
SWI-Prolog Semantic Web Library

Jan Wielemaker
HCS,

University of Amsterdam
The Netherlands

E-mail: wielemak@science.uva.nl

September 25, 2008

Abstract

This document describes a library for dealing with standards from the W3C standard for the
Semantic Web. Like the standards themselves (RDF, RDFS and OWL) this infrastructure is mod-
ular. It consists of Prolog packages for reading, querying and storing semantic web documents
as well as XPCE libraries that provide visualisation and editing. The Prolog libraries can be used
without the XPCE GUI modules. The library has been actively used with upto 10 million triples,
using approximately 1GB of memory. Its scalability is limited by memory only. The library can
be used both on 32-bit and 64-bit platforms.

1



Contents

1 Introduction 4

2 Modules 4

3 Module semweb/rdf db 4
3.1 Query the RDF database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Literal matching and indexing . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Predicate properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Modifying the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Modifying predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Loading and saving to file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.1 Caching triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 Partial save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3 Fast loading and saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.4 MD5 digests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Namespace Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.1 Namespace handling for custom predicates . . . . . . . . . . . . . . . . . . 17

3.6 Monitoring the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Miscellaneous predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Issues with rdf db . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Plugin modules for rdf db 22
4.1 Hooks into the RDF library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Library semweb/rdf zlib plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Library semweb/rdf http plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Library semweb/rdf litindex: Indexing words in literals . . . . . . . . . . . . . . . . 23
4.5 Literal maps: Creating additional indices on literals . . . . . . . . . . . . . . . . . . 25
4.6 Module semweb/rdf persistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6.1 Enriching the journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Module semweb/rdf turtle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Module semweb/rdfs 30
5.1 Hierarchy and class-individual relations . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Collections and Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Labels and textual search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 OWL 32

7 Module semweb/rdf edit 32
7.1 Transaction management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 File management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Encapsulated predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.4 High-level modification predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5 Undo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.6 Journalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2



7.7 Broadcasting change events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Related packages and issues 35

3



rdf_db.pl

rdfs.plowl.pl

rdf.pl

RDF documents

rdf_edit.pl

RDF Triple-Store Journal

Hierachy GUI Select GUI Tabular GUI RDF Diagram GUI

broadcast.pl

Change Events
Assert
Retract
update

Query Query

Query

Query

Assert

Query

Quick Save/Restore
Action Log

Restore

Assert
Retract
update

WriteRead

Figure 1: Modules for the Semantic Web library

1 Introduction

SWI-Prolog has started support for web-documents with the development of a small and fast
SGML/XML parser, followed by an RDF parser (early 2000). With the semweb library we pro-
vide more high level support for manipulating semantic web documents. The semantic web is the
likely point of orientation for knowledge representation in the future, making a library designed in its
spirit promising.

2 Modules

Central to this library is the module semweb/rdf db.pl, providing storage and basic querying
for RDF triples. This triple store is filled using the RDF parser realised by rdf.pl. The stor-
age module can quickly save and load (partial) databases. The modules semweb/rdfs.pl and
semweb/owl.pl add querying in terms of the more powerful RDFS and OWL languages. Module
semweb/rdf edit.pl adds editing, undo, journaling and change-forwarding. Finally, a variety
of XPCE modules visualise and edit the database. Figure figure 1 summarised the modular design.

3 Module semweb/rdf db

The central module is called rdf_db. It provides storage and indexed querying of RDF triples.
Triples are stored as a quintuple. The first three elements denote the RDF triple. File and Line provide
information about the origin of the triple.

{Subject Predicate Object File Line}

4



The actual storage is provided by the foreign language (C) module rdf_db.c. Using a dedicated
C-based implementation we can reduced memory usage and improve indexing capabilities.1 Currently
the following indexing is provided.

• Any of the 3 fields of the triple

• Subject + Predicate and Predicate + Object

• Predicates are indexed on the highest property. In other words, if predicates are related through
subPropertyOf predicates indexing happens on the most abstract predicate. This makes
calls to rdf has/4 very efficient.

• String literal Objects are indexed case-insensitive to make case-insensitive queries fully in-
dexed. See rdf/3.

3.1 Query the RDF database

rdf(?Subject, ?Predicate, ?Object)
Elementary query for triples. Subject and Predicate are atoms representing the fully qualified
URL of the resource. Object is either an atom representing a resource or literal(Value) if
the object is a literal value. If a value of the form NameSpaceID : LocalName is provided it is
expanded to a ground atom using expand goal/2. This implies you can use this construct
in compiled code without paying a performance penalty. See also section 3.5. Literal values
take one of the following forms:

Atom
If the value is a simple atom it is the textual representation of a string literal without
explicit type or language (xml:lang) qualifier.

lang(LangID, Atom)
Atom represents the text of a string literal qualified with the given language.

type(TypeID, Value)
Used for attributes qualified using the rdf:datatype TypeID. The Value is ei-
ther the textual representation or a natural Prolog representation. See the option
convert typed literal(:Convertor) of the parser. The storage layer provides
efficient handling of atoms, integers (64-bit) and floats (native C-doubles). All other data
is represented as a Prolog record.

For string querying purposes, Object can be of the form literal(+Query, -Value), where
Query is one of the terms below. Details of literal matching and indexing are described in
section 3.1.1.

exact(+Text)
Perform exact, but case-insensitive match. This query is fully indexed.

1The orginal implementation was in Prolog. This version was implemented in 3 hours, where the C-based implemen-
tation costed a full week. The C-based implementation requires about half the memory and provides about twice the
performance.

5



substring(+Text)
Match any literal that contains Text as a case-insensitive substring. The query is not
indexed on Object.

word(+Text)
Match any literal that contains Text delimited by a non alpha-numeric character, the start
or end of the string. The query is not indexed on Object.

prefix(+Text)
Match any literal that starts with Text. This call is intended for completion. The query is
indexed using the binary tree of literals. See section 3.1.1 for details.

like(+Pattern)
Match any literal that matches Pattern case insensitively, where the ‘*’ character in Pattern
matches zero or more characters.

Backtracking never returns duplicate triples. Duplicates can be retrieved using rdf/4. The
predicate rdf/3 raises a type-error if called with improper arguments. If rdf/3 is called
with a term literal( ) as Subject or Predicate object it fails silently. This allows for graph
matching goals like rdf(S,P,O),rdf(O,P2,O2) to proceed without errors.2

rdf(?Subject, ?Predicate, ?Object, ?Source)
As rdf/3 but in addition return the source-location of the triple. The source is either a plain
atom or a term of the format Atom : Integer where Atom is intended to be used as filename
or URL and Integer for representing the line-number. Unlike rdf/3, this predicate does not
remove duplicates from the result set.

rdf has(?Subject, ?Predicate, ?Object, -TriplePred)
This query exploits the RDFS subPropertyOf relation. It returns any triple whose stored
predicate equals Predicate or can reach this by following the recursive subPropertyOf relation.
The actual stored predicate is returned in TriplePred. The example below gets all subclasses
of an RDFS (or OWL) class, even if the relation used is not rdfs:subClassOf, but a
user-defined sub-property thereof.3

subclasses(Class, SubClasses) :-
findall(S, rdf_has(S, rdfs:subClassOf, Class), SubClasses).

Note that rdf has/4 and rdf has/3 can return duplicate answers if they use a different
TriplePred.

rdf has(?Subject, ?Predicate, ?Object)
Same as rdf has(Subject, Predicate, Object, ).

rdf reachable(?Subject, +Predicate, ?Object)
Is true if Object can be reached from Subject following the transitive predicate Predicate or
a sub-property thereof. When used with either Subject or Object unbound, it first returns the

2Discussion in the SPARQL community votes for allowing literal values as subject. Although we have no principal
objections, we fear such an extension will promote poor modelling practice.

3This predicate realises semantics defined in RDF-Schema rather than RDF. It is part of the rdf db module because
the indexing of this module incorporates the rdfs:subClassOf predicate.

6



origin, followed by the reachable nodes in breath-first search-order. It never generates the same
node twice and is robust against cycles in the transitive relation. With all arguments instantiated
it succeeds deterministically of the relation if a path can be found from Subject to Object.
Searching starts at Subject, assuming the branching factor is normally lower. A call with both
Subject and Object unbound raises an instantiation error. The following example generates all
subclasses of rdfs:Resource:

?- rdf_reachable(X, rdfs:subClassOf, rdfs:’Resource’).

