a join and a projection. Tables may also be used to eliminate duplicates arising from
unions.

The suppl_table/1 directive is a means by which the programmer can ask the XSB system to
perform such factoring automatically. The program:

:— edb student/3, enroll/2, course/2.
:- suppl_table(2).
yrCourse(Yr,CrsName) :-
student (StdId,_,Yr), enroll(StdId,CrsId), course(CrsId,CrsName).

will automatically generate a program equivalent to the one above with the new intermediate
predicate and the table declaration.

To understand precisely how suppl_table works, we need to understand some distinctions
and definitions of deductive databases. Predicates that are defined by sets of ground facts can be
designated as extensional predicates. The extensional predicates make up the extensional database
(EDB). The remaining predicates are called intensional predicates, which make up the intensional
database (IDB), and they usually have definitions that depend on the extensional predicates. In
XSB the declaration:

:— edb student/3, enroll/2, course/2.

declares three predicates to be extensional predicates. (Their definitions will have to be given
elsewhere.) We define the data dependency count of an IDB clause to be the number of tabled IDB
predicate it depends on plus the number of EDB predicates it depends on (not through a tabled
IDB predicate.) The command:

:- suppl_table(2).

instructs XSB to factor any clause which has a data dependency count of greater than two. In
Example 4.6.1 the data dependency count of the original form of join/2 is three, while after
undergoing supplementary tabling, its count is two. Choosing a higher number for suppl_table
results in less factoring and fewer implied table declarations.

The next subsection describes somewhat more formally how these transformations affect the
worst-case complexity of query evaluation.
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On the Complexity of Tabled Datalog Programs

The worst-case complexity of a Datalog program (with every predicate tabled) is:

Z (len(clause) _|_knum_of_vars(body(clause)))

clause

where k is the number of constants in the Herbrand base (i.e., in the program). One can see how
this can be achieved by making all base relations to be cross products of the set of constants in the
program. Assume the call is completely open. Then if there are vy variables in the first subgoal,
there will be k* tuples. Each of theses tuples will be extended through the second subgoal, and
consider how many tuples from the second subgoal there can be: k2 where vy is the number of
variables appearing in the second subgoal and not appearing in the first. So to get through the
second subgoal will take time k"! % k¥2. And similarly through the entire body of the clause. Each
subgoal multiplies by a factor k¥ where v is the number of new variables. And every variable in the
body of the clause is new once and only once. This is the reason for the second component in the
summation above. The first component is just in case there are no variables in the clause. For an
entire program one can see that the complexity (for a nonpropositional) datalog program is O(k")
where v is the maximum number of variables in the body of any clause.

We can use folding to try to improve the worst-case efficiency of a Datalog program. Consider
the query:

(7) :- p(A,B,C,D),q(B,F,G,A),r(A,C,F,D),s(D,G,A,E),t(A,D,F,G).

It has 7 variables (as indicated by the number in parentheses that precedes the query), so its
worst-case efficiency is O(n”). However, we can fold the first two subgoals by introducing a new
predicate, obtaining the following program:

(6) :- f1(p,C,D,F,G),r(A,C,F,D),s(D,G,A,E),t(A,D,F,G).
(6) fl(AyCrDrFyG) . p(A,B,C,D),q(B,F,G,A)-

This one has a maximum of 6 variables in the query or in the right-hand-side of any rule, and
so has a worst-case complexity of O(n®).

We can do a couple of more folding operations as follows:
(6) :- f2(A,D,F,G),s(D,G,A,E),t(A,D,F,G).
(5) £2(A,D,F,G) :- f1(A,C,D,F,G),r(A,C,F,D).

(6) fl(AyCrDrFyG) = p(A,B,C,D),q(B,F,G,A)-

(4) :- £f2(A,D,F,G),£3(D,G,A),t(A,D,F,G).
(4) £3(D,G,A) :- s(D,G,AE).
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(56) f2(A,D,F,G) :- f1(A,C,D,F,G),r(A,C,F,D).
(6) £1(A,C,D,F,G) :- p(4A,B,C,D),q(B,F,G,A).

Thus far, we have maintained the order of the subgoals. If we allow re-ordering, we could do
the following. For each variable, find all the variables that appear in some subgoal that it appears
in. Choose the variable so associated with the fewest number of other variables. Factor those
subgoals, which removes that variable (at least). Continue until all variables have the same number
of associated variables.

Let’s apply this algorithm to the initial query above. First we give each variable and the
variables that appear in subgoals it appears in.

:BCDEFG
:ACDFG
:ABDF
:BCDEFG
:ADG
:ABGCD
:ABFDE

QT MO QW e

Now E is the variable associated with the fewest number of other variables, so we fold all the
literals (here only one) containing E, and obtain the program:

(6) :- p(4A,B,C,D),q(B,F,G,A),r(A,C,F,D),f1(D,G,A),t(A,D,F,G).
(4) £1(D,G,A) :- s(D,G,A,E).

Now computing the new associated variables for the first clause, and then choosing to eliminate
C, we get:

:BCDFG
:ACDFG
:ABDF
:ABCFG
:ABGCD
:ABFD

QT O Qwe

(5) = f2(A,B,D,F) ,Q(B,F,G,A) ,fl(DrG,A) yt(A,D,ch) .
(4) £1(D,G,A) :- s(D,G,A,E).
(6) £2(A,B,D,F) :- p(A,B,C,D),r(A,C,F,D).

Now computing the associated variables for the query, we get:
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:bdfg
radfg
:abfg
:abdg
:abfd

e H QT P

All variables are associated with all other variables, so no factoring can help the worst-case
complexity, and the complexity is O(k®).

However, there is still some factoring that will eliminate variables, and so might improve some
queries, even though it doesn’t guarantee to reduce the worst-case complexity.

(4) :- £3(A,D,F,G),f1(D,G,A),t(A,D,F,G).
(6) £3(A,D,F,G) :- f2(A,B,D,F),q(B,F,G,A).
(4) £1(D,G,A) :- s(D,G,A,E).

(6) f2(A,B,D,F) :- p(A,B,C,D),r(A,C,F,D),

(3) :- £4(A,D,6),£1(D,G,A).

(4) f4(A,D,G) :- £3(A,D,F,G),t(A,D,F,G).
(6) £3(A,D,F,G) :- £2(A,B,D,F),q(B,F,G,A).
(4) £1(D,G,A) :- s(D,G,A,E).

(6) f2(A,B,D,F) :- p(A,B,C,D),r(A,C,F,D).

The general problem of finding an optimal factoring is conjectured to be NP hard. (Steve Skiena
has the sketch of a proof.)

4.7 Datalog Optimization in XSB

[Do we want to do it at all, and if so, here?] I think we do want it, but I don’t know about here.

4.8 Exercises

1. In this problem you will explore how XSB handles transitive closure for binary relations
defining various graphs. The first task is to define predicates that generate those graphs.
In each case, we will assume that the graph predicate will always be called with the first
argument bound. Each graph will be parameterized by a number M, which will be defined
by a Prolog fact: size/1. So if M is 10000, there will be a fact: size(10000). defined in your
Prolog program.

(a) Define a binary predicate cycle/2 such that cycle(i,i+1) for
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0 =< i < M, and cycle(M,0).

Draw a picture of this graph (with integers as nodes) for M = 8.
(b) Define a binary predicate tree/2 such that

tree(i,2*%i+1) for 0 =< i < M, and

tree(i,2*i+2) for 0 =< i < M.

Draw a picture of this graph (with integers as nodes) for M = 4.
(c) Define a binary predicate dline/2 such that

dline(i,i+1) if 0 =< i < M and i mod 4

dline(i,i+2) if 0 =< i < M and i mod 4

dline(i+1,i+4) if 0 =< i < M and i mod 4 = 0

dline(i+2,i+4) if 0 =< i < M and i mod 4 = 0

0 (i.e. i is a multiple of 4)
0

Draw a picture of this graph (with integers as nodes) for M = 12.

2. For each of the predicates define in problem 1, give the rules for transitive closure of that
graph, possible in three ways: the right-recursive definition, the left-recursive definition, and
the doubly-recursive definition. They should be named:

tc_cycle_rr/2 (for the right recursive transitive closure of cycle)
tc_cycle_lr/2 (for the left recursive..)
tc_cycle_dr/2 (for the doubly recursive..)

tc_tree_rr/2 (right recursive tree)
tc_tree_lr/2 (left recursive tree)

tc_dline_rr/2 (right recursive)
tc_dline_1lr/2 (left recursive)

You are to populate the following benchmarking table:

graph tabled M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
tc_cycle_rr/2 Y
tc_cycle_lr/2 Y
tc_cycle_dr/2 Y

tc_tree_rr/2 N
tc_tree_rr/2 Y
tc_tree_1lr/2 Y

tc_dline_rr/2 N

<

tc_dline_rr/2
tc_dline_1r/2 Y
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where M1 - M10 are integers, in increasing order that are chosen to show reasonable ranges
of cpu times for all the benchmarks. These benchmarks can vary significantly in speed, so
to get a reasonable time for the fastest you’ll need a reasonably large M10; any time greater
than 30 seconds should be represented as TO (for time out). (Le., cancel any query that
takes longer, using ctrl-c.) The ”tabled” column having ”Y” means that the corresponding
transitive closure definition is declared as tabled. If it is "N” it is not tabled, but simple
Prolog is used.

The values in the cells are the cpu-times for running XSB on the 0-source query for the
row. E.g., the number in the jtc_cycle_rr/2, M1; cell should be the cputime to run the query
te_cycle_rr(0,X) (when tc_cycle_rr/2 is tabled) to find all X’s reachable from 0.

This can be done by the following query:

| ?7- cputime(TO), (tc_cycle_rr(0,_),fail ; true), cputime(T1),
Time is T1-TO, writeln(Time).

You might find the following predicate helpful:

:- dynamic size/1. % needed at beginning of code!
:— import for/3 from basics.
test(Goal,M) :-

N is M//10, % 10 equal intervals

for(I,1,10), % for I=0 to 10

NM is IxN, % the next decile
abolish_all_tables, % clear all tables
retractall(size( )), % clear old size
assert(size(NM)), % set new size for base predicate
cputime(TOa), % find cputime from start

(call(Goal) ,fail;true), Y% do the query, all answers
cputime(Tla),

Timea is T1a-TOa,

writeln([Goal,NM,Timeal), % write out goal, size, and cputime
fail.

And example call:

| 7- test(tc_cycle_1r(0,_),1000000).



Chapter 5

Grammars

In this chapter we will explore how tabling can be used when writing DCG grammars in XSB.
Tabling eliminates redundancy and handles grammars that would infinitely loop in Prolog. This
makes the “parser you get for free” in XSB one that you might well want to use.

5.1 An Expression Grammar

Consider the following expression grammar, expressed as a DCG. This is the “natural” grammar
one would like to write for this langauge.

% file grammar.P
:- table expr/2, term/2.

expr --> expr, [+], term.

expr —--> term.

term --> term, [*], primary.

term --> primary.

primary --> [>(°], expr, [’)’].
primary --> [Int], {integer(Int)}.

This grammar is left-recursive and would cause a problem for Prolog, but with the table declara-
tions, XSB handles it correctly. Notice that we must table expr/2 because the XSB parser adds
2 arguments to the nonterminal symbol expr. (An alternative would be to use the auto_table
directive.) After compiling and loading this program, we can execute it:

| 7- [grammar] .
[Compiling ./grammar]

83
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[grammar compiled, cpu time used: 0.419 seconds]
[grammar loaded]

yes
l 7= eXPI‘([1,+,2;*;3;*,’(’;4,"',5,’)7] > [])-
Removing open tables.

yes
| 7-

Here the system answers “yes” indicating that the string is recognized. (The message “Removing
open tables” is given when a query with no variables evaluates to true. It indicates that once the
first successful execution path is found, computation terminates, and any tables that are not fully
evaluated have been deleted.) This grammar is not only more elegant than the one we wrote in
Prolog for the same langauge, it is more “correct”. What I mean by that is that this grammar
associates “+” and “x” to the left, as is usual, rather than to the right as the did the Prolog
grammar that we gave in an earlier chapter.

So far we’ve only seen DCG’s that represent simple context-free grammars. The DCG repre-
sentation is actually much more powerful and can be used to represent very complicated systems.
As a first example, let’s say we want to implement an evaluator of these integer expressions. We
can add semantic arguments to the nonterminals above to contain the value of the subexpression
recognized. The following grammar does this:

% file grammar.P
:- table expr/3, term/3.

expr(Val) --> expr(Eval), [+], term(Tval), {Val is Eval+Tval}.
expr (Val) --> term(Val).

term(Val) --> term(Tval), [*], primary(Fval), {Val is Tval*Fval}.
term(Val) --> primary(Val).

primary(Val) --> [’ (’], expr(Val), [’)’].

primary(Int) --> [Int], {integer(Int)}.

Recall that the braces are used to indicate that the enclosed calls are calls to Prolog predicates,
not to nonterminals which recognize parts of the input string.

We can compile and run this program to evaluate the expression provided and have it return
its integer value as follows:

| 7- [grammar].

[Compiling ./grammar]

[grammar compiled, cpu time used: 0.75 seconds]
[grammar loaded]
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yes
l 7- eXpr(Va]-, [11+121*131*y,(),41+15,)),] s [])-

Val = 55;

no
| 7-

Notice that the string arguments are added after any explicit arguments. So we wrote what looked
like a procedure definition for expr that had only one argument, but we get a definition that has
3 arguments, and that’s the way we called it at the top-level prompt.

As mentioned, this grammar treats the operators as left associative, which is the usual conven-
tion for arithmetic expressions. While it doesn’t matter semantically for the operations of “+” and
“x” which are associative operators anyway, were we to extend this evaluator to handle “—” or
“/7 (as is very easy), then this correct associativity would be critical.

5.2 Representing the Input String as Facts

In actuality, this way to process grammars with tabling is not as efficient as it might be. The
reason is that the arguments to the tabled nonterminals consist of lists, and so each time a call is
copied into the table, a long list may have to be copied. Also answers consist of tails of the list
corresponding to the input string, and these may be long as well. We can use a slightly different
representation for the input string to avoid this inefficiency.

Instead of representing the input string as a list, we will store it in the database, represent-
ing it by a set of facts. We will think of each word in the input sentence as being numbered,
starting from 1. Then we will store the string as a set of facts of the form, word (n, word), where
word is the n' word in the input string. For example, the string used in the example above,
[1,+,2,%,3,%,>(’,4,+,5,7) ], would be represented by the following facts:

word(1,1).
word(2,+).
word(3,2).
word (4,x*).
word(5,3).
word (6,*) .
word (7,’ (°).
word(8,4).
word(9,+).
word (10,5).
word(11,°)°).



CHAPTER 5. GRAMMARS 86

Recall that we said that the DCG translation translates lists in the body of DCG rules to calls to
the predicate ’C’/3, which is defined to process the list input. But we can redefine this predicate
to look at the word/2 predicate as follows:

’C°(I,W,I1) :- word(I,W), Il is I+1.

(We could alternatively use word/3 facts and explicitly store the two consecutive integers, so no
computation would be involved.) With this definition of *C’/3, we can use the same DCG for
parsing but now, rather than using lists to represent positions in the input, the system uses integers.

% grammar.P
:- table expr/3, term/3.
’C°(I,W,I1) :- word(I,wW), I1 is I+1.

eval_string(String,Val) :-
retractall(word(_,_)),
assert_words(String,1,N),
abolish_all_tables,
expr(Val,1,N).

assert_words([],N,N).
assert_words([Word|Words] ,N,M) :-
assert (word(N,Word)), N1 is N+1, assert_words(Words,N1,M).

expr (Val) --> expr(Eval), [+], term(Tval), {Val is Eval+Tval}.
expr(Val) --> term(Val).

term(Val) --> term(Tval), [*], primary(Fval), {Val is Tval*Fvall}.
term(Val) --> primary(Val).

primary(Val) --> [’ (’], expr(Val), [’)’].

primary(Int) --> [Int], {integer(Int)}.

Here we’ve defined a predicate eval_string to take an input string as a list, assert it into the
database as a set of word/2 facts and then to call expr to parse and evaluate it. Notice that we
need both to retract any facts previously stored for word/2 and to abolish any tables that were
created during previous evaluations of strings. This is because old tables are no longer valid, since
the new input string changes the meanings of the integers that represent positions in the input
string.

We can compile and call this predicate as follows:
| 7- [grammar] .

[Compiling ./grammar]
++Warning: Redefining the standard predicate: C / 3
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[grammar compiled, cpu time used: 1.069 seconds]
[grammar loaded]

yes
| ?- eval_string([1,+,2,%,3,%,’(’,4,+,5,7)’],V).

V = b55;

no
| ?-

The warning is to alert the user to the fact that a standard predicate is being redefined. In this
case, that is exactly what we want to do, and so we can safely ignore the warning.

5.3 Mixing Tabled and Prolog Evaluation

We can extend this evaluator in the following interesting way. Say we want to add exponentiation.
We introduce a new nonterminal, factor, for handling exponentiation and make it right recursive,
since exponentiation is right associative.

:- table expr/3, term/3.

expr(Val) --> expr(Eval), [+], term(Tval), {Val is Eval+Tval}.
expr (Val) --> term(Val).
term(Val) --> term(Tval), [*], factor(Fval), {Val is TvalxFval}.
term(Val) --> factor(Val).
factor(Val) --> primary(Num), ["], factor(Exp),
{Val is floor(exp(log(Num)*Exp)+0.5)}.
factor(Val) --> primary(Val).
primary(Val) --> [>(’], expr(Val), [’)’].
primary(Int) --> [Int], {integer(Int)}.

However, we don’t table the new nonterminal. Prolog’s evaluation strategy handles right recursion
in grammars finitely and efficiently. In fact, Prolog has linear complexity for a simple right-recursive
grammar, but with tabling it would be quadratic. Thus an advantage of XSB is that it allows tabled
and nontabled predicates to be freely intermixed, so that the programmer can choose the strategy
that is most efficient for the situation at hand.
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5.4 So What Kind of Parser is it?

A pure DCG, one without extra arguments (and without look-ahead symbols which we haven’t
discussed at all), represents a context-free grammar, and the Prolog and XSB engines provide
recognizers for it. A context-free recognizer is a program that, given a context-free grammar and
an input string, responds “yes” or “no” according to whether the input string is in or is not in the
language of the given grammar.

We noted that the recognizer that “you get for free” with Prolog is a recursive descent recognizer.
The recognizer “you get for free” with XSB and tabling is a variant of Earley’s algorithm, or an
active chart recognition algorithm (ref Peter Norvig and B. Sheil.)

The worst-case complexity of the recognizer under XSB (with all recursive nonterminals tabled)
is O(n**+1) where n is the length of the input string and & is the maximum number of nonterminals
and terminals on the right-hand-side of any rule. A little thought shows that this is consistent with
the discussion of the complexity of Datalog programs under XSB in Chapter 77. This is an example
of a situation in which tabling turns an otherwise exponential algorithm (recursive descent) into a
polynomial one (active chart recognition.)

Any grammar can be changed to another grammar that represents the same language but
has two (or fewer) nonterminal symbols on the right-hand-side of every rule. This is the so-called
Chomsky normal form. So if we transform a grammar into this form, then its worst-case complexity

will be O(n?).

In fact, the folding and tabling that is done automatically by the XSB compiler when the
:— suppl_table. and :- edb word/2. directives are given results in exactly the transformation
necessary to transform a grammar to Chomsky normal form. So giving those directives guarantee
the best worst-case complexity.

For unambiguous grammars, the complexity is actually O(n?). I find this an intriguing situation,
which is particularly pleasant, since it is undecidable whether a context-free grammar is or is not
ambiguous. So it will be undecidable to determine what the actual complexity of the algorithm
is, given a grammar. But, no problem; the algorithm will automatically tune itself to the data
(grammar in this case) to be more efficient in the unambiguous case.

These complexity results are very good and make the parser that “you get for free” with XSB
quite a desirable parser.

(DSW: Describe the CKY algorithm, giving an example, and then connect that to evaluating
DCG’s with tabling. Tabling fills the same entries in the CKY table, but does it in a top-down
way, on demand. Try to explain it.)
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5.5 Building Parse Trees

The desirable complexity results of the previous section hold for recognition of context-free lan-
guages. But often it is the case that one wants, given a string in the language, to construct the
parse tree(s) for it. An easy way to do this is to add an argument to each nonterminal to contain
the parse tree, and then add the necessary code to each rule to construct the appropriate tree. For
example, the following rule from our expression example:

expr (Val) --> expr(Eval), [+], term(Tval), {Val is Eval+Tval}.
could become:
expr(Val,+(E1,T1)) --> expr(Eval,E1l), [+], term(Tval,T1), {Val is Eval+Tval}.

We’ve added a second argument and in it constructed the parse tree for the entire expression phrase
given the parse trees for the component expression and term phrases. All the other rules would be
extended accordingly.

This is very easy to do and in almost all cases is the best way to construct the parse tree.
However, from a complexity standpoint, it has certain drawbacks. It may cause us to lose the
polynomial complexity we had for the recognition problem. For example, consider the following
grammar:

:— auto_table.

s -—> b, [c]
b --> b,b.
b ——> [a].

Here nonterminal s generates a list of “a’s followed by a single “c”. If we compile this grammar
with XSB, using the auto_table directive, we get a program that will recognize strings correctly
in O(n?®) time. But if we add parameters to construct the parse tree, thusly:

:— auto_table.
s(s1(B,c)) --> b(B), [c].

b(b1(B1,B2)) --> b(B1), b(B2).
b(b2(a)) --> [a].

it may take exponential time. Now the string a”c has exponentially many parses (all bracketings of
the length n string of “a”s), so it will clearly take exponential time to produce them all. This is not
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so much of a problem; if there are exponentially many, there’s no way to produce them all without
taking exponential time. However, if we try to recognize the string a”, this will take exponential
time to report failure. This is because the system will construct all the (exponentially many) initial
parses from the nonterminal “b” and then each time fail when it doesn’t find a terminating “c” in
the input string.

One might think that we could easily just maintain two versions of the grammar: one with no
parameters to do recognition, and one with a parse-tree parameter. Then we’d first recognize and if
there were no parses, we’d simply report failure, and if there were parses, we’d reprocess the input
string, this time using the parsing version of the grammar. But this doesn’t always work either.
For example, say we added a few rules to our grammar above to obtain:

:— auto_table.

s -=> b, [c].
s -—> g, [d].
b --> b,b.

b --> [a].

g ——> g, [al.
g -—> [a].

Here, the input string of [a,a,a,a,a,a,d] has only one parse, but naively parsing it with the
parse-annotated grammar will construct exponentially many initial segments of parses, which come
from the first rule and the rules for the nonterminal “b”. So if we are serious about this problem,
we must be a little more sophisticated.

We will use a representation of parse trees that uses an abstraction. An abstraction will be a
term of the form {X:p(...,X,...)} and is intended to mean that X can take on values that would
be assigned to X by calling p(...,X,...). We will construct such abstraction terms to represent
our parse trees. Consider the following example that adds a parse tree to the grammar above.

:- table b/3,g/3,s/3,b_abs/3,g_abs/3.
s(s(P,c)) -—> b_abs(P), [c].
s(s(P,d)) -—> g_abs(P), [d].

b(b(P1,P2)) -—> b_abs(P1), b_abs(P2).
b(a) --> [a].

g(g(P),s80,8) :-

g_abs(P,S0,S1), ’C’(S1,a,S).
g(a,s0,8) :-

’C’(80,a,S).
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b_abs({X:b(X,80,8)},30,3) :- b(_,S0,3).

g_abs ({X:g(X,S0,8)},80,8) :- g(_,S0,S9).

For each nonterminal symbol that appears in the body of a rule, such as b, we add a new nonterminal
symbol, such as b_abs, that calls b but returns an abstraction for the parse argument. And every
nonterminal in the body of a rule is replaced by a call to its abstraction version. We here have tabled
all the predicates to minimize redundancy. Now when this program is evalated, each nonterminal
constructs a representation for its parse term using abstractions for its subterms. So now multiple
different parses for a substring do not cause multiple returned answers; only one answer is returned,
which is an abstraction that represents (and can be used to generate) the multiply answers when
desired.

For example, consider the following call, after loading the above grammar:

l ?_ S(Py [a,a,a,a,c] 3 [])-
P = s({_h324 : b(_h324,[a,a,a,a,c],[c])},c);

no
| ?-

The parse is represented as a term whose main functor symbol is s/2 with first argument an
abstraction and second argument as c. We can get the actual terms for that abstraction by
unfolding the abstraction by calling the indicated subgoal.

The following predicate, ext_term/2, can be used to do this unfolding and generate the parses:

%% ext_term(+AbsTerm,-ConcreteTerm)

ext_term(AT,AT) :- var(AT), !.
ext_term({X:R},T) :- !,
call(R),

ext_term(X,T).

ext_term(AT,T) :-

AT =.. [FlAs],
ext_term_list(As,Ts),
T =.. [FITs].

ext_term_list([],[]).
ext_term_list([A|As],[TITs]) :-
ext_term(A,T),
ext_term_list(As,Ts).
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With the definition, we get the following results:

| ?- s(P,[a,a,a,a,c],[]),ext_term(P,T).
T = s(b(a,b(a,bla,a))),c);
T = s(b(a,b(b(a,a),a)),c);

T = s(b(b(a,a),bl(a,a)),c);

av)
|

T = s(b(b(a,b(a,a)),a),c);

av)
|

T = é&ﬁ(b(b(a,a),a),a),c);

no
| ?-

(I've elided the answers for the variable P, since they are large and not of interest here. Also, this
example goes back to the standard DCG input representation as a list. We would normally want
to use the word/3 representation for efficiency.)

To summarize, this abstraction representation allows us to delay the full construction of each
parse tree until the end of the string parsing, instead representing the parses by “pointers” into
the tables. The abstractions can be thought of as “pointers” to terms in the tables that are later
retrieved. This avoids the exponential explosion of parse trees since a single “pointer” can point to
a set of subtrees.

Thinking a little more generally, we can think of this as a way to represent the set of proofs of
a program, which avoids the exponential explosion of multiple proofs.

5.6 Computing First Sets of Grammars

The previous examples show that XSB can process grammars efficiently, using them to determine
language membership and the structure of strings. But XSB can also do other kinds of grammar
processing. In the following, we use XSB to compute the FIRST sets of a grammar.

FIRST (), for any string of terminals and nonterminals «, is defined to be the set of terminals
that begin strings derived from «, and if o derives the empty string then the empty string is also
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in FIRST (o). FIRSTy(«) is the generalization to length k strings of terminals that are prefixes
of strings derived from «.

We will assume that a grammar is stored in a predicate ==>/2, with the head of a rule as an
atomic symbol and the body of a rule as a list of symbols. Nonterminals are assumed to be those
symbols for which there is at least one rule with it as its head. (==>/2 is declared as an infix
operator.)

The predicate first (SF,K,L) is true if the list SF of grammar symbols derives a string whose
first K terminal symbols are L.

% The definition of FIRST:
% first(SentForm,K,FirstlList) computes firsts for a context-free grammar.
:— table first/3.
first(_,0,[1).
first([1,K,[1) :- K>0.
first([SIR],K,L) :- K>0,
(S ==> B),
first(B,K,L1),
length(L1,K1),
Kr is K - K1,
first(R,Kr,L2),
append(L1,L2,L).
first ([SIR],K, [SIL]) :- K>O0,
\+ (8 ==> ), % S is a terminal
K1 is K-1,
first(R,K1,L).

The first rule says that the empty string is in FIRSTy(«) for any a. The second rule says that
the empty string is in FIRSTy(«) for a being the empty sequence of grammar symbols. The third
rule handles the case in which the sequence of grammar rules begins with a nonterminal, S. It takes
a rule beginning with S and gets a string L1 (of length K1 < K) generated by the body of that rule.
It gets the remaining K—K1 symbols from the rest of the list of input grammar symbols. And the
fourth rule handles terminal symbols.

Consider the following example of computing the first sets for the expression grammar:

/** Y ,Grammar :
==> [e,+,t].
==> [e,-,t].
==> [t].

[t,*,f].

=> [t,/,f].

==> [f].

t ct & O © O
1]
I
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f ==> [int].
f==>[C,e,’)’].
K%k /

| 7- [firsts].

[Compiling .\firsts]

[firsts compiled, cpu time used: 0.0150 seconds]
[firsts loaded]

yes
| ?- first([e]l,1,F).
F=1[1;

F = [int];

no

| 7- first([e]l,2,F).
F=1[(d;

F = [(,int];

F = [int];

F = [int,+];

F = [int,*];

F = [int,/];

F = [int,-];

no

| 7-

This is a relatively simple declarative (and constructive) definition of FFIRST}). But without the
table declaration it would not run for many grammars. Any left-recursive grammar would cause
this definition to loop in Prolog.

5.7 Linear Parsing of LL(k) and LR (k) Grammars

(This section involves a more advanced topic in XSB programming, metainterpretation. It may be
helpful to read the later section on metainterpreters if the going gets tough here.)

As discussed above, parsing context-free grammars with tabling results in an Earley-type parser.
This is the parser we get when we write DCGs. We can also write an XSB program that takes
a grammar as input (defined in a database predicate as in the example of first/3) and a string
(defined by the database word/3 predicate) and succeeds if the grammar accepts the string. With
such processing we can compute and use the FIRST sets to make the grammar processing more
deterministic. This is similar to what is done in LL(k) and LR (k) parsing, but there the emphasis
is on compile-time analysis and complete determinacy. Here the approach is more interpretive and
supports nondeterminacy. However, if the grammars are indeed of the appropriate form (LL(k) or
LR(k)), the corresponding interpreters presented here will have linear complexity.
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It is very easy to write a simple context-free grammar parser in XSB. Again, we assume that
the grammar is stored in facts of the form NT ==> Body where NT is a nonterminal symbol and
Body is a list of terminals and nonterminals.

:- table parse/3.

% parse(Sym,S0,S) if symbol Sym generates the string from SO to S.
parse(Sym,S0,S) :-

word (S0, Sym,S) .
parse(Sym,S0,S) :-

(Sym ==> Body),

parseSF (Body,S0,S) .

% parseSF(SF,S0,S) if sentential form SF generates the string from SO to S.
parseSF([],S,S).
parseSF([Sym|Syms],S0,S8) :-

parse(Sym,S0,S81),

parseSF(Syms,S1,S).

The predicate parse/3 recognizes strings generated by a single grammar symbol; the first clause
recognizes terminal symbols directly and the second clause uses parseSF/3 to recognize strings
generated by the sentential form that makes up the body of a rule for a nonterminal. parseSF/3
simply maps parse/3 across the sequence of grammar symbols in its sentential form argument.

Were we not to add the table declaration, we would get a recursive descent recognizer. But with
the table declaration, we get the Earley-type recognizer of XSB as described above. The tabling
reflects right through the programmed recognizer.

Next we add look-ahead to this recognizer by computing FIRST sets and making calls only
when the next symbols are in the first set of the sentential form to be processed. This will give
us an LL(k)-like recognizer. Hovever, the form of FIRST we need here is slightly different from the
one above. Here we want to include the context in which a First set is computed. For example,
we may want to compute the FIRST_2 set of a symbol N, but N only generates one symbol. The
definition of first above would return a list of length one for that symbol. Here we want to take
into account the context in which N is used. For example, we may know that in the current context
N is immediately followed by another nonterminal M, and we know the FIRST of M. Then we can
compute the FIRST_2 of N in the following context of M by extending out the one symbol in first
of N with symbols in FIRST of M.

The following definition of firstK/3 computes such first sets.

:— table firstK/3.

% firstK(+SF,+Follow,-First), where K = length(Follow)
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firstK([],Follow,Follow).
firstK([Sym|SF],Follow,First) :-
firstK(SF,Follow,SymFollow),
((Sym ==> Body)
-> firstK(Body,SymFollow,First)
; First = [Sym|FirstTail]
append(FirstTail, [_],SymFollow),

The predicate firstK/3 takes a sentential form SF, a follow string Follow, and returns in First
a first string of SF in the context of the follow string. The value of k£ is taken to be the length of
the list Follow; this will be the length of the look-ahead.

We can now extend our parser to have a top-down look-ahead component, similar to an LL(k)
recognizer:

TEST THIS SUCKER!
:- table parselL/4. % without this, it is an LL(k)-like parser,
% but with it, what is it??7?

% parseLL(Sym,Follow,S0,S) if symbol Sym generates the string from SO to S.
parseLL(Sym,Follow,S0,S) :-
(Sym ==> Body)
-> firstK(Body,Follow,First),
next_str(First,S0), % do the look-ahead, continuing only if 0K
parseLLSF (Body,Follow,S0,S)
;  word(S0,Sym,S).

% parseLLSF(SF,Follow,S0,S) if sentential form SF generates the string from SO to S.
parseLLSF([],_Follow,S,S).
parseLLSF([Sym|Syms] ,Follow,S0,S) :-

firstK(Syms,Follow,SymFollow),

parseLL(Sym,SymFollow,S0,S1),

parseLLSF(Syms,Follow,S1,8).

next_str([],_).
next_str([’$’1_1,8) :- \+ word(S,_,_). % $end of string
next_str([Sym|Syms],S) :- word(S,Sym,S1),next_str(Syms,S1).

The predicate parseLL/4 recognizes a string generated by a grammar symbol, using lookahead.
The condition tests whether Sym is a nonterminal, and if it is and can be rewritten as Body, it
checks to see whether the next symbols in the input string belong to the first set of the body of
that rule. If not, it needn’t process that rule because it cannot succeed. For an LL(k) grammar,
only one rule will ever apply; the others all will be filtered out by this lookahead. So in this case a
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rule is never tried unless it is the only rule that might lead to a parse. If the symbol is a terminal,
it simply checks to see whether the symbol matches the input.

parseLLSF/4 maps parseLL/4 across a sequence of grammar symbols in a sentential form. It
uses firstK/3 to compute the follow strings of a symbol, which are needed in parseLL to compute
the first strings in the correct context.

In this LL(k)-like parser, we tested that the next symbols were in the first set just before
we called parseLLSF. We could also check the lookahead just before returning. This gives us an
LR(k)-like parser, as follows:

% parselLR with tabling to get an lr(k)-like algorithm.

:- table parse/4.

parseLR(Sym,Follow,Str0,Str) :-
word(Str0,Sym,Str),
next_str(Follow,Str).

parseLR(Sym,Follow,Str0,Str) :-
(Sym ==> RB),
parseLRSF(RB,Follow,Str0,Str) .

parseLRSF([],Follow,Str,Str) :-
next_str(Follow,Str).

parseLRSF([Sym|SF] ,Follow,Str0,Str) :-
firstK(SF,Follow,SymFollow),
parselLR(Sym,SymFollow,Str0,Strl),
parseLRSF(SF,Follow,Strl,Str).

For this parser, we compute a follow string for a sentential form, and only return from parsing
that sentential form if the next input symbols match that follow string. For an LR(k) grammar, the
parser will not fail back over a successful return (unless the entire string is rejected.) This allows
the parser to work in linear time.

The above program was written as a Prolog program, but we can write the identical program
as a DCG and have the DCG transformation put in the string variables, as follows:

:- table parselR/4.
parseLR(Sym,Follow) --> [Sym], look(Follow).
parseLR(Sym,Follow) -->

{(Sym ==> RHS)},

parseLRSF (RHS,Follow) .

parseLRSF([],Follow) --> look(Follow).
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parseLRSF([Sym|SF],Follow) -->
{firstK(SF,Follow,SymFollow)},
parselLR(Sym, SymFollow),
parseLRSF(SF,Follow) .

look([1) --> [1.
look ([Word|Words]), [Word] --> [Word], look(Words).

This recognizer differs from an LR(k) recognizer in that it computes the look-ahead strings as
needed. Also it processes each look-ahead string separately; i.e., Follow is a single string, not a set
of strings. In an LR(k) recognizer, the lookahead tables are computed once and stored.

5.8 Parsing of Context Sensitive Grammars

Another more powerful form of grammars is the class of context sensitive grammars. They contain
rules that have strings on both the left-hand-side and the right-hand-side, as opposed to context-
free rules which require a single symbol on the left-hand-side. A constraint on context sensitive
rules is that the length of the string of the left-hand side is at least one, and is less than or equal
to the length of the string on the right-hand side. (Without this constraint, one gets full Turing
computability and the recognition problem is undecidable.) As a simple example, consider the
following context sensitive grammar:

1. S --> aSBC
2. S --> aBC
3. CB --> BC
4. aB --> ab
5. bB --> bb
6. bC --> bc
7. cC ——> cc

This grammar generates all strings consisting of a nonempty sequence of a’s followed by the same
number of b’s followed by the same number of ¢’s. Consider the following derivation:

S

aSBC rule 1
aaBCBC rule 2
aaBBCC rule 3
aabBCC rule 4
aabbCC rule 5
aabbcC rule 6
aabbcc rule 7
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Even though in this simple example the rules fire in order, it’s not difficult to see that rule 3 will
have to fire enough times to move all the C’s to the right over the B’s, and then rules 4-7 will fire
enough times to turn all the nonterminals into terminals.

The question now is how to represent this in XSB. We can think of the XSB DCG rules as
running on a graph that starts as a linear chain representing the input string. Then each DCG
context-free rule tells how we can add edges to that linear graph. For example, a DCG rule
a --> b,c. tells us that if there is an arc from node X to node Y labeled by b and also an arc
from node Y to node Z labeled by ¢, then we should add an arc from node X to node Z labeled by
a. So the DCG rule in Prolog, a(S0,S8) :- b(S0,S81),c(81,S) ., read right-to-left, says explicitly
and directly that if there is an arc from SO to S1 labeled b and an arc from S1 to S labeled ¢, then
there is an arc from SO to S labeled by a. We can think of DCG rules as rules that add labeled
arcs to graphs. This is exactly the way that chart-parsing is understood [ref].

Now we can extend this way of understanding logic grammars to context-sensitive rules. A
context-sensitive rule, with say two symbols on the left-hand-side, can be seen also as a graph-
generating rule, but in this case it must introduce a new node as well as new arcs. So for example,
a rule such as AB --> CD, when it sees two adjacent edges labeled C and D, should introduce a
new node and connect it with the first node of the C-arc labeling it A, and also connect it to the
final node of the D-arc, labeling that new arc with B. So we add two new XSB rules for a context
sensitive rule such as AB --> CD, as follows:

a(s0,p1(s80,8)) :- c(80,S1), 4(S1,9).
b(p1(80,8),S) :- c(80,S1), d(S1,9).

which explicitly add the arcs and nodes. We have to introduce a new name for the new node. We
choose to identify the new nodes by using a functor symbol that uniquely determines the rule and
left-hand internal position, and pairing it with the names of the end points of the base arc. So in
this case, pl uniquely identifies the (only) internal position in the left-hand-side of this rule. Other
rules, and positions, would have different functors to identify them uniquely.

Now we can represent the context sensitive grammar above using the following XSB rules:

:— auto_table.

s(S0,8) :- word(S0O,a,S1),s(S1,S82),b(S2,S83),c(S3,S).
s(S80,8) :- word(s0O0,a,S1),b(S1,82),c(S2,8).

c(80,p0(S0,8)) :- b(S0,S1),c(81,S).
b(p0(S0,S),S) :- b(S0,81),c(S1,9).

word(80,a,p1(80,8)) :- word(S0,a,S1),word(S1,b,S).
b(p1(80,8),S) :- word(S0,a,S1),word(S1,b,S).
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word (80,b,p2(80,8)) :- word(SO,b,S1),word(S1,Db,S).
b(p2(80,8),S) :- word(S0,b,S1),word(S1,b,S).

word (S0,b,p3(80,8)) :- word(SO,b,S1),word(S1,c,S).
c(p3(80,8),8) :- word(SO0,b,S1),word(S1,c,S).

word (80, c,p4(80,8)) :- word(SO,c,S1),word(S1,c,S).
c(p4(S0,8),8) :- word(S0,c,S1),word(S1,c,S).

% define word/3 using base word (separation necessary)
word(X,Y,Z) :- base_word(X,Y,Z).

% parse a string... assert words first, then call sentence symbol
parse(String) :-

abolish_all_tables,

retractall(base_word(_,_,_)),

assertWordList (String,0,Len),

s(0,Len).

% assert the list of words.

assertWordList ([1,N,N).

assertWordList ([Sym|Syms],N,M) :-
N1 is N+1,
assert(base_word(N,Sym,N1)),
assertWordList (Syms,N1,M).

We can run this grammar to parse input strings as follows:

warren), xsb

XSB Version 1.7.2 (7/10/97)
[Sun, optimal mode]

| 77— [csgram].

[csgram loaded]

yes
| 7- parse([a,a,b,b,c,c]).

yes
| 7- parse([a,a,a,b,b,c,c,c]).

no
| 7- parse([a,a,a,a,b,b,b,b,c,c,c,c]).

yes
| 7=
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We factored the above program, added more tabling declarations and introduced some write
statements to allow us to see how this context-sensitive recognizer actually processes strings. Here
follows the log for processing the string ’aabbcc’

| 7- parse([a,a,b,b,c,c]).

1. [cC-->cc,4,p4,6]

2. [bC-->bc,3,p3,p4(4,6)]

3. [bC-->bc,3,p3,5]

4. [bB-->bb,2,p2,p3(3,5)]

5. [bB-->bb,2,p2,p3(3,p4(4,6))]

6. [bB-->bb,2,p2,4]

7. [aB-->ab,1,p1,p2(2,4)]

8. [aB-->ab,1,p1,p2(2,p3(3,p4(4,6)))]

9. [aB-—>ab,1,pl,p2(2,p3(3,5))]

10. [aB-->ab,1,p1,3]

11. [aB-->ab,1,p1,3]

12. [bC-->bc,3,p3,5]

13. [bB-->bb,2,p2,p3(3,5)]

14. [aB-->ab,1,p1,p2(2,p3(3,5))]

15. [CB-->BC,p2(2,p3(3,5)),p0,5]

16. [S-->aBC,1,p1(1,p2(2,p3(3,5))),p2(2,p3(3,5)),p0(p2(2,p3(3,5)),5)]
17. [CB-->BC,p2(2,p3(3,5)),p0,5]

18. [cC-->cc,4,p4,6]

19. [bC-->bc,3,p3,p4(4,6)]

20. [bB-->bb,2,p2,p3(3,p4(4,6))]

21. [aB-->ab,1,pl,p2(2,p3(3,p4(4,6)))]

22. [CB-->BC,p2(2,p3(3,p4(4,6))),p0,p4(4,6)]

23. [S-->aBC,1,p1(1,p2(2,p3(3,p4(4,6)))),p2(2,p3(3,p4(4,6))),p0(p2(2,p3(3,p4(4,6))),p4(4,6)
24. [CB-->BC,p2(2,p3(3,p4(4,6))),p0,p4(4,6)]

25. [S-->aSBC,0,1,p0(p2(2,p3(3,p4(4,6))),p4(4,6)),p4(4,6),6]

yes
| 7-

The writes were added where answers are returned, the order is essentially bottom-up. Each log
item includes first the grammar rule that applies, then the inital node it starts from, the structure
symbols of the new nodes it generates, and then the node it terminates on. While this is rather
complicated, we can extract a successful derivation that uses items: 25, 23, 21, 22, 20, 19, 18.

So now we have generalized DCG’s to include processing of context-sensitive grammars and
languages. The builtin DCG notation doesn’t support context sensitive languages, but we can
write the necessary rules directly as XSB rules, as we did above. It is interesting to note that
the XSB rules we generate for a single context-sensitive rule all have the same body, and that the
logical implications
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p<-r&s.
q<-ré&s.

are logically equivalent to the single implication:
p&q<-1&s.

So it would be very natural to extend the Prolog notation to support “multi-headed” rules, which
would be compiled to a set of “single-headed”, i.e., regular Prolog, rules. Were we to do this, we
could write the context-sensitive rule:

AB --> CD
as the single (multi-headed) XSB rule:
a(S0,p1(S0,8)), b(p1(80,8),8) :- c(S0,S1), d(S1,S).

which looks very much like the original context sensitive rule. In fact, we can see rule as the
formula:

for-all([S0,8],
(there-is X (a(S80,X),b(X,9))) —>
there-is(S1,c(S0,S81),d(S81,S8)))

where the term p1(S0,S) is a Skolem term introduced to eliminate the existential quantifier over
the head of the rule.

This suggests how we might want to extend the DCG notation to support context-sensitive
rules through the support of multi-headed rules.

5.9 Substring Matching

(NOTE: Redo this as follows:
match(Pattern,Left ToSee,StringLeft) :-
end)

Consider the problem of finding whether a given string appears as a contiguous substring in
another given string. This is not quite a grammar problem but it does involve strings. We will
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assume that the strings (called Pat and Str, respectively) are represented as Prolog lists. It is very
easy in Prolog to write a simple predicate to succeed if Pat appears as a (contiguous) substring in
Str and fail if not:

:- import append/3 from basics.

match(Pat,Str) :-
append(_Pre,StrTail,Str),
append(Pat,_Suff,StrTail)

This simply breaks Str into an ignored prefix and tail, and then sees if Pat is a prefix of that
tail.

This straightforward algorithm has complexity of O(n *m) where n is the length of Str and m
is the length of Pat. It is known that there is an algorithm for this problem that is O(n) (when n
is much larger than m, as would be the usual case.) We can derive that algorithm by creating a
slightly more complicated version of match and then using tabling appropriately.

So instead of writing the predicate as match(Pat,Str), let’s write it asmatch(Pat,StrPrefix,StrSuffix),
where we split the subject string into two pieces: a prefix and a suffix. We will assume that the
length of StrPrefix is less than the length of Pat.

The idea is that we will match Pat against the longest tail of StrPrefix, returning the prefix
of Pat that matched and the suffix that was left over. Then we’ll see if the suffix that was left
over is a prefix of StrSuffix, returning the sequence that matches, plus the symbol that causes
the mismatch if it doesn’t match the entire pattern suffix. Now in case it does not match the
pattern suffix entirely, we need to delete the first symbol of the entire subject string (StrPrefix
concatenated with StrSuffix.) We can construct a representation for that string using the pieces
we’ve collected in our previous matching. The program is:

:- import append/3 from basics.

match(Pat,StrPre,StrSuff) :-
match_suffix_with_remainder (Pat,StrPre,PatMatched,PatlLeft),
match_to_mismatch(PatLeft,StrSuff,PatWithMismatch,StrAfterMismatch,Matched),
(Matched == match
-> append(PatMatched,PatWithMismatch, [_|NewStrPrefix]),
match(Pat,NewStrPrefix,StrAfterMismatch)
5 true

So match_suffix_with_remainder/4 matches the (longer) Pat with some suffix of StrPre and
returns the prefix of Pat that matched and the suffix that was left over. Then match_to_mismatch
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takes the unmatched tail of the Pat and matches it against StrSuff and returns in PatWithMismatch
the part of the pattern suffix that matched including the mismatching symbol as its last symbol,
and returns the string after that mismatch in StrAfterMismatch. If the entire PatLeft matched,
then the flag Matched is returned as match, and we’re done, having found a match. Otherwise,
we can append the PatMatched and PatWithMismatch and delete its head to get the prefix of the
subject string we should next try to match. And StrAfterMismatch is the suffix of that string. So
that’s what we call match/3 with in the recursive call. Notice that the length of NewStrPrefix is
less than the length of Pat, since PatMatched concatenated with PatWithMismatch is at most the
length of Pat, and NewStrPrefix is one symbol shorter.

The helper predicates are defined as:

match_suffix_with_remainder (Pat,SubPat,PatPrefix,PatSuffix) :-
(append (SubPat ,PatSuffix,Pat)
-> PatPrefix = SubPat
; SubPat = [_|SubPatil],
match_suffix_with_remainder (Pat,SubPatl,PatPrefix,PatSuffix)

match_to_mismatch([],Str,[],Str,match).
match_to_mismatch([X|Pat], [Y|Str], [Y|PatWithMismatch] ,StrAfterMismatch,M) :-
X ==
-> match_to_mismatch(Pat,Str,PatWithMismatch,StrAfterMismatch,M)
; PatWithMismatch = [],
StrAfterMismatch = Str,
M = mismatch

match([],_ ) :- I.
match(Pat, [X|Str]) :-
match(Pat, [X],Str).

The goal here was to come up with an algorithm that was O(n) for subject string of length n.
The main work is done in match_to_mismatch/5 since that is where new symbols of the subject
string are initially seen. If we delay the append until we’ve entered match, we can get the append
and match_suffix_with_remainder together. So we change match/3 to match/4 and pass in the
two pieces that will used to make up the string prefix:

:- import append/3 from basics.

match(Pat,StrPrel,StrPre2, ,StrSuff) :-
append (StrPrel,StrPre2, [_|StrPrel),
match_suffix_with_remainder (Pat,StrPre,PatMatched,PatlLeft),
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match_to_mismatch(PatLeft,StrSuff,PatWithMismatch,StrAfterMismatch,Matched),
(Matched == match

-> match(Pat,PatMatched,PatWithMismatch,StrAfterMismatch)

5 true

).

And now we can factor out the append and match_suffix_with_remainder to form a single
call:

:— import append/3 from basics.

match(Pat,StrPrel,StrPre2, ,StrSuff) :-
app_match_suffix_with_remainder(Pat,StrPrel,StrPre2,PatMatched,PatlLeft),
match_to_mismatch(PatLeft,StrSuff,PatWithMismatch,StrAfterMismatch,Matched),
(Matched == match
-> match(Pat,PatMatched,PatWithMismatch,StrAfterMismatch)
5 true

).