X = ’http://www.w3.org/2000/01/rdf-schema#Resource’ ;

X = ’http://www.w3.org/2000/01/rdf-schema#Class’ ;

X = ’http://www.w3.org/1999/02/22-rdf-syntax-ns#Property’ ;

...

rdf subject(?Subject)
Enumerate resources appearing as a subject in a triple. The main reason for this predicate is to
generate the known subjects without duplicates as one gets using rdf(Subject, , ).

rdf current literal(-Literal)
Enumerate all known literals. Like rdf subject/1, the motivation is to provide access to
literals without generation duplicates. Otherwise the call is the same as rdf( , ,literal(Literal)).

3.1.1 Literal matching and indexing

Starting with version 2.5.0 of this library, literal values are ordered and indexed using a balanced
binary tree (AVL tree). The aim of this index is threefold.

• Unlike hash-tables, binary trees allow for efficient prefix matching. Prefix matching is very
useful in interactive applications to provide feedback while typing such as auto-completion.

• Having a table of unique literals we generate creation and destruction events (see
rdf monitor/2). These events can be used to maintain additional indexing on literals, such
as ‘by word’.

• A binary table allow for fast interval matching on typed numeric literals.4

As string literal matching is most frequently used for searching purposes, the match is executed
case-insensitive and after removal of diacritics. Case matching and diacritics removal is based on
Unicode character properties and independent from the current locale. Case conversion is based on
the ‘simple uppercase mapping’ defined by Unicode and diacritic removal on the ‘decomposition
type’. The approach is lightweight, but somewhat simpleminded for some languages. The tables are
generated for Unicode characters upto 0x7fff. For more information, please check the source-code of
the mapping-table generator unicode_map.pl available in the sources of this package.

4Not yet implemented

7



Currently the total order of literals is first based on the type of literal using the ordering

numeric < string < term

Numeric values (integer and float) are ordered by value, integers preceed floats if they represent the
same value. strings are sorted alphabetically after case-mapping and diacritic removal as described
above. If they match equal, uppercase preceeds lowercase and diacritics are ordered on their unicode
value. If they still compare equal literals without any qualifier preceeds literals with a type qualifier
which preceeds literals with a language qualifier. Same qualifiers (both type or both language) are
sorted alphabetically.5

The ordered tree is used for indexed execution of literal(prefix(Prefix), Literal) as well as
literal(like(Like), Literal) if Like does not start with a ‘*’. Note that results of queries that use
the tree index are returned in alphabetical order.

3.2 Predicate properties

The predicates below form an experimental interface to provide more reasoning inside the kernel of
the rdb db engine. Note that symetric, inverse of and transitive are not yet supported by
the rest of the engine.

rdf current predicate(?Predicate)
Enumerate all defined predicates. Behaves as the code below, but much more efficient.

rdf_current_predicate(Predicate) :-
findall(P, rdf(_,P,_), Ps),
sort(Ps, S),
member(Predicate, S).

rdf set predicate(+Predicate, +Property)
Define a property of the predicate. This predicate currently supports the
properties symmetric, inverse of and transitive as defined with
rdf predicate property/2. Adding an A inverse of B also adds B inverse of
A. An inverse relation is deleted using inverse of([]). ‘

rdf predicate property(?Predicate, -Property)
Query properties of a defined predicate. Currently defined properties are given below.

symmetric(Bool)
True if the predicate is defined to be symetric. I.e. {A} P {B} implies {B} P {A}.

inverse of(Inverse)
True if this predicate is the inverse of Inverse.

transitive(Bool)
True if this predicate is transitive.

triples(Triples)
Unify Triples with the number of existing triples using this predicate as second argument.
Reporting the number of triples is intended to support query optimization.

5The ordering defined above may change in future versions to deal with new queries for literals.

8



rdf subject branch factor(-Float)
Unify Float with the average number of triples associated with each unique value for the
subject-side of this relation. If there are no triples the value 0.0 is returned. This value is
cached with the predicate and recomputed only after substantial changes to the triple set
associated to this relation. This property is indented for path optimalisation when solving
conjunctions of rdf/3 goals.

rdf object branch factor(-Float)
Unify Float with the average number of triples associated with each unique value for the
object-side of this relation. In addition to the comments with the subject branch factor
property, uniqueness of the object value is computed from the hash key rather than the
actual values.

rdfs subject branch factor(-Float)
Same as rdf subject branch factor/1, but also considering triples of ‘subProp-
ertyOf’ this relation. See also rdf has/3.

rdfs object branch factor(-Float)
Same as rdf object branch factor/1, but also considering triples of ‘subProper-
tyOf’ this relation. See also rdf has/3.

3.3 Modifying the database

As depicted in figure 1, there are two levels of modification. The rdf_db module simply modifies,
where the rdf_edit library provides transactions and undo on top of this. Applications that wish to
use the rdf_edit layer must never use the predicates from this section directly.

3.3.1 Modifying predicates

rdf assert(+Subject, +Predicate, +Object)
Assert a new triple into the database. This is equivalent to rdf assert/4 using
SourceRef user. Subject and Predicate are resources. Object is either a resource or a
term literal(Value). See rdf/3 for an explanation of Value for typed and language
qualified literals. All arguments are subject to name-space expansion (see section 3.5).

rdf assert(+Subject, +Predicate, +Object, +SourceRef)
As rdf assert/3, adding SourceRef to specify the orgin of the triple. SourceRef is either an
atom or a term of the format Atom:Int where Atom normally refers to a filename and Int to the
line-number where the description starts.

rdf retractall(?Subject, ?Predicate, ?Object)
Removes all matching triples from the database. Previous Prolog implementations also pro-
vided a backtracking rdf retract/3, but this proved to be rarely used and could always
be replaced with rdf retractall/3. As rdf retractall/4 using an unbound
SourceRef.

rdf retractall(?Subject, ?Predicate, ?Object, ?SourceRef)
As rdf retractall/4, also matching on the SourceRef. This is particulary useful to update
all triples coming from a loaded file.

9



rdf update(+Subject, +Predicate, +Object, +Action)
Replaces one of the three fields on the matching triples depending on Action:

subject(Resource)
Changes the first field of the triple.

predicate(Resource)
Changes the second field of the triple.

object(Object)
Changes the last field of the triple to the given resource or literal(Value).

source(Source)
Changes the source location (payload). Note that updating the source has no conse-
quences for the semantics and therefore the generation (see rdf generation/1) is
not updated.

rdf update(+Subject, +Predicate, +Object, +Source,+Action)
As rdf update/4 but allows for specifying the source.

3.3.2 Transactions

The predicates from section 3.3.1 perform immediate and atomic modifications to the database. There
are two cases where this is not desirable:

1. If the database is modified using information based on reading the same database. A typical
case is a forward reasoner examining the database and asserting new triples that can be deduced
from the already existing ones. For example, if length(X) > 2 then size(X) is large:

( rdf(X, length, literal(L)),
atom_number(L, IL),
IL > 2,
rdf_assert(X, size, large),
fail

; true
).

Running this code without precautions causes an error because rdf assert/3 tries to get a
write lock on the database which has an a read operation (rdf/3 has choicepoints) in progress.

2. Multi-threaded access making multiple changes to the database that must be handled as a unit.

Where the second case is probably obvious, the first case is less so. The storage layer may require
reindexing after adding or deleting triples. Such reindexing operatations however are not possible
while there are active read operations in other threads or from choicepoints that can be in the same
thread. For this reason we added rdf transaction/2. Note that, like the predicates from sec-
tion 3.3.1, rdf transaction/2 raises a permission error exception if the calling thread has active
choicepoints on the database. The problem is illustrated below. The rdf/3 call leaves a choicepoint
and as the read lock originates from the calling thread itself the system will deadlock if it would not
generate an exception.

10



1 ?- rdf_assert(a,b,c).

Yes
2 ?- rdf_assert(a,b,d).