:—- table app_match_suffix_with_remainder/5.
app_match_suffix_with_remainder(Pat,StrPrel,StrPre2,PatMatched,PatLeft) :-
append (StrPrel,StrPre2, [_|StrPre]),
match_suffix_with_remainder (Pat,StrPre,PatMatched,PatLeft).

And we table that new predicate. Consider the possible arguments passed to app_match_suffix_with_reme
Pat is always the same, and the concatenation of StrPrel with StrPre2 is a proper prefix of Pat
followed by a single symbol. So the number of calls depends only on m, the length of the pattern,
and on the number of different symbols in the alphabet, but not on n, the length of the subject
string. So if the table lookup can be done in constant time, then we have an O(n) algorithm.

If this actual program is run with XSB, the table lookup time will be O(m) since XSB will
compare the entire strings. But by changing the representation of the strings so that the arguments
are indexes into a string stored in the database, as we did for grammars, this can be made constant.
Exercise for the reader....

5.10 Exercises

1. (Is this exercise appropriate here? If I write a chapter on Abstract Interpretation, maybe
move there and add an exercise on Al).

Write a XSB program to parse a simple programming procedural language and construct an
abstract syntax tree for it. The syntax is taken from the Modula-3 programming language,
but greatly simplified.
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The grammar is following. (The empty string is indicated by e, for epsilon; — indicates
alternative rules (or), and parentheses indicate grouping except when quoted in which case
they indicate tokens):

module ::= MODULE identifier ; block identifier .
block ::= declaration_sequence block_body
block_body ::= END | BEGIN statement_sequence END
declaration_sequence ::= declaration_sequence declaration | e
declaration ::= VAR variable_declaration_list ;
variable_declaration_list ::= variable_declaration
(e | ; variable_declaration_list)
variable_declaration ::= identifier_list : type
identifier_list ::= identifier (e | , identifier_list)
statement_sequence ::= statement statement_sequence | e
statement ::= assignment_statement ; | if_statement ; |
while_statement ; | print_statement ;

assignment_statement ::= identifier := expression
if_statement ::= IF expression THEN statement_sequence

ELSE statement_sequence END
while_statement ::= WHILE expression DO statement_sequence END
print_statement ::= PRINT ’(’ expression ’)’
type ::= INT
expression ::= simple_expression relop simple_expression | simple_expression
relop ::=< | > | =
simple_expression ::= simple_expression addop term | term
addop ::= + | -
term ::= term mulop primary | primary
mulop ::= * | /
primary ::= identifier | integer | ’(° simple_expression ’)’

You will be provided a scanner in file scanner.P, which will read a source file containing a
program, and produce a set of token facts that can be processed by your DCG grammar.
The scanner will return keywords directly as tokens; identifiers as terms ident(IdentName);
integers as int(IntegerVal); and special characters as themselves as single tokens. The tokens
will be asserted as word/3 facts, and you can use your DCG to process them, as indicated in
parse_file/2 below.

Your grammar must recognize all programs according to this grammar and, for each recog-
nized program, produce an abstract syntax tree (AST) for that program. The AST must
have the following form:

(a) Expressions should have operators as interior nodes (named by the operator symbol)
and have as children the ASTs for their operands. Identifiers should be ident(Identifier)
and integers int(Integer).

(b) An assignment statement AST should have the form assign(Var,ExprAST); an if-then-
else statement AST should have the form if(ExprAST,ThenStmtAST, ElseStmtAST);
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a while statement AST should have the form while(ExprAST,DoStmtAST); a print
statement AST should have the form print(ExprAST).

(c) A statement sequence AST should be a list of statement ASTs.
(d) An identifier list AST should be a list of identifiers.

(e) A variable declaration is an IdentifierListAST, as is a variable declaration list; as is a
declaration; as is a declaration sequence. (Since the langauge has only INT variables,
type indications are unnecessary; we need only the names of the variables.)

(f) A block AST is of the form block(IdentifierListAST,StmtListAST).
(g) A module AST is of the form module(Name,BlockAST).

You should write a predicate parse_file/2, which takes the name of a file containing a program,
and if the program is in the language of the grammar, returns its Abstract Syntax Tree.

You may import the scanner by putting the scanner.P file in your directory and then adding
the following declaration to your grammar program:

:— import scan_file/2 from scanner.

Then you can call it with the following code:

parse_file(ProgramFile,AST) :-
scan_file(ProgramFile,Length),
module (AST,0,Length) .



Chapter 6

Automata Theory in XSB

In this chapter we explore how we can use XSB to understand and implement some of the formal
systems of automata theory. We will begin by defining finite state machines (FSM), and exploring
executable specifications in XSB of string acceptance, epsilon-free machines, deterministic machines
and other interesting notions.

6.1 Finite State Machines

We represent a finite state machine using three relations:

1. m(MachineName,State,Symbol, TargetState) which describes the transition relation for a ma-
chine, with MachineName being the name of the machine (to allow us to represent many
machines using the same relation), State is a state of the FSM, Symbol is an input symbol,
and TargetState is a state to which the machine transitions from State on seeing Symbol.

2. mis(MachineName,InitialState) where InitialState is the initial state of the FSM named Ma-
chineName.

3. mfs(MachineName,FinalState) where FinalState is a final state of the FSM named Machine-
Name.

By including a MachineName in each tuple, we can use these relations to represent a number
of different FSM’s. This will be convenient later.

We will use the symbol ’’ (the atom with the empty name) as a pseudo-symbol to represent
epsilon transitions, transitions a machine can make without consuming any input symbol.

For example, the following relations represent the machine pictured in Figure 6.1, which we
will call m0sls2s, since it recognizes strings made up of a string of 0’s followed by a string of 1’s

108
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Figure 6.1: The finite state machine: m0s1s2s
followed by a string of 2’s:

m(m0s1s2s,q0,0,90) .
m(m0s1s2s,q0,’’,ql).
m(m0s1s2s,ql,1,q1).
m(mOs1s2s,ql,’’,q2).
m(m0s1s2s,q92,2,92) .

mis(mO0s1s2s,q0).

mfs(m0s1s2s,q2) .
We represent strings with two relations. Again we will name strings for convenience.

1. string(StringName,Index,Symbol,Index1) where StringName is the name of the string, Symbol
is the Index1-th symbol in the string and Index is Index1-1. For example, the string “001112”,
which we will call s1, would be represented by:

string(s1,0,0,1).
string(s1,1,0,2).
string(s1,2,1,3).
string(s1,3,1,4).
string(s1,4,1,5).
string(s1,5,2,6).

and string “021”, which we’ll name s2, would be represented by:

string(s2,0,0,1).
string(s2,1,2,2).
string(s2,2,1,3).

2. stringlen(StringName,Length) where Length is the length of the string named StringName.
For example, for the previous examples, we would have the facts:
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stringlen(s1,6).
stringlen(s2,3).

A FSM is said to accept a string if it executes in the following way: it starts in the initial state,
and makes a transition to the next state along a path labeled by the symbol it is looking at. It
consumes that symbol and then makes another transition based on the next symbol in the string.
It continues in this way until all symbols are consumed, and if the machine is then in a final state,
the string is accepted; otherwise it is rejected. If there is an epsilon-transition from one state to
another, the machine can make such a transition without consuming a symbol of the input.

Now we can easily write a specification in XSB that defines when a machine accepts a string,
as follows:

:— auto_table.

% A machine accepts a string if the machine starts in the initial state,

pA recognizes the string, ending in a final state and has consumed the
yA entire string.
accept (MachineName,StringName) :- mis(MachineName,StateStart),

recognize(MachineName,StringName,StateStart,StateFinal,0,StringFinal),
mfs (MachineName,StateFinal),
stringlen(StringName,StringFinal).

% recognize(MachineName,StringName,MStateO,MState,SLoc0,SLoc) is true

% if machine MachineName started in state MStateO can transition to

% state MState by recognizing the substring from location SLocO to SLoc
% of the string named StringName.

% The empty input string

recognize(_,_,MState,MState,SLoc,SLoc) .

% regular transitions

recognize (MachineName,StringName,MState0,MState,SLoc0,SLoc) :-
string(StringName,SLocO,Symbol,SLocl),
m(MachineName,MStateO,Symbol,MStatel),
recognize (MachineName,StringName,MStatel,MState,SLocl,SLoc).

% Epsilon transitions

recognize (MachineName,StringName,MState0,MState,SLoc0,SLoc) :-
m(MachineName,MStateO,’’,MStatel),
recognize (MachineName,StringName,MStatel,MState,SLoc0,SLoc) .

The definition of accept says that a machine accepts a string if StateStart is the initial state
of the indicated machine, and the machine transits from StateStart to StateFinal while recognizing
the string starting from 0 and ending at StringFinal, and StateFinal is a final state of the machine,
and StringFinal is the length of the string.



CHAPTER 6. AUTOMATA THEORY IN XSB 111

The definition of recognize/6 describes how a machine moves through its states while recog-
nizing (or generating) a sequence of symbols. The first clause says that for any machine and any
string, when the machine stays in the same state, no symbols of the string are processed. The
second clause says that a machine moves from MState0 to MState recognizing a substring if the
next symbol in the substring is Symbol, and there is a transition of the current machine on that
Symbol that takes the machine from MState0 to MStatel, and the machine recognizes the rest of
the substring from that state MStatel getting to MState. The third clause handles epsilon transi-
tions; it says that a machine moves from MState0) to MState recognizing a substring if there is an
epsilon transition from MStateO to a MStatel and the machine recognizes the entire string from
MStatel to MState.

For example, accept(m0sls2s,s1) succeeds, but accept(m0sls2s,s2) fails:

warreny, xsb

XSB Version 1.6.0 (96/6/15)
[sequential, single word, optimal mode]
| ?- [automata].

[automata loaded]

yes
| ?- accept(mOsls2s,sl).
++Warning: Removing incomplete tables...

yes
| 7- accept(mOsis2s,s2).

no
| ?-

This is a right-recursive definition of recognize/6, so it might seem that this should not need
tabling. And indeed for this particular machine and string, Prolog would evaluate this definition
just fine. However, there are machines for which tabling is required. Can you give an example of
such a machine?

Also, it is possible to give this specification in a left-recursive manner. That is also an exercise
for the reader.

6.1.1 Intersection of FSM’s

Given two FSM’s, one can ask the question as to whether there is a string that both machines accept,
that is, whether the intersection of the languages accepted by the two machines is non-empty.

This turns to be possible, and not very difficult. As a matter of fact, we've already essentially
written a program that does this. You might have noticed that our representations of strings and
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machines are actually very similar. In fact, a string can be understood as a FSM, simply by viewing
the string/4 predicate as a machine transition predicate. In this case the string’s states are integers,
the initial state is 0 and the final state is the string length. Viewed this way, a string is simply a
FSM that recognizes exactly that one string.

Viewed in this way, the accept/2 predicate above, which we wrote as determining whether a
FSM accepts a string, can be trivially modified to determine whether two machines accept languages
with a non-empty intersection. We leave it to the reader to modify the definition of accept/2 to
check intersection, and to test it with several examples.

6.1.2 Epsilon-free FSM’s

Two FSM’s are said to be equivalent if they accept exactly the same set of strings. Given any
nondeterministc FSM, it is always possible to find an equivalent one that has no epsilon transitions.
In fact, given a machine as defined and represented above, we can easily define such an equivalent
epsilon-free machine. So given a machine named mach and defined in m/4, mis/2 and mfs/2, we
will define the transitions, initial state and final state for its epsilon-free version named efree(mach)
as follows:

% epsilon-free machines

% first define emoves as any sequence of epsilon transitions
emoves(_,State,State).
emoves (Mach,State0,State) :-

emoves (Mach,State0,Statel),

m(Mach,Statel,’’,State).

% define the transition relation of the efree machine
m(efree(Mach) ,State,Symbol,TargState) :-
emoves (Mach,State,Statel),
m(Mach,Statel,Symbol,State?2),
Symbol \== 77,
emoves (Mach,State2,TargState) .

% define the initial and final states of the efree machine
mis(efree(Mach),IS) :- mis(Mach,IS).

mfs(efree(Mach) ,FS) :- mfs(Mach,FS1),emoves(Mach,FS,FS1).
mfs(efree(Mach) ,FS) :- mfs(Mach,FS1),emoves(Mach,FS1,FS).

The predicate emoves/3 defines for any machine the set of pairs of states such that the machine
can move from the first state to the second state without consuming any symbols in the input
string. Then with this definition, the rule defining transitions says that an epsilon-free machine
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can move from State to TargState on Symbol if it can move from State to Statel using only epsilon
moves, can move from Statel to State2 on seeing Symbol (which is not epsilon) and can make
epsilon moves from State2 to TargState.

The initial state of the epsilon-free machine is exactly the initial state of the original machine.
The final state of the epsilon-free machine is any state from which you can get to a final state of
the original machine using only epsilon transitions, or any state you can get to from a final state
using only epsilon transitions.

For example:

warreny, xsb

XSB Version 1.6.0 (96/6/15)
[sequential, single word, optimal mode]
| ?- [automatal.

[automata loaded]

yes

| 7- m(efree(mOs1s2s),So0,Sym,Ta),writeln(m(efree(mO0sls2s),S0,Sym,Ta)) ,fail.
m(efree(mOs1s2s),q0,0,q0)
m(efree(m0s1s2s),q0,0,q1)
m(efree(m0s1s2s),q0,0,92)
m(efree(m0s1s2s),ql,1,q1)
m(efree(mOs1s2s),ql,1,92)
m(efree(m0s1s2s),q2,2,92)
m(efree(mOs1s2s),q0,1,92)
m(efree(m0s1s2s),q0,1,q1)
m(efree(m0s1s2s),ql,2,92)
m(efree(m0s1s2s),q0,2,92)

no
| 7- mis(efree(mOs1s2s),IS),writeln(mis(efree(mOs1s2s),IS)),fail.
mis(efree(mOs1s2s),q0)

no

| ?7- mfs(efree(mOs1s2s),FS),writeln(mfs(efree(m0sis2s),FS)),fail.
nfs(efree(mOsis2s),q2)

mfs(efree(m0s1s2s),q0)

mfs(efree(m0s1s2s),ql)

no
| ?-

The diagram for efree(mOs1s2s) is shown in Figure 6.2.
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Figure 6.2: The finite state machine: efree(m0s1s2s)

6.1.3 Deterministic FSM’s

A deterministic FSM is a machine such that for every state for any symbol there is at most one
transition from that state labeled with that symbol (and there are no epsilon transitions.) This
means that there is never a choice in how the machine is to proceed when it sees a symbol: there
will be at most one state to move to, given that symbol. The question arises as to whether given
an arbitrary FSM there is always an equivalent deterministic FSM, i.e., a deterministic FSM that
accepts the same language, i.e., exactly the same set of strings.

The answer turns out to be “yes”, and it is not difficult to see why. Given a nondeterministic
(ND) machine, we can construct a deterministic machine each of whose states corresponds to a set
of states in the nondeterministic machine. The idea is that, after seeing a string, the deterministic
machine will be in a state corresponding to a set of ND states just in case the ND FSM could be
in any one of the ND states after seeing the same string. As a very trivial example, say we had a
ND machine with three states: ¢l, ¢2, ¢3, with ¢1 the initial state and transitions from ¢1 to ¢2
on symbol a and from ¢l to ¢3 also on a. Then the deterministic machine would have two states,
{q1} and {q2, ¢3} (each being a set of the original machine’s states), and a transition from the first
to the second on symbol a.

The following specification describes this construction. Rather than constucting all the states
(which would necessarily be exponential in the number of states in the nondeterministic machine),
we will only construct those that are reachable from the initial state. This may be a much smaller
number. Also, for this particular specification to be constructive, we need to constrain the set of
possible deterministic states in some way, and this seems a good way.
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We will assume that the machine is an epsilon-free machine. If efreemach is the name of an
epsilon-free machine then det (efreemach) is the name of an equivalent deterministic machine.

:— import member/2 from basics.
:— import tsetof/3 from setof.

% Assume Mach is an epsilon-free machine.

% A state is reachable if it is the initial state or if it can be
% reached by one step from a reachable state.

reachable (Mach,S) :- mis(Mach,S).

reachable(Mach,S) :- reachable(Mach,S1),m(Mach,S1,_,S).

% The next state of the deterministic machine given a state and symbol
yA is the set of states of the nondeterministic machine which are a
% next state starting from some element of the current state of the
% deterministic machine. (Mach is assumed to be epsilon-free.)
m(det (Mach) ,StateO,Sym,State) :-

reachable(det (Mach),State0),

tsetof (NDS, a_next(Mach,State0,Sym,NDS), State).

% A state is a next state if it is a next state reachable in one step
% from some member of the current state of the deterministic machine.
a_next (Mach,DState,Sym,NDState) :-

member (S1,DState),

m(Mach,S1,Sym,NDState) .

% The initial state is the singleton set consisting of the initial
% state of the nondeterministic machine.
mis(det(Mach), [IS]) :- mis(Mach,IS).

% A final state is a reachable deterministic state that contains some
% final state.of the nondeterministic machine.
mfs(det (Mach),FS) :- mfs(Mach,NFS), reachable(det(Mach) ,FS) ,member (NFS,FS).

Now we can use this specification to find a deterministic machine that is equivalent to the
nondeterministic machine m0s1s2s:

| 7- m(det(efree(mO0s1s2s)),S,Sy,T),writeln(m(det (m0s1s2s),S,Sy,T)),fail.
m(det (m0s1s2s), [q0],0, [90,91,92])

m(det (m0s1s2s),[q0],1, [ql,92])

m(det (mOs1s2s), [q0],2, [g2])

m(det (m0s1s2s), [q0,q91,92],0, [q0,q91,92])

m(det (m0s1s2s),[q0,q1,92],1, [q1,92])

m(det (m0s1s2s), [q0,q91,92],2, [92])
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Figure 6.3: The finite state machine: det(efree(m0s1s2s))

m(det (m0s1s2s), [q1,q92],1, [q1,92])
m(det (mOs1s2s), [q1,92],2, [2])
m(det (m0s1s2s), [q2],2, [92])

no
| ?7- mis(det(efree(mO0s1s2s)),S) ,writeln(mis(det(m0s1s2s),S)),fail.
mis(det(mOs1s2s), [q0])

no

| ?7- mfs(det(efree(mOs1s2s)),S),writeln(mfs(det(m0s1s2s),S)),fail.
mfs(det (mOs1s2s), [q1,q2])

mfs(det (mOs1s2s), [q0,ql,q92])

mfs(det (mOs1s2s), [q2])

mfs(det (mOs1s2s), [q0])

no
| 7=

The diagram for det (efree(m0s1s2s)) is shown in Figure 6.3.

6.1.4 Complements of FSM’s

One may also want to construct a machine that accepts the complement of the set of strings a given
machine accepts. This turns out to be possible and reasonably easy to do, once we straighten out
a minor issue. Up to now we have been mostly ignoring the alphabet of symbols that make up the
strings. This has been fine for accepting strings, since if a symbol never appears in any transition,
the machine can never accept any string containing that symbol. But when we talk about strings
that a machine rejects, we have to give the alphabet with respect to which to take the complement.
For example, what is the complement of the language that consists of all strings consisting of only
a’s and b’s? It is the empty set if the alphabet is {a, b}, but if the alphabet is {a,b, c}, then it is
the set of all strings over {a, b, c} that contain at least one c.
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Using our current representation, we will assume that the alphabet of a given machine is the set
of symbols that appear on some transition of that machine. While this seems to be a reasonable
assumption, note that it could be incorrect for the second example of the complement of all strings
of a’s and b’s given above. (If we were committed to being very precise, we could add an XSB
relation which for each machine defined the set of symbols in its alphabet.)

The basic idea for generating the complement machine is simply to take the original machine
but to take the complement of its final states to the be final states of the complement-accepting
machine. But there are a couple of things we have to guarantee before this works. First the original
machine must be deterministic, since otherwise for a given string it might end in both a final and
a nonfinal state. In this case it should be rejected by the machine accepting the complement
language, but simply inverting the final and nonfinal states would result in it being accepted. So
we will always start with a deterministic machine. Second, we have to be sure that the machine
gets to some state on every input. That is, there must always be a transition that can be taken,
regardless of the symbol being scanned. That is, every state must have an outgoing transition for
every symbol in the alphabet. And here is where the importance of the alphabet is clear.

So we will separate our construction into two parts: first we will complete the machine (assuming
it is deterministic) by adding transitions to a new state, called “sink,” when there are no transitions
on some symbols; and second we will complement a completed machine.

% completed machine
% A symbol is in the alphabet of a machine if it appears in a non-epsilon

% transition. (Note that this is our convention and for some machines
yA could be wrong.)
alphabet (Mach,Sym) :-

m(Mach,_,Sym,_),

Sym \== 7’

% S is a (possibly reachable) state in machine if it’s initial or has an
yA incoming edge.

is_state(Mach,S) :- m(Mach,_,_,S).

is_state(Mach,S) :- mis(Mach,S).

% The initial states and final states of the completed machine are the
% same as the original machine.

mis(completed(Mach),IS) :- mis(Mach,IS).

mfs (completed(Mach) ,FS) :- mfs(Mach,FS).

% Assume Mach is deterministic
% There is a transition to *°
yA this symbol from this state.
m(completed(Mach),So,Sy,sink) :-
is_state(Mach,So),
alphabet (Mach,Sy),

sink’’ if there is no other transition on
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tnot(isatransition(Mach,So,Sy)).
% Machine transitions from sink to sink on every symbol
m(completed(Mach),sink,Sy,sink) :-

alphabet (Mach, Sy) .
% Otherwise the same as underlying machine
m(completed(Mach),So0,Sy,Ta) :-

m(Mach,So,Sy,Ta) .

% There is a transition if there’s a state it transits to.
isatransition(Mach,So,Sy) :-
m(Mach,So0,Sy,_).

Now given a completed machine, we can easily generate the complement machine simply by
interchanging final and nonfinal states:

% complement machine

% Asume machine is completed and deterministic.

% The transitions of the complement machine are the same.
m(complement (Mach),S0,S8y,Ta) :- m(Mach,So,Sy,Ta).

% The initial state of the complement machine is the same.
mis(complement (Mach),S) :- mis(Mach,S).

% A state is a final state of the complement if it is NOT the final state
yA of the underlying machine.
mfs(complement (Mach),S) :-

is_state(Mach,S),

tnot (mfs(Mach,S)).

With these definitions, we can compute the complement of our simple machine m0s1s2s:

| ?- [automatal].
[automata loaded]

yes
| ?- m(complement (completed(det(efree(mOsis2s)))),S,Sy,T),
writeln(m(complement (m0sls2s),S,Sy,T)),fail.

m(complement (m0s1s2s), [q2],1,sink)

m(complement (m0s1s2s), [q2],0,sink)
m(complement (m0s1s2s), [q1,92],0,sink)

m(complement (m0sl1s2s),sink,2,sink)

m(complement (mOsl1s2s),sink,1,sink)

m(complement (m0sl1s2s),sink,0,sink)
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m(complement (mOs1s2s), [ql1,q2],2, [q2])
m(complement (mOs1s2s), [ql,92],1,[ql,q92])
m(complement (m0Os1s2s), [q0,q1,92],2, [q2])
m(complement (mOs1s2s), [q0,q1,92],1,[ql,q92])
m(complement (m0s1s2s), [q0,91,92]1,0,[q0,q1,92])
m(complement (mOs1s2s), [q2],2, [q2])
m(complement (m0s1s2s), [q0],2, [q2])
m(complement (mOs1s2s), [q0],1, [q1,q2])
m(complement (mOs1s2s), [q0],0, [q0,q1,92]1)

no

| 7- mis(complement(completed(det(efree(m0sis2s)))),S),
writeln(mis(complement (mOs1s2s),S)),fail.

mis(complement (mOs1s2s), [q0])

no

| ?- mfs(complement (completed(det(efree(mOsis2s)))),S),
writeln(mfs(complement (mOs1s2s),S)),fail.

mfs (complement (mOs1s2s) ,sink)

no
| 7-

Given these definitions, we can now write a specification that determines when two machines
accept the same language. With complement and intersection, we can define subset: A C B <—
AN B = 0. We leave it as an exercise for the reader to write and test such a specification.

6.1.5 Minimization of FSM’s

Another question of interest is whether a given FSM has “redundant” states. That is, is it as small
as it can be or is there a smaller machine, i.e., one with fewer states, that can recognize the same
language.

So the idea is, given a machine, to see whether it has redundant states. The first step is
to determine whether two states in the machine are distinguishable, i.e., whether there is some
string such that when the machine is started in the respective states, one computation will lead
to an accepting state and the other won’t. The following specification defines (and computes)
distinguishable states.