Yes
3 ?- rdf(a,b,X), rdf_transaction(rdf_assert(a,b,e)).
ERROR: No permission to write rdf_db ‘default’ (Operation would deadlock)
ˆ Exception: (8) rdf_db:rdf_transaction(rdf_assert(a, b, e)) ? no debug
4 ?-

rdf transaction(:Goal)
Same as rdf transaction(Goal, user).

rdf transaction(:Goal, +Id)
After starting a transaction, all predicates from section 3.3.1 append their operation to the
transaction instead of modifying the database. If Goal succeeds rdf transaction cuts all
choicepoints in Goal and executes all recorded operations. If Goal fails or throws an exception,
all recorded operations are discarded and rdf transaction/1 fails or re-throws the
exception.

On entry, rdf transaction/1 gains exclusive access to the database, but does al-
low readers to come in from all threads. After the successful completion of Goal
rdf transaction/1 gains completely exclusive access while performing the database up-
dates.

Transactions may be nested. Committing a nested transactions merges its change records into
the outer transaction, while discarding a nested transaction simply destroys the change records
belonging to the nested transaction.

The Id argument may be used to identify the transaction. It is passed to the begin/end events
posted to hooks registered with rdf monitor/2. The Id log(Term) can be used to enrich
the journal files with additional history context. See section 4.6.1.

rdf active transaction(?Id)
True if Id is the identifier of a currently active transaction (i.e.
rdf active transaction/1 is called from rdf transaction/2 with matching
Id). Note that transaction identifier is not copied and therefore need not be ground and can
be further instantiated during the transaction. Id is first unified with the innermost transaction
and backtracking with the identifier of other active transaction. Fails if there is no matching
transaction active, which includes the case where there is no transaction in progress.

3.4 Loading and saving to file

The rdf_db module can read and write RDF-XML for import and export as well as a binary format
built for quick load and save described in section 3.4.3. Here are the predicates for portable RDF load
and save.

rdf load(+InOrList)
Load triples from In, which is either a stream opened for reading, an atom specifying a filename,

11



a URL or a list of valid inputs. This predicate calls process rdf/3 to read the source one
description at a time, avoiding limits to the size of the input. By default, this predicate provides
for caching the results for quick-load using rdf load db/1 described below. Caching
strategy and options are description in section 3.4.1.

rdf load(+FileOrList, +Options)
As rdf load/1, providing additional options. The options are handed to the RDF parser and
implemented by process rdf/3. In addition, the following options are provided:

db(+DB)
Load the data in the given named graph. The default is the URL of the source.

cache(+Bool)
If true (default), try to use cached data or create a cache file. Otherwise load the source.

format(+Format)
Specify the source format explicitly. Normally this is deduced from the filename exten-
sion or the mime-type. The core library understands the formats xml (RDF/XML) and
triples (internal quick load and cache format).

if(+Condition)
Condition under which to load the source. Condition is the same as for the Prolog
load files/2 predicate: changed (default) load the source if it was not loaded
before or has changed; true (re-)loads the source unconditionally and not loaded
loads the source if it was not loaded, but does not check for modifications.

silent(+Bool)
If Bool is true, the message reporting completion is printed using level silent. Oth-
erwise the level is informational. See also print message/2.

register namespaces(+Bool)
If true (default false), register xmlns:ns=url namespace declarations as
rdf db:ns(ns,url) namespaces if there is no conflict.

rdf unload(+Spec)
Remove all triples loaded from Spec. Spec is either a graph name or a source specificatipn. If
Spec does not refer to a loaded database the predicate succeeds silently.

rdf save(+File)
Save all known triples to the given File. Same as rdf save(File, []).

rdf save(+File, +Options)
Save with options. Provided options are:

db(+FileRef)
Save all triples whose file-part of their SourceRef matches FileRef to the given File.
Saving arbitrary selections is possible using predicates from section 3.4.2.

anon(+Bool)
if anon(false) is provided anonymous resources are only saved if the resource appears in
the object field of another triple that is saved.

12



base uri(+BaseURI)
If provided, emit xml:base=”BaseURI” in the header and emit all URIs that are rel-
ative to the base-uri. The xml:base declaration can be suppressed using the option
write xml base(false)

write xml base(+Bool)
If false (default true), do not emit the xml:base declaration from the given
base uri option. The idea behind this option is to be able to create documents with
URIs relative to the document itself:

...,
rdf_save(File,

[ base_uri(BaseURI),
write_xml_base(false)

]),
...

convert typed literal(:Converter)
If present, raw literal values are first passed to Converter to apply the reverse of the
convert typed literal option of the RDF parser. The Converter is called with the
same arguments as in the RDF parser, but now with the last argument instantiated and the
first two unbound. A proper convertor that can be used for both loading and saving must
be a logical predicate.

encoding(+Encoding)
Define the XML encoding used for the file. Defined values are utf8 (default),
iso latin 1 and ascii. Using iso latin 1 or ascii, characters not covered by
the encoding are emitted as XML character entities (&#...;).

document language(+XMLLang)
The value XMLLang is used for the xml:lang attribute in the outermost rdf:RDF
element. This language acts as a default, which implies that the xml:lang tag is only
used for literals with a different language identifier. Please note that this option will cause
all literals without language tag to be interpreted using XMLLang.

namespaces(+List)
Explicitely specify saved namespace declarations. See rdf save header/2 option
namespaces for details.

rdf graph(?DB)
True if DB is the name of a graph with at least one triple.

rdf source(?DB)
Depricated. Use rdf graph/1 or rdf source/2 in new code.

rdf source(?DB, ?SourceURL)
True if the named graph DB was loaded from the source SourceURL. A named graph is asso-
ciated with a SourceURL by rdf load/2. The association is stored in the internal binary
format, which ensures proper maintenance of the original source through caching and the
persistency layer.

13



rdf make
Re-load all RDF sourcefiles (see rdf source/1) that have changed since they were loaded
the last time. This implies all triples that originate from the file are removed and the file is
re-loaded. If the file is cached a new cache-file is written. Please note that the new triples are
added at the end of the database, possibly changing the order of (conflicting) triples.

3.4.1 Caching triples

The library semweb/rdf cache defines the caching strategy for triples sources. When using large
RDF sources, caching triples greatly speedup loading RDF documents. The cache library implements
two caching strategies that are controlled by rdf set cache options/1.

Local caching This approach applies to files only. Triples are cached in a sub-directory of the
directory holding the source. This directory is called .cache (_cache on Windows). If the cache
option create local directory is true, a cache directory is created if posible.

Global caching This approach applies to all sources, except for unnamed streams. Triples are
cached in directory defined by the cache option global directory.

When loading an RDF file, the system scans the configured cache files unless cache(false) is
specified as option to rdf load/2 or caching is disabled. If caching is enabled but no cache exists,
the system will try to create a cache file. First it will try to do this locally. On failure it will try to
configured global cache.

rdf set cache options(+Options)
Set cache options. Defined options are:

enabled(Bool)
If true (default), caching is enabled.

local directory(Atom)
Local directory to use for caching. Default .cache (Windows: cache).

create local directory(Bool)
If true (default false), create a local cache directory if none exists and the directory
can be created.

global directory(Atom)
Global directory to use for caching. The directory is created if the option
create global directory is also given and set to true. Sub-directories
are created to speedup indexing on filesystems that perform poorly on directories with
large numbers of files. Initially not defined.

create global directory(Bool)
If true (default false), create a global cache directory if none exists.

3.4.2 Partial save

Sometimes it is necessary to make more arbitrary selections of material to be saved or exchange
RDF descriptions over an open network link. The predicates in this section provide for this. Char-
acter encoding issues are derived from the encoding of the Stream, providing support for utf8,
iso latin 1 and ascii.

14



rdf save header(+Stream, +Options)
Save an RDF header, with the XML header, DOCTYPE, ENTITY and opening the rdf:RDF
element with appropriate namespace declarations. It uses the primitives from section 3.5 to
generate the required namespaces and desired short-name. Options is one of:

db(+FileRef)
Only search for namespaces used in triples labeled with FileRef.

namespaces(+List)
Where List is a list of namespace abbreviations (see section 3.5). With this option, the
expensive search for all namespaces that may be used by your data is omitted. The
namespaces rdf and rdfs are added to the provided List. If a namespace is not declared,
the resource is emitted in non-abreviated form.

rdf save footer(+Stream)
Close the work opened with rdf save header/2.

rdf save subject(+Stream, +Subject, +FileRef)
Save everything known about Subject that matches FileRef. Using an variable for FileRef saves
all triples with Subject.

rdf quote uri(+URI, -Quoted)
Quote a UNICODE URI. First the Unicode is represented as UTF-8 and then the unsafe char-
acters are mapped to be represented as US-ASCII.