% Assume Mach is a deterministic machine
% S1 and S2 are distinquishable if S1 is final and S2 is not.
distinguishable(Mach,S1,32) :-

mfs(Mach,S1),
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is_state(Mach,S2),

tnot (mfs(Mach,S2)).
% S1 and S2 are distinquishable if S2 is final and S1 is not.
distinguishable(Mach,S1,82) :-

mfs(Mach,S2),

is_state(Mach,S1),

tnot (mfs(Mach,S1)).
% S1 and S2 are distinguishable if some symbol Sy takes them to states that
yA are distinguishable.
distinguishable(Mach,S1,82) :-

m(Mach,S1,Sy,T1),

m(Mach,S2,Sy,T2),

distinguishable(Mach,T1,T2).

The first two rules say that states are distinguishable if one is final and the other is not. For this
we need the constraint that the initial machine be deterministic. The third rule says that states
are distinguishible if there is a symbol on which they make transitions to distinguishable states.

As an example of finding distinguishable states, we can use the following machine:

m(dfa,a,0,b).
m(dfa,a,1,f).
m(dfa,b,0,g).
m(dfa,b,1,c).
m(dfa,c,0,a).
m(dfa,c,1,c).
m(dfa,d,0,c).
m(dfa,d,1,g) .
m(dfa,e,0,h).
m(dfa,e,1,f).
m(dfa,f,0,c).
m(dfa,f,1,g).
m(dfa,g,0,g) .
m(dfa,g,1,e).
m(dfa,h,0,g).
m(dfa,h,1,c).

mis(dfa,a).
mfs(dfa,c).

(draw a picture. Could also use the determistic version of msOsls2, since it has an extra state q0,
I think.)

And with this machine we get the following evaluation:
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| 7- distinguishable(dfa,S1,52),510<S2,writeln(d(S1,S2)),fail.
d(d,e)
d(d,g)
d(d,h)
d(b,d)
d(b,e)
d(b,f)
d(b,g)
d(b,c)
d(a,b)
d(a,d)
d(a,f)
d(a,g)
d(a,h)
d(a,c)
a(f,g)
d(f,h)
d(e,f)
d(e,g)
d(e,h)
d(g,h)
d(c,d)
d(c,e)
d(c,h)
d(c,g)
d(c,f)

no
| 7-

In the query we filtered to keep only the cases in which the first state has a smaller name than
the second. This was just to avoid printing out all the commutative and reflexive pairs.

What is more interesting than finding two states that are distinguishable is finding two states
that are not distinguishable. In this case one of the states is unnecessary and can be eliminated
from the machine. So using this definition of distinguishable, we can construct a minimal DFSM
that accepts the language given by a machine by merging indistinguishable states in that machine.

% min (assuming the machine is deterministic), reduce by
% indistinguishability.
m(min(Mach),So0,Sy,Ta) :-
reachable(min(Mach),So), % So is a set of indistinguishable states
member (Ss,So), % Ss is one of them..
m(Mach,Ss,Sy,T), % ..that can transit to T on Symbol Sy
tsetof (S,indistinguishable(Mach,T,S),Ta). % target is those indistinguishable from T
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% The initial (final) state is the set of states indistinguishable
% from the initial (final) state of the base machine.
mis(min(Mach),IS) :-

mis(Mach,Bis),

tsetof (S,indistinguishable (Mach,Bis,S),IS).
mfs(min(Mach) ,FS) :-

mfs(Mach,Bfs),

tsetof (S,indistinguishable (Mach,Bfs,S),FS).

indistinguishable(Mach,S1,82) :-
is_state(Mach,S1),
is_state(Mach,S2),
tnot(distinguishable(Mach,S1,82)).

And executing this with the previous example, we get:

| ?- m(min(dfa),S,Sy,T),writeln(m(min(dfa),s,Sy,T)),fail.
m(min(dfa), [a,e],1, [f])
m(min(dfa), [a,e],0, [b,h])
m(min(dfa), [£f],1, [g])
m(min(dfa), [f],0, [c])
m(min(dfa), [b,h],1, [c])
m(min(dfa), [b,h],0, [g])
m(min(dfa), [g],1,[a,el)
m(min(dfa), [g],0, [g])
m(min(dfa), [c],1, [c])
m(min(dfa), [c],0, [a,e])

no
| ?7- mfs(min(dfa),S),writeln(mfs(min(dfa),S)),fail.
mfs(min(dfa), [c])

no
| ?7- mis(min(dfa),S),writeln(mis(min(dfa),S)),fail.
mis(min(dfa), [a,e])

no
| 7-

(Draw state diagram) Note that the state “d” does not appear in this collapsed machine. This is
because it has no in-transitions and is not the initial state, so it doesn’t appear in our reduction.
It is actually equivalent to state “f”, and could be merged with it.
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6.1.6 Regular Expressions

Regular expressions are another way of specifying finite state languages, that is sets of strings of
symbols. A regular expression over an alphabet X is:

1. a symbol from X, or
2. an expression (RE1 x RE2), where RE1 and RE?2 are regular expressions, or
3. an expression (RE1 + RE?2), where RE1 and RE?2 are regular expressions, or

4. an expression @Q(RE), where RE is a regular expression.

We associate with each regular expression (RE) a set of strings over X (i.e., a language.) We will
use XSB (Prolog) rules to define the set of strings associated with a RE. An RE will be represented
as a Prolog term, and the definition below shows that we are using * for concatentation, + for
alternation, and @ for iteration.

The following program, when given a regular expression, accepts strings that are in the language
represented by that expression:

% Is StringName in the language represented by Exp?
reacc(Exp,StringName) :-
reacc (Exp,StringName,0,F),
stringlen(StringName,F) .

% An atom represents itself
reacc(A,S,From,To) :- atomic(A),string(S,From,A,To).
% Concatenation of E1 and E2
reacc((E1*E2),S,From,To) :-

reacc(E1,S,From,M),

reacc(E2,S,M,To).
% Alternation
reacc((E1+_E2),S,From,To) :- reacc(E1,S,From,To).
reacc((_E1+E2),S,From,To) :- reacc(E2,S,From,To).
% Iteration if O or more occurrences
reacc(@(_E),_S,From,From).
reacc(@(E),S,From,To) :-

reacc(@Q(E),S,From,Mid),

reacc(E,S,Mid,To).

Now we can test whether string s1 (00112) is in the language represented by the regular expres-

sion @(0) * @Q(1) * @(2):
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| ?7- reacc(@(0)* @(1)* @(2),s1).
++Warning: Removing incomplete tables...

yes
| 7-

and it is.

THIS FOLLOWING DEVELOPMENT OF FSMs FROM REs IS INCORRECT. IT CON-
FLATES MULTIPLE OCCURRENCES OF THE SAME RE SUBEXPRESSION. FIX OR DELETE!!!!
-DSW

It turns out that regular expressions represent exactly the same languages that finite state
machines do. Given a regular expression, we can construct a finite state machine that recognizes
the same language (and vice versa.) So first we will construct a machine given a regular expression.
To make the construction easy, we will represent machine names and states in an interesting way.
Given a regular expression RE, we will use m(RE) to name the machine for recognizing the same
langauge as RE. And the initial state for the constructed machine that recognizes the language of
RE will be named i(RE) and the final state (there will always be exactly one in our construction)
will be f(RE). Note that we are free to name the machines and states anything we want, so this
choice is simply a convenience.

The following rules define the FSM given a regular expression:

% The machine for an atomic RE, simply transits from its initial state
yA to its final state on the given atomic symbol.

yA (A1l the others will be epsilon transitions.)
m(re(RE) ,i(RE) ,RE,f(RE)) :- atomic(RE).

% To recognize concatenated expressions:

% Connect the initial state of the compound expr to the initial state of
pA the first subexpr.

m(re (RE1*RE2) ,i(RE1*RE2),’’ ,i(RE1)).

% Connect the final state of the first subexpr to the initial state of
b the second subexpr.
m(re (RE1*RE2) ,f(RE1),’’ ,i(RE2)).

% Connect the final state of the second subexpr to the final state of
/A the compound expr.
m(re (RE1*RE2) ,f (RE2),’’ ,f (RE1*RE2)) .

% And finally must add the transitions of the machines for the
b subexpressions.
m(re(RE1*_RE2),S,Sy,T) :- m(re(RE1),S,Sy,T).
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m(re(_RE1*RE2),S,Sy,T) :- m(re(RE2),S,Sy,T).

% The process is analogous for alternation.
m(re (RE1+RE2),1i(RE1+RE2),’’,i(RE1)).
m(re (RE1+RE2) ,i (RE1+RE2),’’,i(RE2)).
m(re(RE1+RE2) ,f (RE1),’’,f (RE1+RE2)).
m(re (RE1+RE2) ,f (RE2),’’,f (RE1+RE2)).
m(re(RE1+_RE2),S,Sy,T) :- m(re(RE1),S,Sy,T).
m(re(_RE1+RE2),S,Sy,T) :- m(re(RE2),S,Sy,T).

% and for iteration
m(re(@(RE)),i(@(RE)),’’ ,f(@(RE))).
m(re(@(RE)) ,i(@(RE)),’’,i(RE)).
m(re(@(RE)),f(RE),’’ ,f(@(RE))).
m(re(@(RE)),f(@(RE)),’’,i(@(RE))).
m(re(@(RE)),S,Sy,T) :- m(re(RE),S,Sy,T).

% and the initial and final states are just those named i() and £Q).

mis(re(RE),i(RE)).
mfs(re(RE) ,f(RE)).

As an example, consider the following execution

| 7- m(re(a*b*c),S,Sy,T),writeln(m(re(a*b*c),S,Sy,T)),fail.
m(re(a * b * ¢c),i(a * b * c),,i(a * b))

m(re(a * b * c),f(a * b),,i(c))
m(re(a * b *x c),f(c),,f(a * b * c))
m(re(a * b * ¢),i(a * b),,i(a))
m(re(a * b * ¢),f(a),,i(b))

m(re(a * b * ¢c),f(b),,f(a * b))
m(re(a * b * c),i(a),a,f(a))
m(re(a * b * ¢),i(b),b,f(b))
m(re(a * b * c),i(c),c,f(c))

no

| 7- m(det(efree(re(a*b*c))),S,Sy,T),writeln(m(re(a*xb*c),S,Sy,T)),fail.
m(re(a * b *x ¢),[i(a * b * ¢)],a,[f(a),i(b)])

m(re(a * b *x ¢),[f(a),i(®],b,[f(b),f(a * b),i(c)])

m(re(a * b * c),[f(b),f(a * b),i(c)],c,[f(c),f(a * b * c)])

no
| 7-

Here we first constructed the FSM that recognizes the single string abc, which has 9 transitions,
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most of them epsilon transitions. In the second query, we found the deterministic version of that
machine. Notice that this dropped the number of transitions to the minimal three.

The final problem concerning FSM’s and regular expressions that we will consider is that of,
given a machine, constructing an equivalent regular expression.

re(S8,T,0,Mach,RE) :- is_state(S),is_state(T),S\==T,tsetof (Sy,m(Mach,S,Sy,T),RE).
re(S,S8,0,Mach, [’’|RE]) :- is_state(8),tsetof (Sy,m(Mach,S,Sy,T),RE).
re(I,J,K,Mach, [RE1x @(RE2) * RE3,RE4]) :- K>O0,

K1 is K-1,

re(I,K,K1,Mach,RE1),

re(K,K,K1,Mach,RE2),

re(X,J,K1,Mach,RE3),

re(I,J,K1,Mach,RE4).

6.2 Grammars Revisited

In a previous chapter we explored how we could represent grammars in tabled Prolog and obtain
efficient recognition algorithms. Recall the Prolog program from the DCG for the expression
context-free grammer:

% file grammar.P
:- table expr/3, term/3.

expr(80,8) -—> expr(S0,S1), word(S1,+,S2), term(S2,S).
expr(80,8) --> term(S0,8S).

term(S0,S) --> term(S0,S1), word(S1,*,52), primary(S2,S).
term(S0,S) --> primary(S0,S).

primary(S0,S) --> word(S0,’(’,S1), expr(S1,S2), word(82,’)’S).
primary(S0,S) --> word(S0,Int,S1), integer(Int).

We understood a grammar rule, for example the first one, as saying that an expr generated a string
from position SO to S in the input string if an expr generated a string from position SO to S1 and
the word 4’ spanned from positions S1 to S2, and a term spanned from position S2 to S.

There is another way to understand DCG rules declaratively. Recall that we can consider the
input string word/3 representation as a simple FSA | that recognizes exactly the input string. The
first string position is the initial state, the last string position is the accepting state, and the word
facts define the state transitions. We can think of the DCG rules as add new transitions, on new
symbols (nonterminal symbols) to that basic (linear) FSA. An atomic formula, such as expr(S0,S)
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defines a transition from state SO to S on the symbol ’expr’. Then we can understand a rule, for
example the first one, as saying that if there is a transition from state SO to S1 on the symbol
‘expr’, and from state S1 to S2 on '+’ and from state S2 to S on 'term’, then there is a transition
from state SO to S on ’expr’. So the grammar rules (along with the facts of the initial string)
can be understood as defining a finite state automoton. The initial set of word/3 facts defines the
initial transitions of the FSA (on terminal symbols) and the DCG rules define further transitions
(on nonterminal symbols). The first state of string is the initial state of the FSA and the last state
of the string is the final, accepting state of the FSA.

So the question is: What strings does the defined FSA accept? The answer is all sentential
forms (i.e., strings of terminals and nonterminals) that can eventually generate the given initial
string of terminals. So the query expr(InitialState,FinalState) is true just in case the sentential
form consisting of the single nonterminal ’expr’ can generate the initial input string. I.e., if the
initial string is in the language generated by expr.

So all of this is just a slightly different way to understand what a DCG specifies, i.e., how a
DCG specifies a language.

Looked at this way, we can specify the facts specifying the input string using existential variables,
for example the string 1 + 2, as follows:

exists(S1,exists(82,exists(83,exists (84,
initial_state(S1)/\word(S1,1,82)/\word(S2,+,S3)
/\word(S3,2,34)/\final_state(S4)))))

and a rule, such as the first one is:

forall(S0O,forall(S,exists(S1,exists(S2,
expr (S0,81) /\word(S1,+,82)/\term(S2,S)))))

Then the DCG rules define further transitions in this FSA, and the goal:
| 7- initial_state(S0),final_state(S),expr(S0,83).

is true just in case there is a transition from the initial state to the final state labeled by ’expr’.

Understood this way, it is easy to see how to extend DCG’s to express context-sensitive gram-
mars. Recall that grammar rules define transitions in a FSA that recognizes sentential forms that
generate the input string. Given a context sensitive rule such as:

AB --> CD.

we want to define a new pair of transitions on A and then on B, if there already are transitions on
C and D. We can say this logically with the formula:
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forall(SO,forall(S,thereis(S1,’A’(S0,S1)/\’B’(S81,3)) -—>
thereis(83,°C’(80,S83)/\’D’(S3,38))))

So this rule asserts the (conditional) existence of a state (with variable S1) and two transitions. In
our extended Prolog, this is the rule:

83 ~ (c(80,83),D(S3,3)) :- a(s80,81),B(S81,3).

6.3 Push-Down Automata

6.4 Exercises

1. Represent a FSA using the following three relations:

(a) m(MachineName,State,Symbol, TargetState) which describes the transition relation for
a machine, with MachineName being the name of the machine (to allow us to represent
many machines using the same relation), State is a state of the FSM, Symbol is an input
symbol, and TargetState is a state to which the machine transitions from State on seeing
Symbol. An epsilon transition is indicated by a Symbol of .

(b) mis(MachineName,InitialState) where InitialState is the initial state of the FSM named
MachineName.

(c) mfs(MachineName,FinalState) where FinalState is a final state of the FSM named Ma-
chineName.

Represent strings with the following two relations:
(a) string(SName,I1,Sym,12), where SName is the name of the string (to permit representing

multiple strings); Sym is the symbol at position 12, and I1 is 12-1.
(b) stringlen(SName,Length), where SName is the name of the string, which has length

Length.
C_J
L)

(a) \/ v
Give the facts of m/4, mis/2, and mfs/2 that represent this machine. Give the facts that
define strings 0011112, 00021110

(b) Write a predicate accept(Mach,String) which is true if machine Mach accepts the string
String.

Do the following exercises concerning FSA’s.

0 1
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(c) Given the definition of the machines M1 and M2, write a predicate m(intersect(M1,M2),State,Symbol
that defines the transition relation of the machine that accepts the intersection of the
two languages accepted by M1 and M2.

Similarly write mis(intersect(M1,M2),IS) and mfs(intersect(M1,M2),FS).
(d) Given the definition of a machine Mach, write a predicate m(efree(Mach),State,Symbol, TargetState)

that defines the transition relation of the (or a) epsilon-free machine that recognizes the
same language as Mach. [An epsilon-free machine is one that has not epsilon transitons.|

Similarly write mis(efree(Mach),IS) and mfs(efree(Mach),FS).

(e) Similarly write definitions of m(det(Mach),State,Symbol, TargetState), mis(det(Mach),IS)
and mfs(det(Mach),F'S), where det(Mach) is a deterministic FSA that recognizes the
same language as Mach.

2. Write an XSB program to interpret the simple procedural programming language you parsed
in assignment 6, and produce the appropriate output, as generated by the PRINT statements.

The semantics of the language should be clear from its syntax. The basic predicate you will
need to write should be:

interpM3(AST,StateIn,StateOut)

where AST is the Abstract Syntax Tree of the portion of the program you are interpreting;
Stateln is the state of the program variables at the beginning of that execution; and StateOut
is the state of the program variables after the program segment has been executed. You
may produce the output, generated by interpreted PRINT statements as a side-effect of the
interpretation (by using writeln/1 in XSB.)

One simple and easy representation of the program state is a list of terms of the form:
VariableName=VariableValue.

As a very simple example, your predicate should do the following:

| ?7- interpM3(assign(x,+(ident(x),int(1))), [x=3],Statelut).
StateOut = [x=4];

no

You should use the AST’s you generated in Exercise 77 of Chapter 5. Note that the / operand
means integer division, and so must produce an integer.
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Dynamic Programming in XSB

Dynamic Programming is the name for a general strategy used in algorithms when one organizes
the computation to be done in such a way that subproblems are evaluated only once instead of
many times. With this description of the dynamic programming strategy, one can see that the
tabling strategy of XSB is a dynamic dynamic programming strategy. That is, regardless of how
the computation is structured at compile time (by the programmer), tabling ensures that subprob-
lems are evaluated only once. So this suggests that problems amenable to dynamic programming
solutions might be particularly appropriate for evaluating with XSB. This is indeed the case, and
in this chapter we will see a number of examples.

These problems have a common characteristic. They all can be solved by writing down a
simple specification of the problem. However, if one thinks as a Prolog programmer about the
execution of the specification, it seems horrendously redundant and inefficient. But executing it
with tabling declarations eliminates the redundancy and actually turns the specification into an
efficient algorithm.

7.1 The Knap-Sack Problem

The first problem we will consider is the knap-sack problem. The idea is that we have a knap-sack
and a bunch of things of various sizes to put in it. The question is whether there is a subset of the
things that will fit exactly into the knap-sack. The problem can be formally stated as follows:

Given n items, each of integer size k; (1 < i < n), and a knap-sack of size K. 1)
determine whether there is a subset of the items that sums to K. 2) Find such a subset.

We will represent the items and their sizes by using a set of facts item/2, where item(3,5)
would mean that the third item is of size 5.

130
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To determine whether there is a subset of items that exactly fill the knap-sack, we can just
nondeterministicaly try all alternatives.

% ks(+I,+K) if there is a subset of items 1,...,I that sums to K.

ks (0,0). % the empty set sums to O

ks(I,K) :- I>O0, % don’t include this Ith element in the knapsack
I1 is I-1, ks(I1,K).

ks(I,K) :- I>O0, % do include this Ith element in the knapsack
item(I,Ki), K1 is K-Ki, K1 >= 0, I1 is I-1, ks(I1,K1).

The first clause says that the empty set takes no space in the sack. The second clause covers
the case in which the Ith item is not included in the sack. The third clause handles the case in
which the Ith item is included in the sack.

This program could be exponential in the number of items, since it tries all subsets of items.
However, there are only I? possible distinct calls to ks/2, so tabling will make this polynomial.

This program just finds whether a packing of the knapsack exists; it doesn’t return the exact
set of items that fit. We could simply add a third argument to this definition of ks/2 which would
be the list of items added to the knap-sack. But that might then build an exponential-sized table.
For example with every item of size one, there are exponentially many items to include to make a
sum. So instead of simply adding another parameter and tabling that predicate, we will use ks/2
to avoid constructing a table unnecessarily. Note that this is similar to how we constructed a parse
tree for a grammar by using the recognizer. Notice that ksp/3 uses ks/2 in its definition.

ksp(0,0,[1).
ksp(I,K,P) :- I>0,
I1 is I-1, ks(I1,K),
ksp(I1,K,P).
ksp(I,X,[I|P]) :- I>0,
item(I,Ki), K1 is K-Ki, K1 >= 0, I1 is I-1, ks(I1,K1),
ksp(I1,K1,P).

(There is something going on here. Can we figure out a syntax or conventions to make this
uniform?)

% ks(+I,+K) if there is a subset of items 1,...,I that sums to K.
ks (0,0).
ks(I,K) :- ks1(I,X,_).
ks1(I,K,I1) :- I>0,I1 is I-1, ks(I1,K).
ks(I,K) :- ks2(I,K,_).
ks2(I,K,I1) :- I>0, item(I,Ki), K1 is K-Ki, K1 >= 0, Il is I-1, ks(I1,K1).
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ksp(0,0,[1).
ksp(I,K,P) :- ks1(I,K,I1), ksp(I1,K,P).
ksp(I,K, [IIP]) :- ks2(I,K,I1), ksp(I1,K1,P).

7.2 Sequence Comparisons

Another problem where dynamic programming is applicable is in the comparison of sequences.
Given two sequences A and B, what is the miniml number of operations to turn A into B? The
allowable operations are: insert a new symbol, delete a symbol, and replace a symbol. Each
operation costs one unit.

A program to do this is:

/* sequence comparisons. How to change one sequence into another.
A=a_1 a_2 ... a_n
B=b_1 b_2 b_3 ... b_m
Change A into B using 3 operations:
insert, delete, replace: each operation costs 1.

*/

% c(N,M,C) if C is minimum cost of changing a_1...a_N into b_1...b_M
:- table c¢/3.

c(0,0,0).
c(O,M,M) :- M > 0. % must insert M items
c(N,0,N) :- N > 0. % must delete N items

c(N,M,C) :-N>0, M>0,
N1 is N-1, M1 is M-1,

c(N1,M,C1), Cla is Ci1+1, % insert into A
c(N,M1,C2), C2a is C2+1, % delete from B
c(N1,M1,C3), % replace
a(N,A), b(M,B), (A==B -> C3a=C3; C3a is C3+1),
min(Cla,C2a,Cml1), min(Cm1,C3a,C). % take best of 3 ways

min(X,Y,Z) :- X =< Y -> Z=X ; Z=Y.

% example data
a(l,a). a(2,b). a(3,b). a(4,c). a(5,b). a(6,a). a(7,b).
b(1,b). b(2,a). b(3,b). b(4,b). b(5,a). b(6,b). b(7,b).

The first three clauses for c¢/3 are clear; most of the work is done in the last clause. It reduces
the problem to a smaller problem in three different ways, one for each of the operations of insert,
delete, and replace. Each reduction costs one unit, except that “replacement” of a symbol by itself
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costs nothing. It then takes the minimum of the costs of these ways of turning string A into string

B.

In Prolog this would be exponential. With tabling it is polynomial.

7.3 77

Dynamic Programming, e.g. optimal association for matrix multiplication
Searching, games (see Bratko)

Pruning (alpha-beta search)

7.4 Exercises

1. Given two sequences A and B, what is the minimal number of operations to turn A into B?
The allowable operations are: insert a new symbol, delete a symbol, and replace a symbol.
Each operation costs one unit.

Hint: Represent string A as facts a(N,Sym), meaning that the symbol at position N in string
A is Sym. Similarly for B. Then write a predicate cost(N,M,C) which is true if the minimum
cost of turning al...aN into bl...bM is C.
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HiLog Programming

XSB includes a capapbility to process programs which have complex terms in predicate of functor
position. This allows programmers to program in a higher-order syntax, and so this extension of
Prolog is called HiLog. Programmers can think of programming with parameterized predicates or
with predicate variables. HiLog also supports a new way of programming with sets. We will explore
these issues in this chapter.

HiLog is actually a very simple extension to Prolog. The definition of a basic term in Prolog is
as follows:

e A term is a atomic symbol or a variable, or

e A term is of the form: s(t1,%2,...,t,) where s is an atomic symbol and the ¢; are terms.

Note that the symbol in functor (or predicate) position must be a symbol. HiLog generalizes this
to allow an arbitrary term itself. So the definition of a term in HiLog is:

e A term is a atomic symbol or a variable, or

e A term is of the form: ty(¢1,to, ..., t,) where the ¢; are terms.

Computationally these terms are matched just as Prolog terms, so intuitively HilL.og programs
work very similarly to Prolog programs. However, they encourage different ways of thinking about
programs and support different programming paradigms.

8.1 Generic Programs

Because one can use a complex term as a predicate in HiLog, one can program “generic predicates.”
For example, consider a predicate function, i.e., a function that takes a predicate and returns

134
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another predicate. An interesting such predicate function might be closure. closure takes a
binary predicate and returns a predicate for the transitive closure of the corresponding binary
relation. So for example, closure (parent) would be the transitive closure of the parent relation,
i.e., the ancestor relation, and closure(child) would be the descendent relation. We can define
this closure predicate function in HiLog as follows:

closure(R) (X,Y) :- R(X,Y).
closure(R) (X,Y) :- R(X,Z), closure(R)(Z,Y).

Now given any binary relation, one can use use this definition to compute its closure. For example,
we can define a binary predicate, parent as follows:

:- hilog parent.
parent (able,adam) .
parent (able,eve) .
parent (cain,adam) .
parent (cain,eve).
etc

and then we can use the generic definition of closure to find anscestors:

| ?7- closure(parent) (cain,X).
etc.

Notice that we must declare the symbol parent to be a hilog symbol using the directive:

:- hilog parent.

This is necessary because the XSB system allows a mixture of HiLog programming and Prolog pro-
gramming, and the system distinguishes between Hil.og symbols and Prolog symbols in how it repre-
sents them. The HiLog term t¢y(¢y, to, ..., t,,) is represented as the Prolog term apply(to, t1,ta, ..., ty).
Thus the system must know, for example, that parent is a hilog symbol so it knows to represent
parent (cain,adam) as the Prolog term apply(parent,cain,adam).

Another useful generic predicate is map. map takes a binary function and returns a function that
when given a list, returns the list that results from applying that function to each element of the
given list. Again, we can write a natural definition for it:

map (F) ([1,[1).
map (F) ([X|Xs], [YIYs]) :- F(X,Y), map(F) (Xs,Ys).
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So, for example, we can use this generic function to add one to every element of a list, double
every element of a list, or square every element of a list. Given the definitions:

:— hilog successor,double,square.
successor(X,Y) :- Y is X+1.
double(X,Y) :- Y is X+X.
square(X,Y) :- Y is Xx*X.

we can do

| 7- [(hilog)].
[Compiling ./hilog]

% Specialising partially instantiated calls to apply/3
[hilog compiled, cpu time used: 0.59 seconds]

[hilog loaded]

yes
| ?- map(successor)([2,4,6,8,10],L).

L = [3,5,7,9,11];

no
| 7- map(double)([2,4,6,8,10],L).

L = [4,8,12,16,20];

no
| 7-

This definition of map is a bit more general than the one normally found in functional languages,
which is not surprising since Prolog is a relational language and this is really a relational defini-
tion. For example, map (successor) is relation a relation over pairs of lists. If we give to map a
nonfunctional relation, then the map of that relation is also nonfunctional.

(Think of an interesting example.)

Another interesting example is the generic function twice. twice takes an input function (or
relation) and returns a function that applies the input function twice. (From DHDWarren and
MVanEmden.) In standard mathematical notation: twice(f)(x) = f(f(z)). By turning twice into
a relation and essentially writing down this definition, we get:

twice(F) (X,R) :- F(X,U), F(U,R).

And we can run it:
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| 7- [twice].

[Compiling ./twice]

[twice compiled, cpu time used: 0.659 seconds]
[twice loaded]

yes
| ?- twice(successor) (1,X).

X = 3;

no
| ?- twice(twice(successor)) (1,X).

X = b5;

no
| 7- twice(twice(square)) (2,X).

X = 65536;

no
| ?7- twice(twice(twice(double))) (1,X).

X = 256;

no
| 7-

This interesting thing here is that twice(f) for a function £ produces a function similar to £, so
we can apply twice to a result of twice and get a quadrupling (or octupling, ...) effect.
We can add another rule for twice (and make it a hilog symbol):

:— hilog twice.
twice (X, twice(X)).

This rule says that applying twice itself to a function argument gives a term representing the
resulting function. So now we can even apply twice to itself to produce a function that we can then
apply to one of basic functions to produce a function to apply to a number (that lives in the house
that Jack built), as follows:

| ?- twice(twice) (double,Fun),Fun(1,X).

Fun = twice(twice(double))
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X = 16;

no
| 7- twice(twice(twice)) (double,Fun) ,Fun(1,X).

Fun = twice(twice(twice(twice(double))))
X = 65536;

no
| ?7- twice(twice(twice)) (successor,Fun),Fun(1,X).

Fun = twice(twice(twice(twice(successor))))
X =17;

no

| 7-

DHDWarren (and a followup paper by Martin vanEmden et al.) explore issues around using
Prolog to implement higher-order aspects of functional languages. This example is taken from there,
but is expressed in HiLog’s syntax, rather than Prolog’s. HiLog’s syntax makes the development
more perspicuous.

(Do we(I) want to develop a bit more of lambda calculus, and show how to do more general
higher-order programming?)

8.2 Object Centered Programming in XSB with HiLog

HiLog can also be used to program in an object-centered way.
Object oriented programming: C-logic and variants.

(Dealing with pragmatics of HiLog in XSB? and modules and recompilation? Interactions with
tabling.)
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Debugging Tabled Programs

4-port Table Debugger.

The names may not be the best, but they should be clear.

1. Call

Call Untabled

Call Tabled: New Subgoal

Call Tabled: Use Incomplete Table
e Call Tabled: Use Completed Table

2. Exit

e Exit Untabled

e Check/Insert Answer followed by
— Redundant Answer - fail
— Insert Answer — succeed

3. Redo

e Retry Program Clause

e Retry Answer Clause
4. Fail

e Fail Untabled
e Check Complete followed by

— Completing tables (table list)
— Rescheduling Answers for (table list)
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How does tabling affect the debugger commands

Old commands :

Abort cleans up uncompleted tables.

Skip , Leap should work.

Break allows tables to be partially visible.

New Commands:

Ancestors. At least for tables.

Various Table examination mechanisms built upon Table builtins.
Show incomplete tabled subgoals.

Show returns for a table.

Show ancestors for each suspension of an incomplete tabled subgoal.



Chapter 10
Aggregation

In logic programming it is often the case that one wants to compare the various solutions to a single
goal with each other. For example, we may have an employee relation that stores employee names,
their departments and salaries, and we want to find, say, the total salary of all the employees.
This requires querying the employee relation to retrieve the salaries and then combining all the
solutions to find their sum. In an SQL database query, this is done using aggregate functions and

the GROUP BY clause.

Prolog provides several general predicates, the so-called all-solutions predicates, to allow a
programmer to do such things. The all-solution predicates, such as findall/3, bagof/3 and setof/3,
accumulate all the solutions to a particular goal into a list. The programmer can then use normal
recursive predicates to compute the desired function over that list, for example, the sum of the
elements.

To be concrete, to find the total of the salaries, a Prolog programmer could write:

:— bagof (Sal, (Name,Dept) “employee (Name,Dept,Sal) ,Salaries),
listsum(Salaries,MaxSal).

The predicate 1istsum/2 simply takes a list of numbers and returns their sum. The all-solutions
predicate bagof /2 takes a template, a goal, and returns a list of instantiations of the template, one
for each solution to the goal. In this case, the template is simply the variable Sal, so we will get
back a list of salaries. The goal is:

(Name ,Dept) “employee (Name,Dept,Sal)

~

The variables in the term before the ~ symbol indicate the existential variables in the goal. The
values of Sal in successful solutions to the goal are accumulated into a single list, regardless of
the values of the existential variables. In this case, we want all salary values, regardless of the
employee’s name or department. Another possibly interesting alternative query would be:
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:- bagof(Sal, (Name) “employee (Name,Dept,Sal) ,Salaries),
maximum(Salaries,TotalSals).

This query, without the variable Dept being existentially quantified, groups together solutions that
have the same department, and returns nondeterministically, for each department, the list of salaries
for employees in that department. So this is what one would get using a “group by” query in the
database language SQL.

The bagof/3 all-solutions predicate is used here because we don’t want to eliminate duplicate
salaries. If two employees have the same salary, we want to add both numbers; we want the sum
of salaries, not the sum of different salaries.

One computational disadvantage of Prolog’s all-solutions predicates is that regardless of the
function to be computed over the bag (or set) of solutions, that list must still be created. To
accumulate the sum of a set of numbers, it certainly seems inefficient to first construct a list of
them and then add them up. Clearly one could just accumulate their sum as they are produced.
In XSB if the goal is tabled, the situation is exacerbated, in that the set of solutions is in the table
already; building another list of them seems a bit redundant.

XSB, being an extension of Prolog, supports its all-solutions predicates, but it also uses tabling
to support several other such predicates, which are described in this chapter.

10.1 Tabled Agggregation and Lattice Operations: Min, Max

In XSB we can use a table declaration to indicate that we want to aggregate the returned values
of a particular argument. For example, to find the maximum of all salaries of employees, we could
declare:

:- table maxEmployeeSal(lattice(max/3)).
maxEmployeeSal(Sal) :- employee(_,_,Sal).

and define:
max(X,Y,Z2) :- (Y > X >Z =Y ; Z =1X).

We define the predicate MaxEmployeeSal/1 to be true of employee salaries, and we declare that
it is to be tabled using the lattice operation max/3 on its only argument. We define max/3 to be
the operation that takes two numbers as input and produces the larger as output. Notice that
this operation does define a lattice over numbers, which is why we use the lattice indicator in
the table declaration. In this situation, maxEmployeeSal/1 must be called with a variable. XSB
computes the first answer and puts it in the table, and then fails back to find other answers. As
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each answer is found, the max operation is called with the previous answer and the new answer,
and the result of that operation replaces the previous answer in the table. So the table keeps only
one answer, and in this case it is the maximum of all the numbers seen so far.

10.2 Tabled Agggregation and the Fold Operation: sum

We can use the employee/3 relation to define a predicate total_salaries/1 that gives the total
of the salaries of all employees (in any department), as follows:

:— table total_salaries(fold(sum/3,0)).
total_salaries(Sal) :- employee(_Name,_Dept,Sal).

sum(X,Y,Z) :- Z is X+Y.

Here we use the fold indicate how to combine the answers returned to the table. —em Fold
takes a binary function (as a ternary predicate), here sum/3, and its identity, here 0, and applies
function to the identity for the first element returned to the table. Then for every following element
returned, it applies the function to the element currently in the table and the new element, and
replaces the current table entry with the resulting value. So in this example, it will produce the
sum of all salary values as the value of Sal.

We can also use tabled aggregatio to get the effect of “group by” in SQL. Consider the following
definition that defines a predicate that for each department gives the sum of salaries of employees
in that department:

:- table dept_salaries(_,fold(sum/3,0)).
dept_salaries(Dept,Sal) :- employee(_Name,_Dept,Sal).

sum(X,Y,Z) :- Z is X+Y.

Here the variable in the first argument of the predicate dept_salaries in the table declaration
indicates that answers should be grouped by that argument. So in this case, dept_salaries will
provide, for each department, the sum of the salaries of the employees in that department.

We use HiLog and tables to support aggregation. In HilLog one can manipulate predicates, or
the names of sets. So we can construct a set, or bag really, that contains all the salaries in our
example of the simple employee relation:

:— hilog salaries.
salaries(Sal) :- employee(_Name,_Dept,Sal).
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The symbol salaries is the name of a unary predicate that is true of all salaries, or rather is the
name of a bag of all salaries. It is a bag since it may contain the same salary multiple times. XSB
provides a predicate bagSum which can be used to sum up the elements in a named bag. So given
the definition of the HiLog predicate salaries/1 above, we can get the sum of all the salaries with:

:— bagSum(salaries,TotalSals).

The first argument to bagSum is the name of a bag, and the second is bound to the sum of the
elements in the bag.

As an interesting example of aggregation and recursion, consider the following problem. Say
our university is considering instituting a policy that guarantees that no supervisor shall make less
than anyone he or she supervises. Since they do not want to lower anyone’s salary, to initiate such
a policy, they will have to give raises to supervisors who make less than one of their employees.
And this may cascade up the chain of command. We want to write a program that will calculate
how much they will have to spend initially to start this new program. The following program does
this:

% include needed predicates
maximum(X,Y,Z) :- X>=Y -> Z=X; Z=Y.
sum(X,Y,Z) :- Z is X+Y.

% The total cost is the sum of the raises.
:— table totcost(fold(sum/3,0)).
totcost(Cost) :- raise(Cost).

% A raise is the max of the posible new salaries (own and
% subordinates’ salaries) minus the old salary.
raise(Raise) :-
possNewSal (Emp,NSal),
emp (Emp, _,08al),
Raise is NSal-0Sal.

% A possible new salary is either one’s old salary or the max of the
% possible new salaries of one’s immediate subordinates.
:- table(possNewSal(_,lattice(maximum/3))).
possNewSal (Emp,Sal) :- emp(Emp,_,Sal).
possNewSal (Emp,Sal) :-
dept (Dept,Emp), emp(Sub,Dept,_),
possNewSal (Sub,Sal) .

% dept(Dept,Mgr): department data
dept (univ,provost) .
dept (ceas,deanCEAS) .
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dept(cs,chairCs).
dept(ee,chairEE).

% emp(Name,Dept,Salary):
emp (provost ,univ,87000) .
emp (deanCEAS,univ,91000) .
emp (chairCs, ceas,95000) .
emp (chairEE, ceas, 93000) .
emp (prof1CS, cs, 65000) .
emp (prof2CS,cs,97000) .
emp (prof 1EE, ee, 90000) .
emp (prof2EE, ee, 94000) .

Here is the execution of this program for this data:

| ?7- [raises].

[Compiling ./raises]

% Specialising partially instantiated calls to apply/3
% Specialising partially instantiated calls to apply/2
[raises compiled, cpu time used: 1.669 seconds]
[raises loaded]

yes
| ?- totcost(C).

C = 19000;

no
| 7-

And indeed, it would cost $19,000 to upgrade everyone’s salary appropriately.

We can combine aggregation with dynamic programming (which is actually what is happening
to some extent in the previous example) to nice effect.

A variation on the knapsack problem discussed above in the section on dynamic programming
uses aggregation to find an optimal knapsack packing. (This example taken most recently from
JLP 12(4) 92, Clocksin, Logic Programming specification and exectuion of dynamic-programming
problems. He refers to Sedgewick, Algorithms A-W 88.) Recall that in the earlier knapsack problem
we were given a set of integers and we try to see if, given a target integer, we can choose a subset
of the given integers that sum to the target integer. The version we consider here is a bit more
complicated, and perhaps more realistic. Here we have a set of kinds of items; each item has a
value and a size (both are integers.) We are given a knapsack of a given capacity and we want to
pack the knapsack with the items that maximize the value of the total. We assume that there is
an unlimited supply of items of each kind.



CHAPTER 10. AGGREGATION 146

This problem can be formulated as follows:

maximum(X,Y,Z) :- X>=Y -> Z=X; Z=Y.

:- table cap/2.
% cap(Size,Cap) if capacity of knapsick of size Size is Cap.
cap(I,Cap) :- I >= 0, small_cap(I,Cap).

% small_cap(BigSize) (BigCap) if there is some item with ISize and IVal
% such that the capacity of a knapsack of size (BigSize-ISize) has
% capacity (BigCap-Ival).

:- table small_cap(_,lattice(maximum/3)).
small_cap(BigSize,BigCap) :-

item(ISize,IVal),

SmallSize is BigSize-ISize,

cap(SmallSize,SmallCap),

BigCap is IVal+SmallCap.

% every knapsack (>=0) has capacity of O.

small_cap(BigSize) (0) :- BigSize >= 0.

Here the tabling of cap/2 is not necessary, since the call to bagMax/2 is tabled automatically.

A simple example of executing this program is:

%Data:
item(10,18).
item(8,14).
item(6,10).
item(4,6).
item(2,2).

| 7- [aggreg].

[Compiling ./aggreg]

[aggreg compiled, cpu time used: 0.861 seconds]
[aggreg loaded]

yes
| ?- cap(48,C).
C = 86;

no

| 7- cap(49,C).
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no
| 7-

And we can see that indeed to fill a knapsack of size 48, one should take four of item 10 (for total
value 72), and one of item 8 (with value 14), giving us a total value of 86.

Another problem that combines dynamic programming and aggregation is the problem of finding
the way to associate a matrix chain product to minimize the cost of computing the product.

minimum(X,Y,Z) :- X=<Y -> Z=X; Z=Y.

% mult_costI,J,C) if C is the cost of the cheapest way to compute the
% product M_T x M_{I+1} x ... x M_J.

mult_cost(I,I,0).

mult_cost(I,J,C) :- I<J, factor(I,J,C).

% factor(I,J) is true of costs obtained by computing the product of

% matrices between I and J by factoring the chain at any point between
% I and J and assuming optimal costs for the two factors.

:— table factor(_,_,lattice(minumum/3)).

factor(I,J,C) :-

J1 is J-1,

between(I,K,J1),

mult_cost(I,X,Cl),

K1 is K+1,
mult_cost(K1,J,C2),
It is I-1,

r(I1,Ri1), r(X,Rk), r(J,Rj),
C is C1+C2+Ril*Rk+*Rj.

between(X,X,_).
between(X,Y,Z) :- X < Z, X1 is X+1, between(X1,Y,Z).

% r(I,N) if N is the number of rows in the I-1st matrix. (The last is
% the number of columns in the last matrix.)

r(0,5).

r(1,3).

r(2,6).

r(3,9).

r(4,7).

r(5,2).

An example run is:
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| ?7- [mult_cost].

[Compiling .\aggreg3]

[aggreg3 compiled, cpu time used: 0.125 seconds]
[aggreg3 loaded]

yes
| ?- mult_cost(1,4,C).

C = 456;

no
?_

10.3 Long Path Example

Consider the following example in which we try to find nice ways to explore a park while going from
one point to another in it. Say the park has various interesting things to see and paths between
them, so all nodes are interesting. We’ll represent the paths in the park as a directed graph, with
the points of interest as the nodes. The goal now is, given a source and a destination node, find all
“maximal” paths from the source to the destination, those that pass through the most intermediate
distinct nodes. We can encounter a node more than once, but we don’t want to traverse a path
more than once. The idea is that we want to take a more-or-less direct route to our target, but
we’d like to see as many points of interest as is reasonable along the way.

The following program will compute the set of such maximal paths.

:— import member/2,append/3, reverse/2 from basics.

% stroll(X,Y,Path) if Path is a way to go from X to Y seeing many things.
stroll(X,Y,Path) :- walk(X,Y,BPath), reverse(BPath,Path).

% superset(L1,L2) if L1 is a superset of L2.
:— index superset/2-2.
superset (_, [1).
superset (L2, [X|L1]) :- member(X,L2), superset(L2,L1).

% L is in walk(X,Y) if L is a (reversed) path from X to Y.
% (must be tabled because of left-recursion.)

:- table walk(_,_,po(superset/2)).

walk(X,Y, [Y,X]) :- edge(X,Y).

walk(X,Y,[YIP]) :- walk(X,Z,P), edge(Z,Y).

Here walk(X,Y) is a parameterized predicate name which represents the set of paths that go
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from node X to node Y. Each path is represented as a list of nodes (in reverse order of traversal.)
The bagP0 aggregation takes just the maximal paths, since we want the alternatives that allow us
to see as many points of interest as possible. Here is the execution of the program on the data
shown.

edge(a,b).
edge(b,c).
edge(b,d).
edge(c,d).
edge(d,e).
edge(a,f).
edge(f,g).
edge(g,e).

| 7- [aggreg].
[aggreg loaded]

yes
| ?- stroll(a,e,P).

P = [a,b,c,d,e];

jav)
|

- [a,f,g,e] 5

no
| 7-

Some aggregate operations can be implemented using either bagReduce/4 or bagP0/3. bagMax/2
is a good example. Both of the following definitions are correct:

:— hilog maximum.
maximum(X,Y,Z) (- X > Y ->Z =X ; Z =Y.
bagMax (Bag,Max) :- bagReduce(Bag,Max,maximum,-1.0e38).

:— hilog 1t.
1t(X,Y) :- X < V.
bagMax (Bag,Max) :- bagP0(Bag,Max,lt).

In such cases it is more efficient to use BagReduce/4 because it can take advantage of the fact
that at any point in time, there will be at most one value in the table.
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10.4 Recursive Aggregation

Aggregation interacts in an interesting way with tabling. We’ve already seen that we can use them
both: in the scenic-path example, we needed tabling to compute the paths using left recursion.
We also saw an interesting recursive application of aggregation in the salary-raising example. We
continue to explore the interaction of tabling, aggregation and recursion in this section by developing
a program to compute the shortest paths between nodes in a (positive) weighted graph.

10.4.1 Shortest Path

To compute the shortest path between two points in a graph, we first define a HiLog predicate
short_path(Source,Target), that given two nodes returns short paths from the first to the second.
There may be several short paths between two nodes, but we will be sure that one of them must
be the shortest path:

% There’s a short path if there’s an edge,
short_path(X,Y) (D) :- edge(X,Y,D).
% or if there is a short path to a predecessor and then an edge.
short_path(X,Y) (D) :-
bagMin (short_path(X,Z),D1),
edge(Z,Y,D2),
D is D1 + D2.

The first clause says that there is a short path from X to Y of length D if there is an edge from X to
Y with weight D. The second clause says there is a short path from X to Y of length D if we take the
minimum of the short paths from X to a predecessor (Z) of Y and we get D by adding the distance
along the edge to Y from the predecessor.

Now to get the shortest path, we simply take the shortest of the short paths:

% The shortest path is the minimum of the short paths
shortest_path(X,Y,D) :- bagMin(short_path(X,Y),D).

This program in fact works for cyclic graphs, as long as all loops have nonnegative distance. To
see why it works, we must look at it more closely. Normally we think of computing an aggregation
by creating all the elements in the bag, and then performing the aggregation on the entire set.
However, doing that here, with a cyclic graph, would result in a bag with infinitely many elements,
since there are infinitely many different paths through a cyclic graph. It is clear that we can’t
construct and test every element in a bag of infinitely many elements. bagMin must return an
answer before it has seen all the elements. Notice that if a graph has a self-loop, say from node a to
node a, then a D such that short_path(X,a) (D) is defined in terms of the minimum of a bag that
contains D itself. This turns out to be well-defined, because the minimum operator is monotonic.
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It works computationally because in the case of recursive definitions, the bagMin may return an
answer before it has seen all the answers. At any point it returns the best one it has seen so far:
if another one comes along that is better, it returns that one; if another comes along that is no
better, it just ignores it, and fails back to find another.

So the order in which answers are generated can effect how much computation is done. If poor
answers are returned first and many paths are computed using those poor answers, then all that
work is unnecessary and will have to be done again with improved answers. Whereas if the best
answer is returned first, then much less total computation will have to be done. So the complexity
of this routine is dependent on the scheduling strategy of the underlying engine. We will look at
these issues more later.

10.4.2 Reasoning with Uncertainty: Annotated Logic

We will look at examples including computing with annotated logic and Fitting’s LP over bilattices.

:- import bagMin/2 from aggregs.
:— hilog minimum.
minimum(X,Y,Z) :- X =< Y -> Z=X ; Z=Y.

sumlist([],0).
sumlist ([X|L],S) :- sumlist(L,S1), S is S1+X.

:- op(500,xfx,Q).

G:D :- orFun(G,D).
orFun(G,D) :- bagMin(andFun(G),D).

andFun(G) (D) :- GOL,sumlist(L,D).

p(X,Y)@[D] :- edge(X,Y):D.
p(X,Y)@[D1,D2] :- p(X,Z):D1,edge(Z,Y):D2.

edge(a,b)@[5].
edge(b,d)@[6].
edge(b,c)@[1].
edge(c,e)@[3].
edge(e,d)@[1].
edge(a,c)@[7].
edge(c,d)@[2].
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10.4.3 Longest Path

longest path.

% longest path (without loops)
:- import bagMax/2 from aggregs.
:— import member/2 from basics.

longpath(X,Y,P) (D) :- edge(X,Y,D), P=[F|R], \+member(F,R).
longpath(X,Y,P) (D) :-
bagMax (longpath(X,Z, [Z|P]),D), edge(Z,Y,D), Y\==Z, \+member(Y,P).

:- hilog maximum. maximum(X,Y,Z) :- X @< Y -> Z=Y ; Z=X.

edge(a,b,5).
edge(a,b,6).
edge(a,d,4).
edge(d,b,5).
edge(b,c,3).
edge(b,c,4).