3.4.3 Fast loading and saving

Loading and saving RDF format is relatively slow. For this reason we designed a binary format that
is more compact, avoids the complications of the RDF parser and avoids repetitive lookup of (URL)
identifiers. Especially the speed improvement of about 25 times is worth-while when loading large
databases. These predicates are used for caching by rdf load/[1,2] under certain conditions.

rdf save db(+File)
Save all known triples into File. The saved version includes the SourceRef information.

rdf save db(+File, +FileRef)
Save all triples with SourceRef FileRef, regardless of the line-number. For example, using
user all information added using rdf assert/3 is stored in the database.

rdf load db(+File)
Load triples from File.

3.4.4 MD5 digests

The rdf_db library provides for MD5 digests. An MD5 digest is a 128 bit long hash key computed
from the triples based on the RFC-1321 standard. MD5 keys are computed for each individual triple
and added together to compute the final key, resulting in a key that describes the triple-set but is
independant from the order in which the triples appear. It is claimed that it is practically impossible
for two different datasets to generate the same MD5 key. The Triple20 editor uses the MD5 key for
detecting whether the triples associated to a file have changed as well as to maintain a directory with
snapshots of versioned ontology files.

15



rdf md5(+Source, -MD5)
Return the MD5 digest for all triples in the database associated to Source. The MD5 digest itself
is represented as an atom holding a 32-character hexadecimal string. The library maintains
the digest incrementally on rdf load/[1,2], rdf load db/1, rdf assert/[3,4]
and rdf retractall/[3,4]. Checking whether the digest has changed since the last
rdf load/[1,2] call provides a practical means for checking whether the file needs to be
saved.

rdf atom md5(+Text, +Times, -MD5)
Computes the MD5 hash from Text, which is an atom, string or list of character codes. Times is
an integer ≥ 1. When > 0, the MD5 algorithm is repeated Times times on the generated hash.
This can be used for password encryption algorithms to make generate-and-test loops slow.

This predicate bears little relation to RDF handling. It is provided because the RDF library
already contains the MD5 algorithm and semantic web services may involve security and con-
sistency checking. This predicate provides a platform independant alternative to the crypt
library provided with the clib package.

3.5 Namespace Handling

Prolog code often contains references to constant resources in a known XML namespace. For exam-
ple, http://www.w3.org/2000/01/rdf-schema#Class refers to the most general notion
of a class. Readability and maintability concerns require for abstraction here. The dynamic and
multifile predicate rdf db:ns/2 maintains a mapping between short meaningful names and namespace
locations very much like the XML xmlns construct. The initial mapping contains the namespaces
required for the semantic web languages themselves:

ns(rdf, ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’).
ns(rdfs, ’http://www.w3.org/2000/01/rdf-schema#’).
ns(owl, ’http://www.w3.org/2002/7/owl#’).
ns(xsd, ’http://www.w3.org/2000/10/XMLSchema#’).
ns(dc, ’http://purl.org/dc/elements/1.1/’).
ns(eor, ’http://dublincore.org/2000/03/13/eor#’).

All predicates for the semweb libraries use goal expansion/2 rules to make the SWI-Prolog
compiler rewrite terms of the form Id : Local into the fully qualified URL. In addition, the following
predicates are supplied:

rdf equal(Resource1, Resource2)
Defined as Resource1 = Resource2. As this predicate is subject to goal-expansion it can be
used to obtain or test global URL values to readable values. The following goal unifies X
with http://www.w3.org/2000/01/rdf-schema#Class without more runtime
overhead than normal Prolog unification.

rdf_equal(rdfs:’Class’, X)

rdf register ns(+Alias, +URL)
Same as rdf register ns(Alias, URL, []).

16



rdf register ns(+Alias, +URL, +Options)
Register Alias as a shorthand for URL. Note that the registration must be done before
loading any files using them as namespace aliases are handled at compiletime through
goal expansion/2. If Alias already exists the default is to raise a permission error. If the
option force(true) is provided, the alias is silently modified. Rebinding an alias must be done
before any code is compiled that relies on the alias. If the option keep(true) is provided the
new registration is silently ignored.

rdf global id(?Alias:Local, ?Global)
Runtime translation between Alias and Local and a Global URL. Expansion is normally done
at compiletime. This predicate is often used to turn a global URL into a more readable term.

rdf global object(?Object, ?NameExpandedObject)
As rdf global id/2, but also expands the type field if the object is of the form
literal(type(Type, Value)). This predicate is used for goal expansion of the object fields
in rdf/3 and similar goals.

rdf global term(+Term0, -Term)
Expands all Alias:Local in Term0 and return the result in Term. Use infrequently for runtime
expansion of namespace identifiers.

rdf split url(?Base, ?Local, ?URL)
Split a URL into a prefix and local part if used in mode -,-,+ or simply behave as
atom concat/3 in other modes. The URL is split on the last # or / character.

3.5.1 Namespace handling for custom predicates

If we implement a new predicate based on one of the predicates of the semweb libraries that expands
namespaces, namespace expansion is not automatically available to it. Consider the following code
computing the number of distinct objects for a certain property on a certain object.

cardinality(S, P, C) :-
( setof(O, rdf_has(S, P, O), Os)
-> length(Os, C)
; C = 0
).

Now assume we want to write labels/2 that returns the number of distict labels of a resource:

labels(S, C) :-
cardinality(S, rdfs:label, C).

This code will not work as rdfs:label is not expanded at compile time. To make this work, we
need to add an rdf meta/1 declaration.

:- rdf_meta
cardinality(r,r,-).

17



rdf meta(Heads)
This predicate defines the argument types of the named predicates, which will force compile
time namespace expansion for these predicates. Heads is a coma-separated list of callable
terms. Defined argument properties are:

:
Argument is a goal. The goal is processed using expand goal/2, recursively applying
goal transformation on the argument.

+
The argument is instantiated at entry. Nothing is changed.

-
The argument is not instantiated at entry. Nothing is changed.

?
The argument is unbound or instantiated at entry. Nothing is changed.

@
The argument is not changed.

r
The argument must be a resource. If it is a term 〈namespace〉:〈local〉 it is translated.

o
The argument is an object or resource.

t
The argument is a term that must be translated. Expansion will translate all occurences of
〈namespace〉:〈local〉 appearing anywhere in the term.

As it is subject to term expansion/2, the rdf meta/1 declaration can only be used as
a directive. The directive must be processed before the definition of the predicates as well as
before compiling code that uses the rdf meta-predicates. The atom rdf_meta is declared as an
operator exported from library rdf_db.pl. Files using rdf meta/1 must explicitely load
rdf_db.pl.

Below are some examples from rdf_db.pl

:- rdf_meta
rdf(r,r,o),
rdf_source_location(r,-),
rdf_transaction(:).

3.6 Monitoring the database

Considering performance and modularity, we are working on a replacement of the rdf_edit (see
section 7) layered design to deal with updates, journalling, transactions, etc. Where the rdf edit ap-
proach creates a single layer on top of rdf db and code using the RDF database must select whether to
use rdf db.pl or rdf edit.pl, the new approach allows to register monitors. This allows multiple mod-
ules to provide additional services, while these services will be used regardless of how the database is
modified.

Monitors are used by the persistency library (section 4.6) and the literal indexing library (sec-
tion 4.4).