10.4.4 Markov Decision Processes

See IV’s slides, and

:— import for/3 from basics.

u(State,Action,Reward) :-

I =10,

u_i(I,State,_Action0O,Reward0),
iterate(State,10,Reward0,Action,Reward).

iterate(State,I,01dReward,Action,Reward) :-
NextI is I+10,
u_i(NextI,State,NewAction,NewReward),
(NewReward - 0ldReward < 0.000000000001
->Action = NewAction,
Reward = NewReward
; iterate(State,NextI,NewReward,Action,Reward)

).

%u_i(Iteration,State,Action,Reward)
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u_i(1,State,none,Reward) :-

r(State,Reward) .

u_i(I,State,Act,Reward) :-

I>1,Iminusl is I-1,
argmax_sum_rewards_i(Iminusl,State,SumActRew),
SumActRew = argmax(Act,SumRew),

g(Disc),

r(State,Rew0),

Reward is RewO + Disc*SumRew.

hargmax_sum_rewards(Iteration,State,argmax(Action,Reward)).

:- table argmax_sum_rewards_i(_,_,lattice(argmax/3)).
argmax_sum_rewards_i(I,State,argmax(Action,Reward)) :-
sum_rewards_i(I,State,Action,Reward).

%sum_rewards_i(Iteration,State,Action,SumReward)
:— table sum_rewards_i(_,_,_,fold(sum/3,0.0)).
sum_rewards_i(I,St0,Act,Rew) :-
u_i(I,St,_PAct,Rew0),

t(St0,Act,St,Prob),

Rew is Prob*RewO.

sum(X,Y,Z) :- Z is X+Y.
argmax(X,Y,Z) :-

X = argmax(_,R1),

Y = argmax(_,R2),

(Rl >>R2->Z=X;2Z=Y).

%t (Sou,Act,Tar,Prob).
t(a,al,a,0.5).
t(a,al,b,0.5).
t(a,a2,c,1.0).
t(b,b1,a,0.25).
t(b,b1,b,0.75).
t(c,cl,c,0.5).
t(c,cl1,b,0.5).

%r(State,Val)
r(a,12.0).
r(b,-4.0).
r(c,2.0).

%g(Discount)
g(0.9).
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10.5 Scheduling Issues

Discuss breadth-first-like scheduling. Give example of graph that has exponential shortest-path
with depth-first scheduling. Give benches on both depth-first and breadth-first scheduler. (For
benches, maybe just give relative times, so as not to date it.)

(ts) I agree, Ive been using relative times.

10.6 Stratified Aggregation

Issues of stratified findall here, stratified aggregation?
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Incremental Table Maintenance

Describe incremental maintenance.
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Chapter 12

Negation in XSB

Negation in the context of logic programming has received significant attention. Prolog implements
a negation-as-failure inference rule, succeeding the negation of a goal if the goal itself cannot
be finitely successfully proved. This implements a kind of closed-world assumption, in that a
proposition is assumed to be false if it cannot be proved to be true. Recall that with pure Horn
clauses, one cannot prove a negative fact, since the universally true structure (assigning true to all
atoms) is always a model of any set of Horn clauses. The closed world assumption allows us to
assume facts are false if they cannot be proved true. This is a useful operator, which can be used
to represent (and program) interesting situations.

Consider a Datalog database, defining a single relation that describing the employees of an
organization, all defined by simple ground facts. Consider the situation in which we ask a simple
query: “Is Bill Gates an employee?” The query processor will answer “no”; what does this mean,
logically? It does not mean that it has proved that not(employee('Bill Gates’)) is true in all models
of the database. The database says only that certain facts are true; it says nothing about any facts
being false. So a structure in which all the given employee facts are true and another fact saying
Bill Gates is an employee is also true is a structure satifying all the database facts and so is a
model. So clearly not(employee(’Bill Gates’)) is not logically implied by the database program. So
the “no” answer to the initial query means that we cannot prove that Bill Gates is an employee; it
does not mean that we have proved that Bill Gates is not an employee.

Consider a simple example of defining the predicate bachelor using the predicates married
and male:

bachelor(X) :- male(X), \+ married(X).

male(bill).
male(jim).

married(bill).

156
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married(mary) .

The rule says that an individual is a bachelor if it is male and it is not married. (\+ is the
negation-as-failure operator in Prolog.) The facts indicate who is married and who is male. We
can interrogate this program with various queries and we get the following:

| ?- [negation].

[Compiling ./negation]

[negation compiled, cpu time used: 0.1 seconds]
[negation loaded]

yes
| ?- bachelor(bill).

no
| ?- bachelor(jim).

yes
| ?- bachelor (mary) .

no
| ?- bachelor(X).

X = jim;

no
| ?-

as expected. The closed-world assumption is applied here: for example, when there is no fact that
says that jim is married, we assume that he is not married. Also when there is no fact saying that
mary is male, we assume she is not.

It is important to note that with pure Horn clauses, i.e., simple implications with conjunctions
of (positive) atomic formulas as antecedents and single atomic formulas as consequents, nothing
can be proved to be false. l.e., a set of Horn clauses never logically implies the negation of any
atomic formula. Given an arbitrary set of Horn clauses, H, and an arbitrary atomic formula, A.
Consider the structure ST that makes every atomic formula true. ST makes H true and makes A
true. Therefore H does not logically imply not(A). So it is clear that if we are given a Horn clause
program, as for married above, and we ask a negative goal, such as:

| 7- \+ married(jim).

a “yes” answer does not mean that the program logically implies not (married(jim)). It means
that using these rules alone, we cannot conclude that married(jim).
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Another way to think about the answers to negative queries to a Horn clause program is to
think in terms of structures. We saw that every set of Horn clauses has a unique minimal Herbrand
model. That’s the model constructed by the bottom-up application of the Tp operator. Given this
unique model, we can answer both positive and negative queries: a positive query is true if it is in
the least Herbrand model; a negative query is true if its subgoal is not in the least Herbrand model.
So we can use the unique minimal model to characterize answers to both positive and negative
queries to Horn programs.

Before we get completely carried away with using negation, we need to look at situations in
which there are problems. There are two sources of problems: floundering and nonstratification.
Let’s first consider a floundering query and program. Say we wrote the bachelor rule as:

bachelor(X) :- \+ married(X), male(X).

This looks to be an equivalent definition, since after all, the comma is conjunction so the order of
literals in the body of a program (as simple as this one) shouldn’t matter. But now consider the
results of the same queries as above when they are submitted to this program:

| ?- bachelor(bill).

no
| 7- bachelor(jim) .

yes
| ?- bachelor (mary).

no
| ?- bachelor(X).

no
| 7-

The answers are fine for the specific queries concerning bill, jim and mary, but the general query
asking for all bachelors fails, whereas we would expect it to generate the answer jim. The reason
is that the generated subquery of \+ married(X) is able to prove married(X) is true (for X=bill
(and X=mary as well)), and so \+ married(X) fails. The problem is that the implementation of
the operator \+ only works as we want it to when it is applied to an atomic formula containing no
variables, i.e., a ground atomic formula. It is not able to generate bindings for variables, but only
test whether subgoals succeed or fail. So to guarantee reasonable answers to queries to programs
containing negation, the negation operator must be allowed to apply only to ground literals. If it
is applied to a nonground literal, the program is said to flounder. Prolog systems in general allow
the \+ operator to be applied to nonground literals and so the programmer may get unexpected
results. Often another operator, not, is provided which acts just like \+ except that it gives an
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error message when applied to a nonground literal. (In XSB not and \+ give the same, unsafe,
results.)

In fact, when we call the query \+ married(X), with X a variable, it succeeds if it is not the case
that there exists a value for X for which married(X) succeeds. So when a negated goal contains a
variable, the negation has wider scope than the existential quantifier which binds the variable. If
there are no variables in the subgoal, then there is no quantifier to interfere.

The other problem that may arise in programs with negation, that of nonstratification, is a bit
more subtle. While answers to negative queries to a purely Horn clause program are completely
characterized by the program’s least model, in our bachelor example, we are using negative queries
in the definitions of other predicates, not just as top-level queries. Such uses can lead to more
complex issues. Consider the following rules:

shave (john, john) .
shave(bill,bill).
shave (barber,X) :- \+ shaves(X,X).

This program says that ’John’ shaves himself, and ’Bill’ shaves himself, and that the barber shaves
someone if that person does not shave himself. The question is: Who shaves the barber? This is
known as the “Barber paradox”: If the barber does not shave himself, then since he shaves all such
people, the rule says that he does shave himself. And if he does shave himself, then since he only
shaves people who don’t shave themselves, he doesn’t shave himself.

The question of whether the barber shaves himself can be posed in Prolog as:

| ?- shave(barber,barber).

So what should Prolog answer? Actually Prolog will go into an infinite loop here, which seems
reasonable, since either a yes or no answer seems incorrect given the argument above.

Consider another example of this kind of phenomenon. Say we want to define a predicate,
normal, that is true of all reasonable sets. A set is normal if it doesn’t contain itself as a member.
(A set containing itself is rather weird, when you think about it. So we are using the idea of
normality to exclude these weird sets.) To define normal, we give the rule:

normal(S) :- \+ in(S,S).

where the predicate in denotes membership. Now we want to have the constant n denote the set
of all normal sets. So X is in n just in case X is a normal set. The following rule reflects this:

in(X,n) :- normal(X).
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Now consider what happens if we ask this program whether n is itself a normal set: normal (n),
which reduces to \+ in(n,n), which reduces to \+ normal(n). So to show that n is normal, we
have to show that n is not normal. This is essentially a simple formalization of Russell’s paradox.

Clearly there is something a little odd with these examples. The oddity is that in each case, a
predicate, (normal (n) or shave (barber,barber)) is defined in terms of its own negation. Normally
we consider rules as defining predicates, and this is an odd kind of cyclicity which we want to avoid
in definitions. Programs that avoid such cycles through negation in their definitions are called
stratified programs. Notice that Prolog would go into an infinite loop when asked queries that
involve a cycle through negation.

So we need to have a better idea of what we want these programs that include negation to
mean. That is, we need a semantics for these programs. For positive programs (i.e., Horn clause
programs) we have a very nice and clean semantics; actually we have several of them, all defining
the same thing. A query to a positive program succeeds if 1) an instance is logically implied by the
program clauses, or 2) if there is an SLD resolution proof of it, or 3) if an instance is in the least
fixed point of the Tp operator for the program. The question is whether we can come up with a
simple and clean semantics for programs with negative goals in their bodies.

12.1 Completion Semantics

The first approach to a semantics of programs with negative literals in their bodies was proposed by
Keith Clark [|, and is known as Clark’s Completion. The idea here is to use the first idea above for
the semantics: to use the program to come up with a set of formulas which will logically imply the
all the appropriate queries, including negative ones. Clearly the implications obtained by treating
the negation operator as logical negation won’t do, since they cannot imply any negative goal. E.g.

forall (X,bachelor(X) <- male(X) /\ not(married(X)))

male(bill).
male(jim) .

married(bill).
married(mary) .

do not imply not (bachelor (mary)), which according to our intuitions we require. Those formulas
cannot imply not(bachelor (mary)) since there is a model of these formulas in which bache-
lor(mary) is true (one in which everyone is a bachelor, which satisfies the first rule true.)

So this set of formulas doesn’t work, but maybe another one will. Since we want to think of
the first program rule as defining the relation bachelor, and we usually use “if and only if” for
definitions, we might turn all the “if”s into “if and only if”s as follows:
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forall(X,bachelor(X) <-> (male(X) /\ not(married(X))))
forall(X,male(X) <-> X=bill \/ X=jim)

forall(X,married(X) <-> X=bill \/ X=mary)

Its easy to see that for the first rule, we simply made the quantifier explicit and turned the “if”
into an “iff”. For the male/1 predicate, we had to create a single rule for all the facts, creating
a rule with a single “if”, and then we changed that “if” into “iff”. The intuitive meaning of the
second rule that defines the relation male/1 is that X is a male if and only if X is either bill or jim.

Now this is a set of logical formulas, and we would like the meaning of a ground query to be true
if this set of formulas (called the completion of the program) logically implies the query. There is
one more issue we need to handle to make this work. Given just the if-and-only-if rules above, we
still cannot prove that bill is not a bachelor. The problem is that it may be that both constants bill
and jim refer to the same individual in the model. (Intuitively this might be more understandable
had I chosen to name the second male as james instead of as bill.) So to be able prove that bill is
not married, we have to know that not(bill=jim). So to make the completion semantics work,
we add additional inequality axioms to say that no two constants are equal. We also need to add
inequality axioms to say that functions are freely interpreted, i.e., that two function applications
are equal only if they are the same function symbol applied to equal arguments.

With these additional inequality axioms and the completion of the bachelor program, we can
prove not(bachelor(bill)) as follows:

From forall (X,bachelor (X) <-> (male(X) /\ not(married(X)))),we can infer (bachelor(bill) <-:
And from this and married(bill) and not(bill=jim), we can infer not(bachelor (bill)). So
for this program we have succeeded in giving a meaning to programs with negation that satisfy our
intuitions.

However, there are other programs for which the completion gives somewhat unintuitive results.
For example, consider the following transitive closure program:

e(a,a).
e(b,a).

pX,Y) - e(X,Y).
p(X,Y) :- e(X,2),p(Z,Y).

Its completion is (assuming free variables are universally quantified):

e(X,Y) <> (X=a /\ Y=a) \/ (X=b /\ Y=a)

p(X,Y) <> e(X,Y) \/ exists(X,e(X,Z) /\ p(Z,Y))
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Here we again put the two standard rules for transitive closure together into a single rule and then
turned the “if” into and “iff”.

Now consider the transitive closure of this simple graph; it is {p(a,a), p(b,a)}, since there are
no paths other than the length-one paths corresponding to the edges. So since p(a,b) is actually
not in the transitive closure, we would like to have the completion of this program logically imply
that is not in the transitive closure. I.e., we would like the completion to imply not (p(a,b)). But
it doesn’t.

Notice that the structure that makes the following atoms true:

{e(a,a),e(b,a),p(a,a),p(b,a),p(a,b),p(b,b)}

satisfies all the rules. It clearly satisfies the first rule. To see that is satisfies the second rule,
consider all that rule’s instances:

. pa,a) e(a,a) \/ exists(Z,e(a,2) /\ p(Z,a))
. p(b,a) <-> e(b,a) \/ exists(Z,e(b,Z) /\ p(Z,a))
. pCa,b) e(a,b) \/ exists(Z,e(a,Z2) /\ p(Z,b))
. p(b,b) e(b,b) \/ exists(Z,e(b,Z) /\ p(Z,b))

0
v

W N -
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vV V

Clearly the first and second instances are true since both sides evaluate to true. Consider the third
instance: the left-hand side (p(a,b)) is true, e(a,b) is false, but let Z be a, and then we see that
e(a,a) / p(a,b) is true in the structure, so the right-hand side is also true, making this entire thrid
formula true. And consider the fourth instance: the left-hand side is true, e(b,b) is false, but if we
take Z to be a, we get (e(b,a) / p(a,b)) which is true in the structure; so both sides are true and
the fourth instance is true as well. So all the instances of the completion of the second rule of the
program are true, so there exists a model of the completion (this one) that makes p(a,b) true. So
clearly the completion does not logically imply not(p(a,b)). So what this means is that under the
completion semantics our definition of “transitive closure” does not define real transitive closure.

For this reason, many have concluded that the completion semantics is not the desired semantics
for logic programs. It may handle programs with negation in a reasonable way, but it goes a step
backward for positive programs, in particular one as simple as transitive closure.

The problem here can be seen to boil down to rules like:

p = p-

In the least model of this program, p is false. But the completion of this rule: p <-> p is a tautology
so it does not imply that p is false (or that p is true); it imposes no constraint on p at all. By
looking carefully at our transitive closure example, we can see this “self-supporting” phenomenon
going on, with p(a,b), for example.
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Recall what we wanted the program completion to do for us for this program. We wanted
to construct a set of first-order formulas derived from the transitive closure program that would
logically imply exactly the facts in the transitive closure and the negation of facts not in the
transitive closure. It turns out that this is not possible; there is no such set of first-order formulas.
This is a basic theorem of first-order logic. [].

So rather than basing our semantics of logic programs with negation on the notion of logical
consequence of a first-order theory, let’s turn to look at a possible least-fixed point characterization.

12.2 Negation through Fixed Points

Let’s consider how we might understand the bachelor program using least fixed points. Again, the
program:

bachelor(X) :- male(X), \+ married(X).
male(bill). male(jim).

married(bill). married(mary).

Here we can first compute the least fixed point of the program consisting just of the two married
facts, which (trivially) contains just those two facts. Now having completing that fixed point, we
can compute a fixed point for bachelor, which depends on the negation of married.

The paradoxical examples show that definitions of predicates that depend on their own negations
are problemmatic. So our first approach to providing a semantics for negation in logic programming
will involve prohibiting such programs. A program that doesn’t include cyclic definitions that
involve negation is called stratified.

A Prolog program is Predicate Stratified if each predicate, P, can be assigned an integer (a
stratum), S(P), such that for every pair of predicates P, and P; in rule in the program of the form:

P_1(..) := ..., P_2(...),
S(P_1) >= S(P_2), and for every pair of predicates P, and P, in rule in the program of the form:
P_1(..) := ..., \+ P_2(...),

S(P_1) > sS(P_2).

For example, consider the bachelor program:
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bachelor(X) :- male(X), \+ married(X).

male(bill).
male(jim).

married(bill).
married(mary) .

This program has three predicates: bachelor, male, and married. We can assign strata as follows:

S(male) =1
S(married) = 1
S(bachelor) = 2

and this stratification function satisfies the requirements that come from the one rule, i.e., that
S(bachelor) >= S(male), and S(bachelor) > S(married). So this program is said to be predicate
stratified. There are many possible stratification functions that satisfy the necessary constraints.
We can define a “least” one, in which all the strata are as small (positive) integers as possible. The
one given here is least.

Consider the program that defines normal sets:

in(X,n) :- normal(X).
normal(S) :- \+ in(S,S).

For this program S(in) must be >= S(normal), because of the first rule, and S(normal) must be >
S(in), because of the second rule. It is clear that this is not possible, so no stratification function
exists for this program, and the program is said to be not predicate stratified, or unstratified, or
unstratifiable.

There is a simple algorithm for determining whether a stratification function exists for a program
and finding one if there does. The algorithm tries to construct a stratification function but will fail
if none exists. The algorithm is as follows: First assign every predicate the stratum 1. Then for
every pair of predicates P; and P, that appear in a rule of the program of the form:

P_1(..) := ..., \+ P_2(...),

If S(P) <= S(P2), then set S(P;) to be S(P,) + 1. Repeat this until no change needs to be made,
in which case the final S is a stratification (and a least one), or until for some predicate P, S(P) > n,
where n is the number of distinct predicates in the program, in which case there is no stratification.

Given a stratification for a program, we can define a unique Herbrand model for the program
bottom-up using the idea the Tp operator. We define the meanings of the predicates in a stratified
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program in the order of their stratification numbers. First look at all the predicates at stratum 1.
None of these depend negatively on any predicate, so those rules, denoted by P1, are a set of Horn
clauses. We can construct the least model of these rules, using the Tp; operator for the stratum 1
program, which generates the set of ground atomic formulas, Mp;, that are logical consequences
of P1.

Now Mp; defines all the predicates at stratum 1. Now consider all predicates at stratum 2,
P2. They depend on other stratum 2 predicates and stratum 1 predicates, perhaps negatively on
stratum 1 predicates. We can now apply the Tpo operator iteratively to Mp; and now interpreting
a negative atomic formula body of a rule in P2 as true iff A is not in Mp;. We continue in this
way through the strata, at each step using the atoms computed at an earlier step to interpret the
negative literals in the bodies of rules. In this way we can construct in iterated fixed point, which
will be a model of rules in the program. This model is called the Perfect Model of the stratified
program.

For example:

1. p :- q, \tr, s.
2. q :- p.

3. q :— s.

4. r :- \+s, t.

5. s.

A stratification can be computed as follows:

S(p) =1
S(q) =1
S(r) =1
S(s) =1
S(t) =1
S(p) = 2, by rule 1, and S(r) =1
S(q) = 2, by rule 2, and S(p) = 2
S(r) = 2, by rule 4, and S(s) =1
S(p) = 3, by rule 1, and S(r) = 2
S(q) = 3, by rule 2, and S(p) = 3

So this program is stratified, and its stratification is:

S(p) =3
S(q) = 3
S(r) = 2
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S(s)
S(t)

With this stratification we can compute the perfect model. P1:

and Mpy: {s}. Then P2 is
4. r :- \+s, t.
and Mpy = {s}, since \+s is false (since s is in Mp;) and then

1. p :- q, \+r, s.
2. q :-p.
3. q :- s.

and Mps is {s, q, p}, since s is in Mpo and r is not in Mps.

There are a few things to note about the perfect model. It is an iterated fixed point, and so
is defined by transfinite induction. I.e., we may have to iterate to infinity at one stratum before
we can move to the next stratum. So this means that the perfect model may not be recursively
enumerable.

When a program is predicate stratified, it is generally agreed that the perfect model provides
the correct semantics for it. However, there are many programs that are not predicate stratified
but for which Prolog computes what seems to be the correct answers. Consider for example the
definition of even natural numbers (represented in successor notation):

even(0).
even(succ(X)) :— \+ even(X).

Prolog computes this correctly. But the program is not predicate stratified, since the predicate
even/1 depends on itself negatively. But notice that when it does, its argument is smaller, so
there actually is no cycle through negation in the definition; the definition “grounds out” at 0.
Also note that we can transform any predicate stratified propositional program into a nonstratified
(predicate logic) program simply by introducing one unary predicate, say, ¢/1, and then replacing
every propositional symbol, P, in the original program by c(P). Clearly the program hasn’t changed
in any fundamental sense, but if the original program had any negation in it at all, the transformed
program will not be predicate stratified; the only predicate is ¢/1 so it will depend negatively on
itself.



CHAPTER 12. NEGATION IN XSB 167

To address these problems, more refined definitions of stratification were developed. In partic-
ular the notion of “local stratification” was defined. The idea of local stratification is to ground
the program, and then to determine if the (usually infinite) set of ground atomic formulas can be
placed in strata so that there is no cycle through negation. For example, the even/1 program above
is locally stratified, since we can assign the stratum 1 to the ground atomic formula even(0), and
n+1 to the formula even(succ(...succ(0))) with n successors. With this stratification, it’s easy to
see that any atom depends negatively only on atoms with smaller strata.

However, there are disadvantages to local stratification. For example it is undecidable whether
a finite predicate logic program is locally stratified, which means that were we to use that as the
definition of a meaningful program, it would undecidable whether a program has meaning.

So the search continued for a definition that would give meaning to all programs, stratified (in
whatever form) or not.

[How /whether to include this following...]

As an example of stratified negation, consider the situation in which we have a set of terms and
a nondeterministic reduction operation over them. Then given a term, we want to reduce it until
further operations don’t simplify it any more. We will allow there to be cycles in the reduction
operation and assume that terms that reduce to each other are equivalently fully reduced.

This situation can be abstractly modeled by considering the terms to be nodes of a directed
graph with an edge from N1 to N2 if the term at N1 directly reduces to the term at N2. Now
consider the strongly connected components (SCCs) of this graph, i.e. two nodes are in the same
SCC if each can be reached from the other. We will call an SCC a final SCC if the only nodes
reachable from nodes in that SCC are others in that SCC. Now given a node, we want to find all
nodes reachable from that node that are in final SCCs.

So first we define reachable:

:— table reachable/2.
reachable(X,Y) :- reduce(X,Y).
reachable(X,Y) :- reachable(X,Z), reduce(Z,Y).

Next we can define reducible to be true of nodes that can be further reduced, i.e., those nodes
from which we can reach other nodes that cannot reach back:

reducible(X) :- reachable(X,Y), tnot(reachable(Y,X)).

tnot is the negation operator for tabled goals. It checks to see that the call doesn’t flounder, giving
an error message if it does. It can be applied only to a single goal, and that goal must be a tabled
predicate. With this predicate we can next define the predicate fullyReduce that is true of pairs
of nodes such that the first can be reduced to the second and the second is not further reducible:
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:— table reducible/1.
fullyReduce(X,Y) :- reachable(X,Y),tnot(reducible(Y)).

Note that we must table reducible because tnot can only be applied to predicates that are tabled.

So with these definitions and the following graph for reduce:

reduce(a,b).
reduce(b,c).
reduce(c,d).
reduce(d,e).
reduce(e,c).
reduce(a,f).
reduce(f,g) .
reduce(g,f).
reduce(g,k) .
reduce(f,h).
reduce(h,i).
reduce(i,h).

we can ask queries such as:

| ?- fullyReduce(a,X).

X = c;
X = h;
X =4d;
X = k;
X =1i;
X = e;
no

| -

which returns all nodes in final SCCs reachable from node a.