18



rdf monitor(:Goal, +Mask)
Goal is called for modifications of the database. It is called with a single argument that describes
the modification. Defined events are:

assert(+S, +P, +O, +DB)
A triple has been asserted.

retract(+S, +P, +O, +DB)
A triple has been deleted.

update(+S, +P, +O, +DB, +Action)
A triple has been updated.

new literal(+Literal)
A new literal has been created. Literal is the argument of literal(Arg) of the triple’s
object. This event is introduced in version 2.5.0 of this library.

old literal(+Literal)
The literal Literal is no longer used by any triple.

transaction(+BeginOrEnd, +Id)
Mark begin or end of the commit of a transaction started by rdf transaction/2.
BeginOrEnd is begin(Nesting) or end(Nesting). Nesting expresses the nesting level
of transactions, starting at ‘0’ for a toplevel transaction. Id is the second argument of
rdf transaction/2. The following transaction Ids are pre-defined by the library:

parse(Id)
A file is loaded using rdf load/2. Id is one of file(Path) or stream(Stream).

unload(DB)
All triples with source DB are being unloaded using rdf unload/1.

reset
Issued by rdf reset db/0.

load(+BeginOrEnd, +Spec)
Mark begin or end of rdf load db/1 or load through rdf load/2 from a cached
file. Spec is currently defined as file(Path).

rehash(+BeginOrEnd)
Marks begin/end of a re-hash due to required re-indexing or garbage collection.

Mask is a list of events this monitor is interested in. Default (empty list) is to report all events.
Otherwise each element is of the form +Event or -Event to include or exclude monitoring for
certain events. The event-names are the functor names of the events described above. The
special name all refers to all events and assert(load) to assert events originating from
rdf load db/1. As loading triples using rdf load db/1 is very fast, monitoring this
at the triple level may seriously harm performance.

This predicate is intended to maintain derived data, such as a journal, information for undo,
additional indexing in literals, etc. There is no way to remove registered monitors. If this
is required one should register a monitor that maintains a dynamic list of subscribers like the
XPCE broadcast library. A second subscription of the same hook predicate only re-assignes the
mask.

19



The monitor hooks are called in the order of registration and in the same thread that issued the
database manipulation. To process all changes in one thread they should be send to a thread
message queue. For all updating events, the monitor is called while the calling thread has a
write lock on the RDF store. This implies that these events are processed strickly synchronous,
even if modifications originate from multiple threads. In particular, the transaction begin,
. . . updates . . . end sequence is never interleaved with other events. Same for load and
parse.

3.7 Miscellaneous predicates

This section describes the remaining predicates of the rdf_db module.

rdf node(-Id)
Generate a unique reference. The returned atom is guaranteed not to occur in the current
database in any field of any triple.

rdf bnode(-Id)
Generate a unique blank node reference. The returned atom is guaranteed not to occur in the
current database in any field of any triple and starts with ’ bnode’.

rdf is bnode(+Id)
Succeeds if Id is a blank node identifier (also called anonymous resource). In the current
implementation this implies it is an atom starting with a double underscore.

rdf source location(+Subject, -SourceRef)
Return the source-location as File:Line of the first triple that is about Subject.

rdf generation(-Generation)
Returns the Generation of the database. Each modification to the database increments the
generation. It can be used to check the validity of cached results deduced from the database.
Modifications changing multiple triples increment Generation with the number of triples
modified, providing a heuristic for ‘how dirty’ cached results may be.

rdf estimate complexity(?Subject, ?Predicate, ?Object, -Complexity)
Return the number of alternatives as indicated by the database internal hashed indexing. This is
a rough measure for the number of alternatives we can expect for an rdf has/3 call using the
given three arguments. When called with three variables, the total number of triples is returned.
This estimate is used in query optimisation. See also rdf predicate property/2 and
rdf statistics/1 for additional information to help optimisers.

rdf statistics(?Statistics)
Report statistics collected by the rdf_db module. Defined values for Statistics are:

lookup(?Index, -Count)
Number of lookups using a pattern of instantiated fields. Index is a term rdf(S,P,O),
where S, P and O are either + or -. For example rdf(+,+,-) returns the lookups with
subject and predicate specified and object unbound.

properties(-Count)
Number of unique values for the second field of the triple set.

20



sources(-Count)
Number of files loaded through rdf load/1.

subjects(-Count)
Number of unique values for the first field of the triple set.

literals(-Count)
Total number of unique literal values in the database. See also section 3.1.1.

triples(-Count)
Total number of triples in the database.

triples by file(?File, -Count)
Enumerate the number of triples associated to each file.

searched nodes(-Count)
Number of nodes explored in rdf reachable/3.

gc(-Count, -Time)
Number of garbage collections and time spent in seconds represented as a float.

rehash(-Count, -Time)
Number of times the hash-tables were enlarged and time spent in seconds represented as
a float.

core(-Bytes)
Core used by the triple store. This includes all memory allocated on behalf of the library,
but not the memory allocated in Prolog atoms referenced (only) by the triple store.

rdf match label(+Method, +Search, +Atom)
True if Search matches Atom as defined by Method. All matching is performed case-insensitive.
Defines methods are:

exact
Perform exact, but case-insensitive match.

substring
Search is a sub-string of Text.

word
Search appears as a whole-word in Text.

prefix
Text start with Search.

like
Text matches Search, case insensitively, where the ‘*’ character in Search matches zero or
more characters.

rdf reset db
Erase all triples from the database and reset all counts and statistics information.

rdf version(-Version)
Unify Version with the library version number. This number is, like to the SWI-Prolog version
flag, defined as 10, 000×Major + 100×Minor + Patch.

21



3.8 Issues with rdf db

This RDF low-level module has been created after two year experimenting with a plain Prolog based
module and a brief evaluation of a second generation pure Prolog implementation. The aim was to be
able to handle upto about 5 million triples on standard (notebook) hardware and deal efficiently with
subPropertyOf which was identified as a crucial feature of RDFS to realise fusion of different
data-sets.

The following issues are identified and not solved in suitable manner.

subPropertyOf of subPropertyOf is not supported.

Equivalence Similar to subPropertyOf, it is likely to be profitable to handle resource identity
efficient. The current system has no support for it.

4 Plugin modules for rdf db

The rdf db module provides several hooks for extending its functionality. Database updates can be
monitored and acted upon through the features described in section 3.6. The predicate rdf load/2
can be hooked to deal with different formats such as turtle, different input sources (e.g. http) and
different strategies for caching results.

4.1 Hooks into the RDF library

The hooks below are used to add new RDF file formats and sources from which to load data to the
library. They are used by the modules described below and distributed with the package. Please
examine the source-code if you want to add new formats or locations.

rdf_turtle.pl Load files in the Turtle format. See section 4.7.

rdf_zlib_plugin.pl Load gzip compressed files transparently. See section 4.2.

rdf_http_plugin.pl Load RDF documents from HTTP servers. See section 4.3.

rdf db:rdf open hook(+Input, -Stream, -Format)
Open an input. Input is one of file(+Name), stream(+Stream) or url(Protocol, URL).
If this hook succeeds, the RDF will be read from Stream using rdf load stream/3.
Otherwise the default open functionality for file and stream are used.

rdf db:rdf load stream(+Format, +Stream, +Options)
Actually load the RDF from Stream into the RDF database. Format describes the format and is
produced either by rdf input info/3 or rdf file type/2.

rdf db:rdf input info(+Input, -Modified, -Format)
Gather information on Input. Modified is the last modification time of the source as a
POSIX time-stamp (see time file/2). Format is the RDF format of the file. See
rdf file type/2 for details. It is allowed to leave the output variables unbound.
Ultimately the default modified time is ‘0’ and the format is assumed to be xml.

22



rdf db:rdf file type(?Extension, ?Format)
True if Format is the default RDF file format for files with the given extension. Extension is
lowercase and without a ’.’. E.g. owl. Format is either a built-in format (xml or triples) or
a format understood by the rdf load stream/3 hook.

rdf db:url protocol(?Protocol)
True if Protocol is a URL protocol recognised by rdf load/2.

4.2 Library semweb/rdf zlib plugin

This module uses the zlib library to load compressed files on the fly. The extension of the file
must be .gz. The file format is deduced by the extension after stripping the .gz extension. E.g.
rdf load(’file.rdf.gz’).

4.3 Library semweb/rdf http plugin

This module allows for rdf load(’http://...’). It exploits the library
http/http open.pl. The format of the URL is determined from the mime-type re-
turned by the server if this is one of text/rdf+xml, application/x-turtle or
application/turtle. As RDF mime-types are not yet widely supported, the plugin uses
the extension of the URL if the claimed mime-type is not one of the above. In addition, it recognises
text/html and application/xhtml+xml, scanning the XML content for embedded RDF.

4.4 Library semweb/rdf litindex: Indexing words in literals

The library semweb/rdf litindex.pl exploits the primitives of section 4.5 and the NLP pack-
age to provide indexing on words inside literal constants. It also allows for fuzzy matching using
stemming and ‘sounds-like’ based on the double metaphone algorithm of the NLP package.

rdf find literals(+Spec, -ListOfLiterals)
Find literals (without type or language specification) that satisfy Spec. The required indices are
created as needed and kept up-to-date using hooks registered with rdf monitor/2. Numer-
ical indexing is currently limited to integers in the range ±230 (±262on64 − bitplatforms).
Spec is defined as:

and(Spec1, Spec2)
Intersection of both specifications.

or(Spec1, Spec2)
Union of both specifications.

not(Spec)
Negation of Spec. After translation of the full specification to Disjunctive Normal Form
(DNF), negations are only allowed inside a conjunction with at least one positive literal.

case(Word)
Matches all literals containing the word Word, doing the match case insensitive and after
removing diacritics.

stem(Like)
Matches all literals containing at least one word that has the same stem as Like using the
Porter stem algorithm. See NLP package for details.

23



sounds(Like)
Matches all literals containing at least one word that ‘sounds like’ Like using the double
metaphone algorithm. See NLP package for details.

prefix(Prefix)
Matches all literals containing at least one word that starts with Prefix, discarding diacrit-
ics and case.

between(Low, High)
Matches all literals containing an integer token in the range Low..High, including the
boundaries.

ge(Low)
Matches all literals containing an integer token with value Low or higher.

le(High)
Matches all literals containing an integer token with value High or lower.

Token
Matches all literals containing the given token. See tokenize atom/2 of the NLP
package for details.

rdf token expansions(+Spec, -Expansions)
Uses the same database as rdf find literals/2 to find possible expansions of Spec,
i.e. which words ‘sound like’, ‘have prefix’, etc. Spec is a compound expression as in
rdf find literals/2. Expansions is unified to a list of terms sounds(Like, Words),
stem(Like, Words) or prefix(Prefix, Words). On compound expressions, only combinations
that provide literals are returned. Below is an example after loading the ULAN6 database
and showing all words that sounds like ‘rembrandt’ and appear together in a literal with the
word ‘Rijn’. Finding this result from the 228,710 literals contained in ULAN requires 0.54
milliseconds (AMD 1600+).

?- rdf_token_expansions(and(’Rijn’, sounds(rembrandt)), L).

L = [sounds(rembrandt, [’Rambrandt’, ’Reimbrant’, ’Rembradt’,
’Rembrand’, ’Rembrandt’, ’Rembrandtsz’,
’Rembrant’, ’Rembrants’, ’Rijmbrand’])]

Here is another example, illustrating handling of diacritics:

?- rdf_token_expansions(case(cafe), L).

L = [case(cafe, [cafe, café])]

rdf tokenize literal(+Literal, -Tokens)
Tokenize a literal, returning a list of atoms and integers in the range
−1073741824 . . . 1073741823. As tokenization is in general domain and task-dependent this
predicate first calls the hook rdf litindex:tokenization(Literal, -Tokens). On failure
it calls tokenize atom/2 from the NLP package and deletes the following: atoms of length

6Unified List of Artist Names from the Getty Foundation.

24



1, floats, integers that are out of range and the english words and, an, or, of, on, in, this
and the. Deletion first calls the hook rdf litindex:exclude from index(token, X).
This hook is called as follows:

no_index_token(X) :-
exclude_from_index(token, X), !.

no_index_token(X) :-
...

4.5 Literal maps: Creating additional indices on literals

‘Literal maps’ provide a relation between literal values, intended to create additional indexes on liter-
als. The current implementation can only deal with integers and atoms (string literals). A literal map
maintains an ordered set of keys. The ordering uses the same rules as described in section 3.1.1. Each
key is associated with an ordered set of values. Literal map objects can be shared between threads,
using a locking strategy that allows for multiple concurrent readers.

Typically, this module is used together with rdf monitor/2 on the channals new literal
and old literal to maintain an index of words that appear in a literal. Further abstraction using
Porter stemming or Metaphone can be used to create additional search indices. These can map either
directly to the literal values, or indirectly to the plain word-map. The SWI-Prolog NLP package
provides complimentary building blocks, such as a tokenizer, Porter stem and Double Metaphone.

rdf new literal map(-Map)
Create a new literal map, returning an opaque handle.

rdf destroy literal map(+Map)
Destroy a literal map. After this call, further use of the Map handle is illegal. Additional
synchronisation is needed if maps that are shared between threads are destroyed to guarantee
the handle is no longer used. In some scenarios rdf reset literal map/1 provides a
safe alternative.

rdf reset literal map(+Map)
Delete all content from the literal map.

rdf insert literal map(+Map, +Key, +Value)
Add a relation between Key and Value to the map. If this relation already exists no action is
performed.

rdf insert literal map(+Map, +Key, +Value, -KeyCount)
As rdf insert literal map/3. In addition, if Key is a new key in Map, unify KeyCount
with the number of keys in Map. This serves two purposes. Derived maps, such as the stem
and metaphone maps need to know about new keys and it avoids additional foreign calls for
doing the progress in rdf_litindex.pl.

rdf delete literal map(+Map, +Key)
Delete Key and all associated values from the map. Succeeds always.

rdf delete literal map(+Map, +Key, +Value)
Delete the association between Key and Value from the map. Succeeds always.

25



rdf find literal map(+Map, +KeyList, -ValueList)
Unify ValueList with an ordered set of values associated to all keys from KeyList. I.e. perform
an intersection of the value-sets associated with the keys. Unifies ValueList with the empty list
if no matches are found.

rdf keys in literal map(+Map, +Spec, -Answer)
Realises various queries on the key-set:

all
Unify Answer with an ordered list of all keys.

key(+Key)
Succeeds if Key is a key in the map and unify Answer with the number of values associated
with the key. This provides a fast test of existence without fetching the possibly large
associated value set as with rdf find literal map/3.

prefix(+Prefix)
Unify Answer with an ordered set of all keys that have the given prefix. See section 3.1
for details on prefix matching. Prefix must be an atom. This call is intended for
auto-completion in user interfaces.

ge(+Min)
Unify Answer with all keys that are larger or equal to the integer Min.

le(+Max)
Unify Answer with all keys that are smaller or equal to the integer Max.

between(+Min, +Max)
Unify Answer with all keys between Min and Max (including).

rdf statistics literal map(+Map, +Key(-Arg...))
Query some statistics of the map. Provides keys are:

size(-Keys, -Relations)
Unify Keys with the total key-count of the index and Relation with the total Key-Value
count.

4.6 Module semweb/rdf persistency

The semweb/rdf persistency provides reliable persistent storage for the RDF data. The store
uses a directory with files for each source (see rdf source/1) present in the database. Each source
is represented by two files, one in binary format (see rdf save db/2) representing the base state
and one represented as Prolog terms representing the changes made since the base state. The latter is
called the journal.

rdf attach db(+Directory, +Options)
Attach Directory as the persistent database. If Directory does not exist it is created. Otherwise
all sources defined in the directory are loaded into the RDF database. Loading a source means
loading the base state (if any) and replaying the journal (if any). The current implementation
does not synchronise triples that are in the store before attaching a database. They are not
removed from the database, nor added to the presistent store. Different merging options may
be supported through the Options argument later. Currently defined options are:

26



concurrency(+PosInt)
Number of threads used to reload databased and journals from the files in Directory.
Default is the number of physical CPUs determined by the Prolog flag cpu count or 1
(one) on systems where this number is unknown. See also concurrent/3.

max open journals(+PosInt)
The library maintains a pool of open journal files. This option specifies the size of this
pool. The default is 10. Raising the option can make sense if many writes occur on many
different named graphs. The value can be lowered for scenarios where write operations
are very infrequent.

silent(Boolean)
If true, supress loading messages from rdf attach db/2.

log nested transactions(Boolean)
If true, nested log transactions are added to the journal information. By default
(false), no log-term is added for nested transactions.