However, we may now wish to generate just one representative from each final SCC, say the
smallest. We can do that with the following program:
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fullyReduceRep(X,Y) :- fullyReduce(X,Y), tnot(smallerequiv(Y)).

smallerequiv(X) :- reachable(X,Y), YO<X, reachable(Y,X).

Now we get:

| 7- fullyReduceRep(a,X).

X = c;
X = h;
X = k;
no

| 7-

Note that this is an example of a stratified program. The predicate reachable is in the lowest
stratum; then reducible is defined in terms of the negation of reachable so it is in the next
stratum; then fullyReduce is defined in terms of the negation of reducible, so it is in the third
stratum. smallerequiv is in the first stratum with reachable; and fullyReduceRep is in the
same stratum as fullyReduce.

12.3 General Negation

There have been many proposals for a semantics for general logical programs, i.e., programs with
unrestricted negation. When considering general semantics, there are a few very simple (proposi-
tional) programs that we can use to show their particular characteristics. The programs are the
following;:

p = p-

This is a simple program in which p depends (only) on itself. Notice that Prolog goes into an
infinite loop on this program, and Tabled Prolog terminates with p being false.

The second program is a direct negative loop.

P :—- \+ p.

The final program has two propositional symbols, each of which depends directly on the other
negatively.
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p :- \+ q.
q :- \+ p.

We will use these programs to help understand (and distinguish) the various semantics for
general logic programs that we consider in the following sections.

12.3.1 Clark’s Completion Semantics

Idea is to turn the implications of rules into biconditionals and then to treat closed world negation
as logical negation.

So take program: Put rules with same head together into one rule (with disjuctive bodies). Add
existential quantifiers for variables in the body but not the head.

Then turn the if’s into iff’s.

This is called the completion of the program.
Example:

even(0). even(s(X)) :- \+even(X).

Completion:

even(X) <==> exists(Y, (X =0 \/ (X=s(Y) /\ not(even(Y)))).

Also must add “Clark’s Equality Theory” (CET), to define equality: not(a=b) for every pair
of constants a and b. f(X1,..,Xn) = g(Y1,..,Yn) iff f=g, and Xi=Yi for all Y. not(X=f(..,T,..)) if X
appears in term T.

Then the meaning of a program is the set of logical consequences of the completion of the
program and CET.

So is even(s(s(0))) a logical consequence of the completion of the program and CET?

even(s(s(0))) <==> exists(Y, (s(s(0))=0\/(s(s(0))=s(Y)/\not (even(Y¥)))))
<==> not (even(s(0)))
<==> not (exists (Y, (s(0)=0\/(s(0)=s(Y)/\not(even(Y¥))))))
<==> not (not (even(0)))
<==> not (not (exists (Y, (0=0\/...))))
<==> not (not (true))
<==> true.
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Yes. So Clark’s completion gives us what we want for the even program.

What does it do with:

p = p-

The completion of this program is simply p<==>p, which is a tautology. So its logical consequences
are just the tautologies, so it does not imply either p or not(p). So from this program we cannot
conclude that p is true or that p is false. Notice that this differs from the perfect model semantics
in which we can conclude from this program that p is false.

This does have an interesting effect on the transitive closure definition. Consider the program:

e(a,a).
e(b,a).

pX,Y) - e(X,Y).
pX,Y) :- e(X,2),p(Z,YV).

We can ground this program into:

e(a,a).
e(b,a).

p(a,a) :- e(a,a).
p(a,b) :- e(a,b).
p(b,a) :- e(b,a).
p(b,b) :- e(b,b).
p(a,a) :- e(a,a),p(a,a).
p(a,a) :- e(a,b),p(b,a).
p(a,b) :- e(a,a),p(a,b).
p(a,b) :- e(a,b),p(b,b).
p(b,a) :- e(b,a),p(a,a).
p(b,a) :- e(b,b),p(b,a).
p(b,b) :- e(b,a),p(a,b).
p(b,b) :- e(b,b),p(b,b).

And now the completion is:

e(X,Y) <==> (X=a,Y=a) ; (X=b,Y=a).

p(a,a) <==> e(a,a) ; (e(a,a),p(a,a)) ; (e(a,b),p(b,a)).
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p(a,b) <==> e(a,b) ; (e(a,a),p(a,b)) ; (e(a,b),p(b,b)).
p(b,a) <==> e(b,a) ; (e(b,a),p(a,a)) ; (e(b,b),p(b,a)).
p(b,b) <==> e(b,b) ; (e(b,a),p(a,b)) ; (e(b,b),p(b,b)).

Now using the first biconditional in the 2nd and 4th rule, we can simplify this to:

e(a,a).
e(b,a).
not(e(a,b)).
not(e(b,b)).

p(a,a).
p(a,b) <==> p(a,b)
p(b,a).
p(b,b) <==> p(a,b)

And now note that just as in the positive loop, we cannot prove either that p(a,b) is true or that it
is false. So this means that the completion semantics does not imply that in this graph, you cannot
get from a to b. So this program does not define transitive closure.

So this shows that the completion semantics does not agree with the perfect model semantics.
In the perfect model semantics, p(a,b) is definitely false. For this reason, the completion semantics
is not normally considered a good semantics for logic programs. People feel that the above tran-
sitive closure program ought to indeed define transitive closure. And since under the completion
semantics, it doesn’t, the completion semantics is not a good semantics.

It is RE, and it is the logical consequences of some set of formulas...

12.3.2 Stable Model Semantics

Another approach to giving semantics to general logic program was proposed by Michael Gelfond
and Vladimir Lifschitz [?] and is known as Stable Models. This approach defines a model for a
program as a fixed point of a particular operator, the Gelfond-Lifschitz (or GL) operator (not
surprisingly.)

We will consider propositional programs. Stable models of predicate programs are defined in
terms of the (possibly infinite) ground instantiation of the program. A model is represented as a
set of proposition symbols, the model making all symbols in the set true and all those not in the
set false. For any general propositional logic program, the GL operator takes a set of propositional
symbols and returns a set of proposition symbols. It is defined using a transformation of the given
program called the GL-reduct of a program. Given a program P and a set of proposition symbols
S, the GL-reduct of P is the program obtained from P by
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1. deleting any rule which has a negative literal in its body whose proposition symbol is in S,
and

2. deleting from the body of any rule any negative literal whose proposition symbol is not in S.

For example, the GL-reduct of program:

P :- g, \+r, s.
\+s.
r := \+q, s.

Q
0

with respect to the set of symbols:

{p, g}

is

p :—-Qq, s.
q.

One can think of the GL-reduct of a program with respect to a set S as being the program one
would get by assuming the propositions in S are true when interpreting negative body literals of
program rules.

Notice that the GL-reduct of any program with respect to any set S is a definite program. In
the process of constructing the GL-reduct we delete all negative literals in a program.

Now we can define a Stable Model of a general propositional logic program. A stable model of
a program P is a set of proposition symbols M such that the least model of the GL-reduct of P
with respect to M is M. l.e., it is a fixed point of the operator obtained by taking the least model
of the GL-reduct.

Proposition: If a program P is predicate stratified, then P has exactly one stable model, which
is the perfect model.

Examples: For the program:

p = p-

the only stable model makes p false. This follows from the previous proposition, as well as from
direct construction.

For the program:
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p :- \+p.

there are no stable models.

For the program:

p - \+q.
q :- \+p.

there are two stable models: one that makes p true and q false, and one that makes p false and q
true.

Stable models have several drawbacks. Computing the stable model of a propositional program
is NP-complete, so the best general algorithm known is exponential. Also, it does not have the
“relevance” property. That is, to find whether there is a stable model that makes a particular
proposition symbol p true, one has to look at the entire program, not just the propositions that
are used to define p. For example, if the program contains a rule p :- \+p, then there is no stable
model at all, regardless of what the rest of the program is (as long as it doesn’t involve p.)

12.3.3 Well-Founded Semantics

Another approach to defining the meaning of logic programs with default negation is the Well-
Founded Semantics, which uses a 3-valued logic [?]. In a 3-valued logic a proposition may be
true or false or undefined. By using the truth value undefined judiciously, we can provide a single
3-valued model for each logic program with negation.

We will motivate the definition of the well-founded semantics by first considering what we can
infer if we have only partial knowledge of some predicates that are used, but not defined, in an
old-fashioned definite logic program.

Consider a situation in which we have some (definite) rules that define some predicates induc-
tively, and use other predicates in their definitions, but don’t define them. We will call the used,
but not defined, predicates as open predicates. We will assume that we have partial knowledge
of the truth values of atoms of the open predicates. As a simple, concrete example, consider our
friend reachability in a graph:

reach(X,Y) :- edge(X,Y).
reach(X,Y) :- reach(X,Z), edge(Z,Y).

Here reach/2 is defined using the edge/2 predicate, but edge/2 is not defined. We can say that
the reach definition is parameterized by the open predicate edge/2; a definition of the edge/2
predicate determines a complete definition of the reach/2 predicate.
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But perhaps we have only partial knowledge of the edge/2 relation: say we know that there is
an edge from a to b, an edge from b to a, no edge from a to ¢ and no edge from b to ¢, but we
don’t know about other possible edges. (We’ll assume the graph has only these three nodes.) The
question is: What can we conclude about the reach/2 relation using this incomplete information
about the open predicate edge/27 Intuitively, we know that b is reachable from a, a is reachable
from b, a is reachable from a, b is reachable from b, ¢ is not reachable from a, and c is not reachable
from b. But we don’t know if a is reachable from c, if b is reachable from c, or if c is reachable
from c. Let’s be more precise (and general) concerning how we might come to such conclusions.

We assume that the known true edge facts are T = {edge(a,b), edge(b,a)} and the known
false edge atoms are F = {edge(a,c), edge(b,c)}. How do we conclude what reach atoms can
be known true and what reach atoms can be known false? To find ones that must be true, we can
just add the known facts to the (definite) program and find its least model. Anything true in that
model must be true even if some (or all) of the unknown open atoms would turn out to be false.
For our example, we get the following program:

edge(a,b).

edge(b,a).

reach(X,Y) :- edge(X,Y).

reach(X,Y) :- reach(X,Z), edge(Z,Y).

Now we see what is implied by this set of rules: here we get {reach(a,b), reach(b,a), reach(a,a),
reach(b,b) } by taking the least fixed point of this program. These are facts that must be true in
any model consistent with the partial knowledge we have of the edge/2 relation. We have made
conservative assumptions and what is still true under these most conservative assumptions must
indeed be true. We can say that this program defines the “definitely true” atoms for reach.

We have just seen how to conclude what reach atoms must be true; now how do we determine
what atoms must be false? We similarly create a program using our assumptions of what edge
atoms are true and false, but this time we assume that all edge atoms not known to be false are
actually true. So the program we get is:

edge(a,b).

edge(b,a) .

edge(c,b).

edge(c,a).

edge(a,a).

edge(b,b) .

edge(c,c).

reach(X,Y) :- edge(X,Y).

reach(X,Y) :- reach(X,Z), edge(Z,Y).

The seven edge facts are those not known to be false, i.e. those that might be true. We use
this program, taking the least model, to see what reach atoms “might be true”. We can say
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this program defines the “possibly true” atoms. In this case, we get: {reach(a,b), reach(b,a),
reach(c,b), reach(c,a), reach(a,a), reach(b,b), reach(c,c)}. Any reach atom not in this
set will have to be false in any model consistent with our initial edge assumptions. So we conclude
that any reach atom in the complement of this set must be false in any consistent model. So we
know that reach(b,c) and reach(a,c) must be false. We have made liberal assumptions about
what might be true and anything still not true under these most liberal assumptions must indeed
be false.

To review, we have described a way to use partial or incomplete knowledge of facts that are
used in the definitions of inductively defined predicates to infer information about those predicates,
information including what instances must definitely be true and what are possibly true (and whose
complement must definitely be false.) The idea for determining the definitely true defined instances
is to assume that all defining facts not known true are false. Then anything that must be true
in this situation is definitely true. To determine the definitely false atoms, we assume all defining
atoms not known to be false are indeed true; anything that still isn’t possibly true under these
assumptions must definitely be false.

We can use this idea to give a semantics to programs with negative literals in their bodies; i.e.,
inductively defined predicates that use negations in their definitions. For simplicity we will consider
only propositional programs here. In order to use a negative literal to help infer a fact, we must
know that the literal is true, i.e., the atom that is negated is false. But how can we determine such
things? We will use the idea we have just developed of reasoning with partial information about
open predicates to approach this problem. We start by initially disconnecting the negative literals
in the bodies of clauses from their positive forms and just thinking of them as new propositions.
E.g., for the literal tnot (p)!, we introduce a new proposition symbol, say neg_p. We then replace
all negative literals in the program with their new positive forms to get a purely positive program
with open predicates. The resulting program can be seen as similar to the old program but now
parameterized by the newly introduced neg_* predicates.

So let’s apply our approach to reasoning about definitions with partial knowledge about open
predicates. We begin by assuming that we know nothing about these new open predicates, i.e., none
of their atoms are known true or false. So to determine what defined predicates must definitely
be true, we interpret all the neg_x* predicates as false, and see what is true in the resulting least
model. Those defined atoms are now known true. And to find the false atoms, we interpret all the
open predicates as true, take the least model to see what could conceivably be true, and then take
its complement to find the definitely false atoms.

Let’s consider an example; the initial general program with negation is:

p :- r, tnot(t).

q :- r, tnot(s), tnot(w).
r :- s.

r.

s :- tnot(q), r.

'Recall that tnot is the tabled negation operator in XSB.
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We transform it to its open form:

p :- r, neg_t.

q :- r, neg_s, neg_u.
r :- s.

r.

S :- neg_q, r.

t.

To determine the well-founded model of the original program, we will maintain two programs
with the open propositions: one that tells us what atoms must be true (called the definitely true
program), and a program that tells us what atoms could possibly be true (called the possibly true
program) and therefore tells us what atoms must be false. Each program will be a conservative
approximation and we will iteratively modify the programs to improve their accuracy.

The initial definitely true program and definitely false program are:

% definitely true % possibly true

p :- r, neg_t. p :- r, neg_t.

q :- r, neg_s, neg_u. q :- r, neg_s, neg_u.
r - s. r - s.

r. r.

S :- neg.qg, r. S :- neg_q, r.

t. t.

neg_p. neg_q. neg_r. neg_s. neg_t. neg_u.

In the definitely true program we assume that none of the neg_x* propositions are true; in the
possibly true program we assume they are all true. If we take the least model of the definitely true
program, we get {r, t}. These propositions will true regardless of the truth values of the neg_x
propositions, so we will want them to be true in the well-founded model of the original program.
And the least model of the possibly true program (on the defined propositions) is {p, q, r, s}.
So any defined proposition symbol not in this set must be false, and we will want it false in the
well-founded model.

Now we can try to use each of these programs to improve the accuracy of the other. There
really is a connection between the pair of propositions, say p and neg_p: if one is true, then the
other should be false. So if we deduce that r is definitely true in the well-founded model, then
we know that neg_r is definitely false, i.e., not possibly true. And that allows us to update our
possibly true program by deleting the fact for neg_r. Similarly, if we know that u is definitely false
then neg_u is definitely true, and we can update our definitely true program by adding neg_u to it.
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Having changed our definitely true and possibly true programs, we can again find their least fixed
points and see if we have learned something new that will allow us to further update the programs.
We continue to add neg_x* atoms to the definitely true program and remove neg_* atoms from the
possibly true program in this way until we learn nothing new. The resulting programs define the
well-founded semantics of the original program.

Consider this process for our example; the least model of the true program contains r and t,
so these are known true. Since they are known true, neg_r and neg_t must be false, so we can
remove them from the possibly true program, improving our estimate of the possibly true atoms
and getting an updated possibly true program:

% definitely true % possibly true

p :- r, neg_t. p :- r, neg_t.

q :- r, neg_s, neg_u. q :- r, neg_s, neg_u.
r - s. r - s.

r. r.

S :- neg.q, r. S :- neg_q, r.

t. t.

neg_p. neg_q. neg_s. neg._u.

Now looking at the least model of this new possibly true program, we see that neither u nor p is
possibly true, i.e., not in the least model of the possibly true program and thus must be false. So
we can improve our estimate of the true atoms by adding neg_u and neg_p to our definitely true
program, obtaining:

% definitely true % possibly true

p :- r, neg_t. p :- r, neg_t.

q :- r, neg_s, neg_u. q :- r, neg_s, neg_u.

r - s. r :- s.

r. r.

S :- neg_q, r. S :- neg_q, r.

t. t.

neg_p. neg_u. neg_p. neg_q. neg_s. neg_u.

Now looking at the current versions of the two programs: the neg version of every defined atom in
the least model of the definitely true program has been removed from the possibly true program;
and the neg version of every defined atom not in the least model of the possibly true program
has been added to the definitely true program. So we can no longer improve our estimates of the
definitely true and possibly true atoms, which leaves us with the well-founded model of the original
program. The atoms true in the well-founded model are the defined atoms in the least model of
the final definitely true program; the atoms false in the well-founded model are the defined atoms
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not in the least model of the final possibly true program. Thus for this program r and t are true
in the well-founded model, p and u are false, and s and q are undefined.

To review this process: the definitely true program starts with no neg_* atoms and gains them
as their positive counterparts are found not to be possibly true. The possibly true program starts
with all the neg_* atoms and loses them as their positive counterparts are found to be definitely
true. The process continues until no more improvements can be made. Then we read off the
well-founded model from the final programs.

12.4 Other Stuff to think about?

We need examples! Planning? Use for-all type problems, e.g. to find if all nodes reachable from a
given node are red, find if it is not the case that there exists a node reachable from the given node
that is not red.

Sk sk sk sk skkkosk sk sk sk sk sk skoskoskoskokoskokoskokoskokoskokoskokosk ok

Issues of safety.

12.5 Approximate Reasoning

Use course prerequisites example. Introduce undefined truth value. Add undetermined facts for
courses currently being taken. Then requests for whether have satisfied requirements will give: true
if satisfied without any current course false if not satisfied even if all current courses are passed
undetermined if satisfaction depends on outcome of current courses.

Categorization examples? Propositional Horn clauses for bird identification. Allow negation as
failure, explicit negation.

cardinal :- red, crested.
bluejay :- blue, crested.
robin :- red_breasted, “crested.

Use undef as a kind of null value?:

binarize relation

undef :- “undef.

%emp (Name,Sal,Age) -> empsal/2 and empage/2

emp (david,50000,_|_) is represented as ‘‘facts’’:

empsal (david,50000) .
empage (david,_X) :- undef.
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or empage(david,X) :- between(45,X,55) ,undef.
(so can fail if not between 45 and 55.)

12.6 Representation of Partial Knowledge with Well-Founded Mod-
els

We can use the undefined truth value to encode the fact that we don’t know whether a particular
proposition is true or false. As an example, we will use a (simplification of a) simple game called
Wumpus. The game is played on a grid, and a hunter starts on some grid square and moves across
the board searching for the one other square that contains the pot of gold. The hunter can move
left, right, up, or down, and his goal is to move from where he is to the square that has the gold
and pick it up. However, there are some squares on the grid that are dangerous. Some squares
contain pits, and if the hunter moves to such a square, he falls into the pit and is killed. The hunter
can sense when he is adjacent to a pit by feeling a breeze. So if he moves to a square and feels a
breeze, he knows that some adjacent (immediately left, right, up, or down) square contains a pit.
So the hunter must move from where he is to the gold while avoiding falling into any pit.

The idea will be to represent the state of knowledge of the hunter by a well-founded model.
The following are fixed rules of how the game works:

%% grid provides the size of the grid.
grid(4,4).

%% A neighbor is a square to either side or above or below the current
%% square (and still on the grid.)
neighbor(I,J,NI,J) :- NI is I+1, grid(MI,_), NI =< MI.

g g
neighbor(I,J,NI,J) :- NI is I-1, NI >= 1.
neighbor(I,J,I,NJ) :- NJ is J+1, grid(_,MJ), NJ =< MJ.
neighbor(I,J,I,NJ) :- NJ is J-1, NJ >= 1.

%t feel(I,J,Sense) if the hunter has felt "Sense" on square I,J

:— table feel/3.

%% the hunter can feel only one of breeze and no_breeze
feel(I,J,breeze) :- tnot(feel(I,J,no_breeze)).
feel(I,J,no_breeze) :- tnot(feel(I,J,breeze)).

:— table safe/2.

%% A square is safe if it is not a pit

safe(I,J) :- tnot(pit(I,J)).

%% and if the hunter has sensed something there it is also safe.
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safe(I,J) :- visited(I,J).

%% A square is safe if the hunter feels no breeze on some neighbor.
safe(I,J) :-

neighbor (I,J,NI,NJ),

visited(NI,NJ),

feel(NI,NJ,no_breeze).

:- table pit/2.

%% A square is a pit if it is not safe

pit(I,J) :- tnot(safe(I,J)).

%% A square is a pit if some neighbor feels a breeze but no other of
%% its neighbors is a pit.

pit(I,J) :-

neighbor(I,J,NI,NJ),

feel(NI,NJ,breeze),

tnot (another_neighbor_unsafe(NI,NJ,I,J)).

%% Another neighbor (not (NI,NJ) is a pit.
:- table another_neighbor_unsafe/4.
another_neighbor_unsafe(I,J,NI,NJ) :-
neighbor (I, J,PI,PJ),

(PI =\= NI ; PJ =\= NJ),
tnot(safe(PI,PJ)).

Consider the following state, in which the hunter has visited squares 1,1 and 1,2, and felt a
breeze on 1,1 and no breeze on 1,2:

%% a sample state
feel(1,1,breeze).
feel(1,2,no_breeze).
visited(1,1).
visited(1,2).

With these rules and this state, we compute the following:

| ?- consult(wumpus, [spec_off]).

[Compiling .\wumpus]

[wumpus compiled, cpu time used: 0.1100 seconds]
[wumpus loaded]

yes
| 7- pit(2,1).
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yes

| 7- safe(2,2).
yes

| ?- safe(2,3).
undefined

| 7=

We see that the hunter can infer that there is a pit in square 2,1, since it is the neighbor of a
cell in which a breeze has been felt (1,1), and all other neighbors of that cell (only 1,2) is known to
be safe.

So with this representation, we can develop a strategy for the hunter to safely move around the
grid as follows. The hunter uses WEM of the current knowledge base to determine what adjacent
cells are safe and moves to one of them. He then adds to the knowledge base that he has visited
the new square and what he sensed in that square. And he repeats the process.

If the new information was undefined in the previous state, we can update the previous WFM
in XSB by using force_answer_true/1. However, in the example above, the hunter needs to add
the visited fact for the new square he moved to, and this fact was false in the previous WFM, not
undefined. I.e., we need to change the knowledge of visited from false to true, not from undefined
to true. So in this system the WFM must be computed anew in each new state. (There may be
another way to encode this problem so that all knowledge acquisition would be moving from facts
with undefined truth values to those with distinct values, but I don’t see it now.)

Now in an actual game, a situation may arise in which the hunter has several places he can
move but is unable to infer that any of them is safe. In this case, if he wants to find the gold, he
must make a potentially dangerous move to a square which may be a pit. The WFM provides no
information as to whether some square might more likely be safe than another square. We could
extend the WFM with probabilities to try to infer which squares are more likely to be safe. This
can be done within the PRISM (Sato) framework...

leftover stuff for now...........

XSB, with its tabling, does not improve over Prolog in handling floundering queries; all calls
to negative subgoals must be ground in XSB for the closed-world interpretation of negation to be
computed. XSB does extend Prolog in allowing nonstratified programs to be evaluated, and we
will discuss how it does that later in the chapter. However, first we will explore how we can use

tabling with stratified programs to compute some interesting results. *****end of leftover............

There have been a number of approaches to defining the meaning of logic programs with the
negation-as-failure operator. We will describe one general approach that will shed light on several
others. The intuitive idea is that Prolog programs are to be understood as rules that define
predicates, not as first-order logical formulas. When we are just dealing with positive Horn rules,
then these two intuitions coincide in some sense. We saw that the least model of a Horn program
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defines the set of predicates whose atoms occur in heads of rules in the program, and the facts
for those predicates are exactly the logical implications of the Horn clauses. So we can use logical
implication to define relations from Horn clauses. However, when we include the negation operator,
and want to interpret it in a “negation as failure” way, things are not so simple.

(Aside and Overview)
The story for the following sections on proposed semantics for Prolog with \+.

1. We want to “characterize” the negation operator (\+) in Prolog. What does it precisely mean?
Prolog goals have 3 outcomes: yes, no, and infinite loop. So our characterization of the meaning of
goals will need to have 3 values: true, false and undefined (or undetermined, or unknown.) There
are several generally accepted approaches to providing such a semantics.