The database is locked against concurrent access using a file lock in Directory. An attempt to
attach to a locked database raises a permission error exception. The error context con-
tains a term rdf locked(Args), where args is a list containing time(Stamp) and pid(PID).
The error can be caught by the application. Otherwise it prints:

ERROR: No permission to lock rdf_db ‘/home/jan/src/pl/packages/semweb/DB’
ERROR: locked at Wed Jun 27 15:37:35 2007 by process id 1748

rdf detach db
Detaches the persistent store. No triples are removed from the RDF triple store.

rdf current db(-Directory)
Unify Directory with the current database directory. Fails if no persistent database is attached.

rdf persistency(+DB, +Bool)
Change presistency of named database (4th argument of rdf/4). By default all databases are
presistent. Using false, the journal and snapshot for the database are deleted and further
changes to triples associated with DB are not recorded. If Bool is true a snapshot is created
for the current state and further modifications are monitored. Switching persistency does not
affect the triples in the in-memory RDF database.

rdf flush journals(+Options)
Flush dirty journals. With the option min size(KB) only journals larger than KB Kbytes are
merged with the base state. Flushing a journal takes the following steps, ensuring a stable state
can be recovered at any moment.

1. Save the current database in a new file using the extension .new.
2. On success, delete the journal
3. On success, atomically move the .new file over the base state.

Note that journals are not merged automatically for two reasons. First of all, some applications
may decide never to merge as the journal contains a complete changelog of the database. Sec-
ond, merging large databases can be slow and the application may wish to schedule such actions
at quiet times or scheduled maintenance periods.

27



4.6.1 Enriching the journals

The above predicates suffice for most applications. The predicates in this section provide access to the
journal files and the base state files and are intented to provide additional services, such as reasoning
about the journals, loaded files, etc.7

Using rdf transaction(Goal, log(Message)), we can add additional records to enrich the
journal of affected databases with Term and some additional bookkeeping information. Such a trans-
action adds a term begin(Id, Nest, Time, Message) before the change operations on each affected
database and end(Id, Nest, Affected) after the change operations. Here is an example call and content
of the journal file mydb.jrn. A full explanation of the terms that appear in the journal is in the
description of rdf journal file/2.

?- rdf_transaction(rdf_assert(s,p,o,mydb), log(by(jan))).

start([time(1183540570)]).
begin(1, 0, 1183540570.36, by(jan)).
assert(s, p, o).
end(1, 0, []).
end([time(1183540578)]).

Using rdf transaction(Goal, log(Message, DB)), where DB is an atom denoting a (possibly
empty) named graph, the system guarantees that a non-empty transaction will leave a possibly empty
transaction record in DB. This feature assumes named graphs are named after the user making the
changes. If a user action does not affect the user’s graph, such as deleting a triple from another graph,
we still find record of all actions performed by some user in the journal of that user.

rdf journal file(?DB, ?JournalFile)
True if File is the absolute file name of an existing named graph DB. A journal file contains a
sequence of Prolog terms of the following format.8

start(Attributes)
Journal has been opened. Currently Attributes contains a term time(Stamp).

end(Attributes)
Journal was closed. Currently Attributes contains a term time(Stamp).

assert(Subject, Predicate, Object)
A triple {Subject, Predicate, Object} was added to the database.

assert(Subject, Predicate, Object, Line)
A triple {Subject, Predicate, Object} was added to the database with given Line context.

retract(Subject, Predicate, Object)
A triple {Subject, Predicate, Object} was deleted from the database. Note that an
rdf retractall/3 call can retract multiple triples. Each of them have a record in the
journal. This allows for ‘undo’.

retract(Subject, Predicate, Object, Line)
Same as above, for a triple with associated line info.

7A library rdf history is under development exploiting these features supporting wiki style editing of RDF.
8Future versions of this library may use an XML based language neutral format.

28



update(Subject, Predicate, Object, Action)
See rdf update/4.

begin(Id, Nest, Time, Message)
Added before the changes in each database affected by a transaction with transaction
identifier log(Message). Id is an integer counting the logged transactions to this
database. Numbers are increasing and designed for binary search within the journal
file. Nest is the nesting level, where ‘0’ is a toplevel transaction. Time is a time-stamp,
currently using float notation with two fractional digits. Message is the term provided by
the user as argument of the log(Message) transaction.

end(Id, Nest, Others)
Added after the changes in each database affected by a transaction with transaction iden-
tifier log(Message). Id and Nest match the begin-term. Others gives a list of other
databases affected by this transaction and the Id of these records. The terms in this list
have the format DB:Id.

rdf db to file(?DB, ?FileBase)
Convert between DB (see rdf source/1) and file base-file used for storing information on
this database. The full file is located in the directory described by rdf current db/1 and
has the extension .trp for the base state and .jrn for the journal.

4.7 Module semweb/rdf turtle

The module semweb/rdf turtle provides a parser for the alternative RDF Turtle syntax.9 The
Turtle syntax is the basis for the SPARQL query language and much easier to read and write by
humans10 than the RDF/XML syntax.

This module acts as a plugin to rdf db.pl, enabling load rdf/2 to load Turtle data transpar-
ently. The default extension for a turtle file is .ttl.

rdf load turtle(+Input, -Triples, +Options)
Parse Turtle data from Input, returning a list of rdf(S,P,O) triples. Input is either a term
stream(Stream) or a specification for absolute file name/3. Processed options are:

base url(+BaseURI)
Define the base URI. When processing a file the default is constructed from file://
and the filename.

anon prefix(+Prefix)
Prefix used for blank notes. Must start with . Default is constructed from the base URI.

rdf process turtle(+Input, :OnTriples, +Options)
Similar to rdf load turtle/3, but processes the file in call-back mode. See also
process rdf/3. OnTriples is called with two arguments. The first argument is a non-empty
list of triples and the second is a term 〈DB〉:〈Line〉, indicating the source location of the triples.
In addition to the options described with rdf load turtle/3 it accepts the option db(DB),
specifying the named graph. Default is the base URI.

9http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/
10And computers . . .

29



5 Module semweb/rdfs

The semweb/rdfs library adds interpretation of the triple store in terms of concepts from RDF-
Schema (RDFS). There are two ways to provide support for more high level languages in RDF. One
is to view such languages as a set of entailment rules. In this model the rdfs library would provide a
predicate rdfs/3 providing the same functionality as rdf/3 on union of the raw graph and triples
that can be derived by applying the RDFS entailment rules.

Alternatively, RDFS provides a view on the RDF store in terms of individuals, classes, properties,
etc., and we can provide predicates that query the database with this view in mind. This is the approach
taken in the semweb/rdfs.pl library, providing calls like rdfs individual of(?Resource,
?Class).11

5.1 Hierarchy and class-individual relations

The predicates in this section explore the rdfs:subPropertyOf, rdfs:subClassOf and
rdf:type relations. Note that the most fundamental of these, rdfs:subPropertyOf, is also
used by rdf has/[3,4].

rdfs subproperty of(?SubProperty, ?Property)
True if SubProperty is equal to Property or Property can be reached from SubProperty fol-
lowing the rdfs:subPropertyOf relation. It can be used to test as well as generate
sub-properties or super-properties. Note that the commonly used semantics of this predicate is
wired into rdf has/[3,4].12.13

rdfs subclass of(?SubClass, ?Class)
True if SubClass is equal to Class or Class can be reached from SubClass following the
rdfs:subClassOf relation. It can be used to test as well as generate sub-classes or
super-classes.14.

rdfs class property(+Class, ?Property)
True if the domain of Property includes Class. Used to generate all properties that apply to a
class.

rdfs individual of(?Resource, ?Class)
True if Resource is an indivisual of Class. This implies Resource has an rdf:type property
that refers to Class or a sub-class thereof. Can be used to test, generate classes Resource
belongs to or generate individuals described by Class.

5.2 Collections and Containers

The RDF construct rdf:parseType=Collection constructs a list using the rdf:first and
rdf:next relations.

11The SeRQL language is based on querying the deductive closure of the triple set. The SWI-Prolog SeRQL library
provides entailment modules that take the approach outlined above.

12BUG: The current implementation cannot deal with cycles
13BUG: The current implementation cannot deal with predicates that are an rdfs:subPropertyOf of

rdfs:subPropertyOf, such as owl:samePropertyAs.
14BUG: The current implementation cannot deal with cycles

30



rdfs member(?Resource, +Set)
Test or generate the members of Set. Set is either an individual of rdf:List or
rdf:Container.

rdfs list to prolog list(+Set, -List)
Convert Set, which must be an individual of rdf:List into a Prolog list of objects.

rdfs assert list(+List, -Resource)
Equivalent to rdfs assert list/3 using DB = user.

rdfs assert list(+List, -Resource, +DB)
If List is a list of resources, create an RDF list Resource that reflects these resources. Resource
and the sublist resources are generated with rdf bnode/1. The new triples are associated
with the database DB.