2. The first is the completion semantics. Here a goal is true if it is logically implied by the
”completion” of the program; it is false if its negation is logically implied by the completion, and
undefined otherwise. Result, a) doesn’t exactly characterize prolog with \+: consider goal p and
rule p :- p,f. Prolog gives undefined (infinite loop); completion gives false. and b) completion (and
Prolog) give undefined for p:-p, and thus doesn’t give transitive closure as meaning of the program
for transitive closure. So this tells us that maybe we don’t want a semantics for \+ in Prolog, but
for \+ in Tabled Prolog.

3. Define Perfect models, only for predicate stratified programs. Gives nice definition of \+ in
Tabled Prolog, but only for stratified programs. All goals are true or false (no undefined.) Correctly
characterizes all terminating Tabled Prolog programs (when \+ is implemented in the “obvious”

way. )

4. Define Stable Model semantics for all (inc nonstratified) programs. Program has 0 or more
stable models: goal is true under SM semantics if true in all SMs, false if false in all SMs, and
undefined otherwise. Problems: exponentiality, nonrelevance. And for many interesting uses (e.g.,
combinatorial problems) SM characterizes a solution, e.g. a coloring of a graph. So interesting
aspect of an SM is the truth of various goals in the same model (i.e., a coloring) rather than the
truth of a goal in all models (e.g., node 1 must be green in all valid colorings.)

5. Define Well-Founded semantics. ...

6. Partial Stable Models, and connections between SM and WFS.
(END Aside and Overview)

(Take 2 Aside and Overview)

1. How to give a semantics for Normal Logic Programs: Prolog programs with unconstrained
negation.

2. Define stratified programs, and give their semantics.
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3. Define semantics of parameterized programs: i.e., Some predicates given by relations, and
take least fixed point using those definitions for those predicates.

4. Define WFS as the limit of an iteration of parameterized programs: For every predicate
symbol p, create a symbol p’. Replace in original program every p under a negation by p’. Then
start by taking meaning of this modified program parameterized by p’= and p’=Universal. And
alternating and iterating...

5. Then define FO(ID): a. A set of defined predicates, and a set of open predicates b. A set
of rule with atoms of defined predicates in their heads (and open or defined, pos or neg, literals in
their bodies) c. A set of first-order sentences (using defined and open predicates)

A model of an FO(ID) program is any first-order structure (for the defined and open pred-
icates), such that the relations for the defined predicates are the (2-valued) well-founded model
parameterized by the relations of the open predicates, and all the FO-sentences are true in the
structure.

6. Then Stable Models can be defined in FO(ID).

1. Given a program (with negation). If we know *nothing™® about the truth or falsity of the
negative subgoals, what could we still infer about true and false propositions?

Goals are true if they can be proved with absolutely NO help from the negative literals. So
delete all rules with negative literals and take least model, and all propositions true there must be
true.

Goals are true if they can not be proved no matter what help they got from the negative literals.
So delete all negative literals from the program rules, take least model, and propositions not in it
are false.

2. So given a program with negations, we use the above idea to determine known true proposi-
tions and known false propositions, T1 and F1. Now given that we know the truth values of these
subgoals, we reduce the program using them. IL.e., Delete each rule with a negative literal whose
proposition is in T1, and delete from each remaining rule each negative literal whose proposition is
in F1. Now this program (along with T1 and F1) should give us the same meaning as the original
program. Now repeat the process of step 1 using this program, to get more propositions known
true and known false.

3. And continue until there is no change in the true and false sets. The resulting T and F sets
determine the well-founded model, with propositions in neither T nor F being undefined.

(END COMMENT)



Chapter 13

Meta-Programming

13.1 Meta-Interpreters in XSB

Meta-interpreters. How one can write meta-interpreters and table them and get tabled evaluation.
I.e. tabling “lifts” through meta-interpreters.

Could do XOLDTNF metainterpreter, exponential, but programmable. Probably want to use
aggregation.

13.1.1 A Metainterpreter for Disjunctive Logic Programs

Do disjunctive LP metainterpreter

13.1.2 A Metainterpreter for Explicit Negation

Do explicit negation metainterpreter.

13.2 Abstract Interpretation

Abstract Interpretation examples. (partial evaluation, and assert.)

Show low overhead of tabling in meta-interpreter, due to how tables are implemented as tries.
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13.2.1 Al of a Simple Nested Procedural Language

(see warren/xsb-tests/procabsint/*)

In this section we will see how to use XSB to construct a simple abstract interpreter for a pro-
cedural programming language. Such abstract interpreters can be used to do various kinds of data
flow analyses. The abstract interpretator that we develop here is actually quite sophisticated; for
example, it does interprocedural analysis. The interesting part here is how easy and straightforward
it is to construct one with XSB, and therefore how we can be confident of its correctness.

The idea is to first construct a concrete interpreter for the object language. The Prolog pro-
gramming language makes this particularly easy. We can run the concrete interpreter on various
object programs and make sure that it is working reasonably well. After we have the concrete
interpreter, we can easily change the operations to be abstract operations that operate over the
abstract domain. Then we could execute programs over the abstract domain. This sounds easy
(and it is in XSB) but a couple of issues arise. First, when computing over the abstract domain,
the outcome of conditional tests cannot always be determined. This means that what was a de-
terministic concrete program becomes a nondeterministic abstract program. Since we can’t know
which branch a specialization of the abstract program might take, we have to try them all. Now in
XSB, that is not a problem, since XSB supports nondeterminism. Second, since we can’t determine
the exact outcome of conditionals, we don’t know when to exit from loops. So a simple execution
of most any abstract program would loop infinitely. What is really wanted is a least fixed point
which will give reachable abstract states, and tabling in XSB gives exactly that. So XSB is ideally
suited for this kind of abstract interpretaton problem.

Consider how this approach works in a specific case. The XSB (actually Prolog) program shown
below is an interpreter for a simple procedural language that supports nested procedures, static
scoping, and call-by-value parameter passing. It is far from trivial and we will discuss how each
component works.

First we describe how the execution environment is maintained. When a procedure is executing,
it must have access to all variables that are visible to it. With each invocation of a procedure there
is an activation record (AR) that stores its local variables. This is maintined in our interpreter as
a simple list of (variable-name, variable-value) pairs. So when a procedure is executing, it will have
access to its own AR that stores its local variables. But it must also have access to variables global
to it, i.e., those in enclosing blocks. These are in ARs for the enclosing procedures. So the state
for a procedure is kept as a list of ARs, the first being the procedure’s own AR, the second being
the AR of the immediately enclosing procedure, etc. We call such a list of AR’s a Stack.

The following simple predicates get and set variable values in a Stack. They take a level number,
indicating how global the variable is: 0 indicates local, 1 indicates in the immediately enclosing
block, etc. They also take a Stack, and a variable name.

:— import append/3, memberchk/2 from basics.
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% getVal(+N,+Stack,+Var,-Val)
getVal(0, [AR|_],Var,Val) :- memberchk((Var,Val),AR).
getVal(N, [_AR|Stack],Var,Val) :- N>0, N1 is N-1, getVal(N1,Stack,Var,Val).

% setVal(+N,+StackIn,+Var,+Val,-StackOut)
setVal(0, [AR|StackIn],Var,Val, [NAR|StackIn]) :-
repl_pair(AR,Var,Val,NAR).

setVal(N, [AR|StackIn],Var,Val, [AR|StackOut]) :-
N > 0, N1 is N-1,
setVal(N1,StackIn,Var,Val,StackOut).

repl_pair([(Var,_) |AR],Var,Val, [(Var,Val) [AR]) :- !.
repl_pair([P|AR],Var,Val, [P|INAR]) :- repl_pair(AR,Var,Val,NAR).

The interpreter takes as input the abstract syntax tree of an object program.

% evaluate a program

eval (module(_Name,Block)) :-
evalBlock(Block, []1,0,[],_Stack).

evalBlock(block(Decls,Stmts) ,Pars,K,Stack0,Stack) :-
remFirst (X,Stack0,Stackl),

append (Pars,Decls,Locals),

evalStmts(Stmts, [Locals|Stackl], [_|Stack2]),
addFirst (K,Stack0,Stack2,Stack) .

remFirst(0,L,L).
remFirst(N, [_|LO],L) :- N>0, N1 is N-1, remFirst(N1,LO,L).

addFirst(0,_,Stack2,Stack?2).

addFirst (N, [AR|Stack0] ,Stack2, [AR|Stack]) :-
N>0, N1 is N-1,

addFirst (N1,Stack0,Stack2,Stack).

evalStmts([],Stack,Stack).

evalStmts ([Stmt|Stmts],Stack0,Stack) :-
evalStmt (Stmt,Stack0,Stackl),
evalStmts(Stmts,Stackl,Stack) .

evalStmt (assign(var(I,Name) ,Exp),StackO,Stack) :-
evalExp(Exp,Stack0,Val),
setVal(I,StackO,Name,Val,Stack).

evalStmt (while (Bool,Stmts) ,Stack0O,Stack) :-
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evalExp(Bool,Stack0,BVal),

(BVal =:= 0

->Stack = StackO

; evalStmts(Stmts,Stack0,Stackl),
evalStmt (while (Bool,Stmts) ,Stackl,Stack)
).
evalStmt (if (Bool,Then,Else),Stack0,Stack) :-
evalExp(Bool,Stack0,BVal),

(BVval =\= 0

->evalStmts(Then,Stack0,Stack)

; evalStmts(Else,StackO,Stack)
).
evalStmt (call(I,Name,ActPars),Stack0,Stack) :-
getVal(I,Stack0,Name,proc(Forms,Body)),
evalPars(ActPars,Forms,StackO,ParLocals),
evalBlock(Body,ParLocals,I,Stack0,Stack).
evalStmt (print (Exps) ,Stack,Stack) :-
eval_print_exps (Exps,Stack).
evalStmt (dump,Stack,Stack) :-
writeln(Stack),nl.

evalPars([],[],_Stack,[]).
evalPars([Exp|Exps], [(Var,_) |Vars],Stack, [(Var,Val) |Decls]) :-
evalExp (Exp,Stack,Val),

evalPars (Exps,Vars,Stack,Decls).

eval_print_exps([],_).
eval_print_exps ([Exp|Exps],Stack) :-
evalExp (Exp,Stack,Val),
writeln(Val),

eval_print_exps (Exps,Stack).

evalExp(int(V),_,V).
evalExp(var(I,Name),Stack,Val) :-
getVal(I,Stack,Name,Val).
evalExp(op(+,E1,E2),Stack,V) :-
evalExp(El,Stack,V1),
evalExp(E2,Stack,V2),

V is V1+V2.
evalExp(op(*,E1,E2),Stack,V) :-
evalExp(El,Stack,V1),
evalExp(E2,Stack,V2),

V is V1xV2.
evalExp(op(-,E1,E2),Stack,V) :-
evalExp(El,Stack,V1),
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evalExp(E2,Stack,V2),

V is V1-V2.
evalExp(op(<,E1,E2),Stack,V) :-
evalExp(El,Stack,V1),
evalExp(E2,Stack,V2),

(V1<V2 -> V=1; V=0).
evalExp(op(>,E1,E2),Stack,V) :-
evalExp(El,Stack,V1),
evalExp(E2,Stack,V2),

(V1>V2 -> V=1; V=0).
evalExp(op(=,E1,E2),Stack,V) :-
evalExp(El,Stack,V1),
evalExp(E2,Stack,V2),

(V1=:=V2 -> V=1; V=0).

% compose stmt operations

evalStmts([],Stack,Stack).

evalStmts ([Stmt|Stmts],Stack0,Stack) :-
evalStmt (Stmt,Stack0,Stackl),
evalStmts(Stmts,Stackl,Stack) .

% extract envs for called block and exec body in that context
evalBlock(block(Decls,Stmts) ,Pars,Level,Stack0,Stack) :-
keepTail (Level,Stack0,Stackl),
append (Pars,Decls,Locals),
evalStmts(Stmts, [Locals|Stackl], [_|Stack2]),
replTail(Level,Stack0,Stack2,Stack).

% compute value of an expression in a context
evalExp (Exp,Stack,Val) :— ......

% evaluate a statement, generating new Stack
evalStmt (assign(var(I,Name) ,Exp),StackO,Stack) :-
evalExp(Exp,Stack0,Val), setVal(I,StackO,Name,Val,Stack).
evalStmt (while (Bool,Stmts) ,Stack0O,Stack) :-
evalExp(Bool,Stack0,BVal),
(BVal =:= 0 -> Stack = Stack0
;  evalStmts(Stmts,Stack0,Stackl),
evalStmt (while(Bool,Stmts) ,Stackl,Stack)).
evalStmt (if (Bool,Then,Else),Stack0,Stack) :-
evalExp(Bool,Stack0,BVal),
(BVval =\= 0 —> evalStmts(Then,Stack0,Stack)
;  evalStmts(Else,Stack0,Stack)).
evalStmt (call(I,Name,ActPars),Stack0,Stack) :-
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getVal(I,Stack0,Name,proc(Forms,Body)),
evalPars(ActPars,Forms,Stack0,ParLocals),
evalBlock(Body,ParLocals,I,Stack0,Stack) .

To obtain an abstract interpreter that does uninitialized variable analysis:

Underline evalExp call in assignment clause to point out that its definition is changed to im-
plement abstract operations over the abstract domain of {uninitialized, hasValue}. Constant is
mapped to hasValue. Binary ops return hasValue if both their operands are hasValue, otw unini-
tialized.

Add

:— table evalStmt/3.

at top.

Cross out the BVal =7= 0 conditions from the while and if-then-else clauses, to get regular
disjunctions, instead of Prolog’s if-then-else.



Chapter 14

XSB Modules

The XSB module system and how it works.

Does this deserve a chapter of its own, or should it be under System Facilities.
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Chapter 15

Handling Large Fact Files

15.1 Indexing

When a call is made to a predicate that has multiple clauses in its definition, it is important for
efficiency for the system to be able to quickly determine which defining clauses might match the
given call. If it can quickly be determined that many clauses can never match the given clause,
then much time can be saved that might otherwise be spent trying each clause in turn. This is
known as the clause indexing problem in Prolog implementations.

As a simple example, consider a predicate, say employee/5, that is defined by a large number,
say 10000, of ground facts, which might come from a table in a relational database. Then consider
a goal:

| 7- employee(15663,LastName,FirstName,Dept,Salary).

which asks for the name, department, and salary of employee with ID 15663. A naive implementa-
tion of Prolog would look at all 10000 employee facts to determine which one (or ones!) have 15663
in its first field. It would do a unification for each of the 10000 clauses, almost all of which fail. To
avoid doing all this work, all Prolog implementation support some kind of indexing. Traditionally
Prolog implementations build an index on the first argument of every predicate. That means that
they build some kind of structure, usually a hash table, to allow direct access to clauses given the
value of their first field. Then when a call is made with a value (and not a variable) for the first
field, the hash table is accessed to find what clauses might match, and then only for those clauses
is full unification done. Of course, if a call is made that has a variable in the first argument, then
the hash table (i.e., index) for the first argument could not be used and all clauses would have to
be accessed. It is easy to see how this could save immense amounts of time in the evaluation of
some queries. Proper indexing is critical for efficient XSB query evaluation; it is not at all unusual
to be able to speed up a query by orders of magnitude by finding the best ways to index predicates
defined by a large number of clauses.
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XSB supports a variety of ways to index clauses. The ways supported differ for predicates whose
clauses are compiled (i.e., are stored in a .xwam file and then loaded into memory) and predicates
that are dynamic (i.e., their clauses are created by asserting them directly into memory during
runtime.)

In XSB compiled predicates can be indexed in only relatively simple ways. One can request
only one (or no) index be built; the default is on the first argument, but the programmer can choose
any other argument if desired. For example, to specify that the compiled predicate employee/5 is
to be indexed on its second argument, add the following directive to the source file containing the
facts for employee/5:

:- index(employee/5,2).

The first argument to the index directive indicates the predicate to be indexed, and the second
argument indicates the argument to use to build the index. (If the second argument is 0, then no
index is built.) The index is built using the main function symbol of each occurrence of the chosen
argument. For example, the default indexing would be very good for the employee/5 example and
query above. The first argument of every employee/5 fact is a constant and the index would take
advantage of the constant 15663 in the query. However, consider a different situation in which
employeeDivID/5 facts had employee IDs of the form [DivNo,EmpNo], i.e., a list of two subfields
indicating the division the employee was hired into and their ID number within that division. In
this case all the employeeDivID/5 facts have the same main functor symbol in their first argument,
the list functor, so an index would be completely useless in this situation, since every first argument
main functor symbol would hash to the same bucket. So in this case it would be better to store
the two subfields of the ID as separate top-level fields in an employee/6 predicate, and then index
on the ID within the division. This would give pretty good indexing, but notice that, since we can
only index on one argument, we can’t take advantage of knowing both the ID and the division in
a query; the system would have to look through all the clauses for employees in different divisions
that had the same ID number.

Another limitation of indexing of compiled predicates arises because we can index on only one
argument. Say we had employee/5 queries like:

| 7- employee(15663,LastName,FirstName,Dept,Salary).
and
| ?- employee(ID,’Warren’,FirstName,Dept,Salary).

i.e, both queries for data given the employee’s ID, and queries for data given the employee’s last
name. Since for compiled clauses we must choose only one argument for the index, we would have
to decide which form of query is more important, choose that index, and suffer poor performance
for queries of the other form.

The more flexible indexing that XSB supports for dynamic predicates, those whose clauses
are asserted (or dynamically loaded) at runtime, provides solutions to these problems. For dy-
namic predicates, multiple hash-based indexes, joint indexes, and structure sensitive indexes are
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supported. Alternatively, the programmer can choose to index a predicate using a new indexing
technique, called trie-indexing.

One can specify a joint index of up to three fields. For example, we can create a joint index for
(dynamic predicate) employee/6, where the first two fields are Division and ID, respectively, with
the following directive:

| ?7- index(employee/6,1+2).

In this case an index is built using (the main functor symols of) both the first and second fields
of employee/6 clauses. Then if a call to employee/6 provides values for both of those fields, then
this index is used. Note, however, that if only one of the two fields is provided in the call, the
index (being a hash-index) cannot be used; so such a call will have to look at all clauses defining
employee/6.

Indexes for dynamic predicates are built at the time clauses are asserted into the predicate.
Le., the index directive just declares that future asserts into the indexed predicate will have the
indicated index built. It does not re-index any clauses currently defining the predicate. This means
that one (almost) always declares an index for a dynamic predicate when it has no defining clauses,
before any asserts to that predicate have been done.

In addition to declaring joint indexes, one can declare multiple indexes for the same dynamic
predicate. For example, we might want two indexes on employee/5, one on the first argument (the
ID) and a joint index on the second and third arguments (the last and first names). This could be
done with with directive:

| 7- index(employee/5,[1,2+3]).

The programmer provides the multiple index specifications in a list. So this directive says to build
an index on (the main functor symbol of) the first argument, and to build a joint index on the
second and third argument. Then if a call to employee/5 provides a value for the first argument,
the first index will be used; if it provides values for both the second and third arguments, the
second (joint) index will be used. (If it provides values for all three arguments, the first index will
be used, because it was specified first in the list.)

For dynamic predicates the programmer can also request an argument to be indexed using
“star indexing”, in which case the index will be a joint index on (up to) the first five symbols of
the indicated argument. So, for example, to request a star index the employeeDivID/5 on its first
argument (which, recall, is a two-element list):

| ?7- index(employeeDivID/5,*(1)).

Now a query such as:
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| 7- employeeDivID([3,1433],Last,First,Dept,Sal).

would use the star index on the first argument, and use both components of the first argument.
Star indexing can be freely combined the the default main-functor symbol indexing. Note that a
query such as:

| ?7- employeeDivID([3,X],Last,First,Dept,Sal).

cannot take advantage of the star index at all, since it doesn’t have values to find a hash value for
the joint index.

The programmer can request that a dynamic predicate be trie indexed by:
| 7- index(employeeDivID/5,trie).

Trie indexing cannot be combined iwth any other indexing and it provides a slightly different
semantics for clauses defining the predicate. First, only fact-defined predicates can be declared as
trie-indexed; no rules are allowed as they are for the other indexing forms.) Second, duplicate facts
are not supported; i.e., asserting a duplicate clause into a trie-indexed predicate is a no-op. Third,
the order of facts is not preserved; i.e., a fact may be added

15.2 Compiling Fact Files

(Revise in light of previous (added) section)

Certain applications of XSB require the use of large predicates defined exclusively by ground
facts. These can be thought of as “database” relations. Predicates defined by a few hundreds
of facts can simply be compiled and used like all other predicates. XSB, by default, indexes all
compiled predicates on the first argument, using the main functor symbol. This means that a call
to a predicate which is bound on the first argument will quickly select only those facts that match
on that first argument. This entirely avoids looking at any clause that doesn’t match. This can
have a large effect on execution times. For example, assume that p(X,Y) is a predicate defined by
facts and true of all pairs jX,Y; such that 1 <= X <=20,1 <=Y <= 20. Assume it is compiled
(using defaults). Then the goal:

I 7= p(1,X),p(X,Y).
will make 20 indexed lookups (for the second call to p/2). The goal

| 7- p(1,X),p(Y,X).
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will, for each of the 20 values for X, backtrack through all 400 tuples to find the 20 that match.
This is because p/2 by default is indexed on the first argument, and not the second. The first query
is, in this case, about 5 times faster than the second, and this performance difference is entirely
due to indexing.

XSB allows the user to declare that the index is to be constructed for some argument position
other than the first. One can add to the program file an index declaration. For example:

:— index p/2-2.

p(1,1).
p(1,2).
p(1,3).
p(1,4).

When this file is compiled, the first line declares that the p/2 predicate should be compiled with
its index on the second argument. Compiled data can be indexed on only one argument (unless a
more sophisticated indexing strategy is chosen.)

15.3 Dynamically Loaded Fact Files

The above strategy of compiling fact-defined predicates works fine for relations that aren’t too large.
For predicates defined by thousands of facts, compilation becomes cumbersome (or impossible).
Such predicates should be dynamically loaded. This means that the facts defining them are read
from a file and asserted into XSB’s program space. There are two advantages to dynamically
loading a predicate: 1) handling of much larger files, and 2) more flexible indexing. Assume that
the file qdata.P contains 10,000 facts defining a predicate q(X,Y), true for 1 <= X <= 100,1 <=
Y <= 100. It could be loaded with the following command:

| 7- load_dyn(qdata).
XSB adds the “.P” suffix, and reads the file in, asserting all clauses found there. Asserted

clauses are by default indexed on the first argument (just as compiled files are.)

Asserted clauses have more powerful indexing capabilities than do compiled clauses. One can
ask for them to be indexed on any argument, just as compiled clauses. For dynamic clauses, one
uses the executable predicate index /3. The first argument is the predicate to index; the second is
the field argument on which to index, and the third is the size of hash table to use. For example,

| 7- index(q/2,2,10001).
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yes
| 7- load_dyn(qdata).
[./qdata.P dynamically loaded, cpu time used: 22.869 seconds]

yes
| 7-

The index command set it so that the predicate ¢/2 would be indexed on the second argument, and
would use a hash table of size 10,001. It’s generally a good idea to use a hash table size that is an
odd number that is near the expected size of the relation. Then the next command, the loadsyn,
loads in the data file of 10,000 facts, and indexes them on the second argument.

It is also possible to put the index command in the file itself, so that it will be used when the
file is dynamically loaded. For example, in this case the file woulstart with:

:- index(q/2,2,10001).

q(lyl) .
q(1,2).
q(1,3).

Unlike compiled cclauses, asserted clauses can be indexed on more than one argument. To index
on the second argument if it is bound on call, or on the first argument if the second is not bound
and the first is, one can use the index command:

:- index(q/2,[2,1],10001).

This declares that two indexes should be build on ¢/2, and index on the second argument and
an index on the first argument. If the first index listed cannot be used (since that argument in a
call is not bound), then the next index will be used. Any (reasonable) number of indexes may be
specified. (It should be noted that currently an idex takes 16 bytes per clause.)

Managing large extensional relations load_dyn, load_dync, cvt_canonical. Database interface,
heterogeneous databases (defining views to merge DB’s)

15.4 Indexing Static Program Clauses

For static (or compiled) user predicates, the compiler accepts a directive that performs a variant
of uni fication factoring [1].
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Bibliographic Notes

The idea of using program transformations as a general method to index program clauses was
presented in a rough form by [3] [1] extented these ideas to factor unifications ...



Chapter 16

Table Builtins

table builtins: get_calls, get_returns, abolish_all_tables, ...

trie_assert, trie_retract (or maybe in section on large files, or maybe in a separate chapter on
indexing.)

Do example to extract parses from a table created by recognition of a string in a CF grammar.
(How to do, maybe interpreter.)

As examples, how about suspend / resume (which Rui has working at least partly) and the
cursors / server example?
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Chapter 17

XSB System Facilities

compiler options
Foreign code interface

Calling XSB from C
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