5.3 Labels and textual search

Textual search is partly handled by the predicates from the rdf db module and its underlying C-
library. For example, literal objects are hashed case-insensitive to speed up the commonly used case-
insensitive search.

rdfs label(?Resource, ?Language, ?Label)
Extract the label from Resource or generate all resources with the given Label. The label is
either associated using a sub-property of rdfs:label or it is extracted from the URL using
rdf split url/3. Language is unified to the value of the xml:lang attribute of the label
or a variable if the label has no language specified.

rdfs label(?Resource, ?Label)
Defined as rdfs label(Resource, , Label).

rdfs ns label(?Resource, ?Language, ?Label)
Similar to rdfs label/2, but prefixes the result using the declared namespace alias (see
section 3.5) to facilitate user-friendly labels in applications using multiple namespaces that
may lead to confusion.

rdfs ns label(?Resource, ?Label)
Defined as rdfs ns label(Resource, , Label).

rdfs find(+String, +Description, ?Properties, +Method, -Subject)
Find (on backtracking) Subjects that satisfy a search specification for textual attributes. String
is the string searched for. Description is an OWL description (see section 6) specifying
candidate resources. Properties is a list of properties to search for literal objects, Method
defines the textual matching algorithm. All textual mapping is performed case-insensitive. The
matching-methods are described with rdf match label/3. If Properties is unbound, the
search is performed in any property and Properties is unified with a list holding the property on
which the match was found.

31



6 OWL

The current SemWeb library distributed with SWI-Prolog does not yet contain an OWL module. A
module owl.pl is part of the Triple20 triple browser and editor provides limited support for OWL
reasoning.

7 Module semweb/rdf edit

It is anticipated that this library will eventually be superseeded by facilities running on
top of the native rdf transaction/2 and rdf monitor/2 facilities. See sec-
tion 3.6.

The module rdf_edit.pl is a layer than encasulates the modification predicates from sec-
tion 3.3 for use from a (graphical) editor of the triple store. It adds the following features:

• Transaction management
Modifications are grouped into transactions to safeguard the system from failing operations as
well as provide meaningfull chunks for undo and journalling.

• Undo
Undo and redo-transactions using a single mechanism to support user-friendly editing.

• Journalling
Record all actions to support analysis, versioning, crash-recovery and an alternative to saving.

7.1 Transaction management

Transactions group low-level modification actions together.

rdfe transaction(:Goal)
Run Goal, recording all modifications to the triple store made through section 7.3. Execution is
performed as in once/1. If Goal succeeds the changes are committed. If Goal fails or throws
an exception the changes are reverted.

Transactions may be nested. A failing nested transaction only reverts the actions performed in-
side the nested transaction. If the outer transaction succeeds it is committed normally. Contrary,
if the outer transaction fails, comitted nested transactions are reverted as well. If any of the mod-
ifications inside the transaction modifies a protected file (see rdfe set file property/2)
the transaction is reverted and rdfe transaction/1 throws a permission error.

A successful outer transaction (‘level-0’) may be undone using rdfe undo/0.

rdfe transaction(:Goal, +Name)
As rdfe transaction/1, naming the transaction Name. Transaction naming is
intended for the GUI to give the user an idea of the next undo action. See also
rdfe set transaction name/1 and rdfe transaction name/2.

rdfe set transaction name(+Name)
Set the ‘name’ of the current transaction to Name.

32



rdfe transaction name(?TID, ?Name)
Query assigned transaction names.

rdfe transaction member(+TID, -Action)
Enumerate the actions that took place inside a transaction. This can be used by a GUI to
optimise the MVC (Model-View-Controller) feedback loop. Action is one of:

assert(Subject, Predicate, Object)

retract(Subject, Predicate, Object)

update(Subject, Predicate, Object, Action)

file(load(Path))

file(unload(Path))

7.2 File management

rdfe is modified(?File)
Enumerate/test whether File is modified sinds it was loaded or sinds the last call to
rdfe clear modified/1. Whether or not a file is modified is determined by the MD5
checksum of all triples belonging to the file.

rdfe clear modified(+File)
Set the unmodified-MD5 to the current MD5 checksum. See also rdfe is modified/1.

rdfe set file property(+File, +Property)
Control access right and default destination of new triples. Property is one of

access(+Access)
Where access is one of ro or rw. Access ro is default when a file is loaded for which the
user has no write access. If a transaction (see rdfe transaction/1) modifies a file
with access ro the transaction is reversed.

default(+Default)
Set this file to be the default destination of triples. If Default is fallback it is only the
default for triples that have no clear default destination. If it is all all new triples are
added to this file.

rdfe get file property(?File, ?Property)
Query properties set with rdfe set file property/2.

7.3 Encapsulated predicates

The following predicates encapsulate predicates from the rdf_dbmodule that modify the triple store.
These predicates can only be called when inside a transaction. See rdfe transaction/1.

33



rdfe assert(+Subject, +Predicate, +Object)
Encapsulates rdf assert/3.

rdfe retractall(?Subject, ?Predicate, ?Object)
Encapsulates rdf retractall/3.

rdfe update(+Subject, +Predicate, +Object, +Action)
Encapsulates rdf update/4.

rdfe load(+In)
Encapsulates rdf load/1.

rdfe unload(+In)
Encapsulates rdf unload/1.

7.4 High-level modification predicates

This section describes a (yet very incomplete) set of more high-level operations one would like to be
able to perform. Eventually this set may include operations based on RDFS and OWL.

rdfe delete(+Resource)
Delete all traces of resource. This implies all triples where Resource appears as subject, predi-
cate or object. This predicate starts a transation.

7.5 Undo

Undo aims at user-level undo operations from a (graphical) editor.

rdfe undo
Revert the last outermost (‘level 0’) transaction (see rdfe transaction/1). Successive
calls go further back in history. Fails if there is no more undo information.

rdfe redo
Revert the last rdfe undo/0. Successive calls revert more rdfe undo/0 operations. Fails
if there is no more redo information.

rdfe can undo(-TID)
Test if there is another transaction that can be reverted. Used for activating menus in a graphical
environment. TID is unified to the transaction id of the action that will be reverted.

rdfe can redo(-TID)
Test if there is another undo that can be reverted. Used for activating menus in a graphical
environment. TID is unified to the transaction id of the action that will be reverted.

7.6 Journalling

Optionally, every action through this module is immediately send to a journal-file. The journal pro-
vides a full log of all actions with a time-stamp that may be used for inspection of behaviour, version
management, crash-recovery or an alternative to regular save operations.

34



rdfe open journal(+File, +Mode)
Open a existing or new journal. If Mode equala append and File exists, the journal is first
replayed. See rdfe replay journal/1. If Mode is write the journal is truncated if it
exists.

rdfe close journal
Close the currently open journal.

rdfe current journal(-Path)
Test whether there is a journal and to which file the actions are journalled.

rdfe replay journal(+File)
Read a journal, replaying all actions in it. To do so, the system reads the journal a transaction
at a time. If the transaction is closed with a commit it executes the actions inside the journal.
If it is closed with a rollback or not closed at all due to a crash the actions inside the journal
are discarded. Using this predicate only makes sense to inspect the state at the end of a journal
without modifying the journal. Normally a journal is replayed using the append mode of
rdfe open journal/2.

7.7 Broadcasting change events

To realise a modular graphical interface for editing the triple store, the system must use some sort of
event mechanism. This is implemented by the XPCE library broadcast which is described in the
XPCE User Guide. In this section we describe the terms brodcasted by the library.

rdf transaction(+Id)
A ‘level-0’ transaction has been committed. The system passes the identifier of the transaction
in Id. In the current implementation there is no way to find out what happened inside the
transaction. This is likely to change in time.

If a transaction is reverted due to failure or exception no event is broadcasted. The initiating
GUI element is supposed to handle this possibility itself and other components are not affected
as the triple store is not changed.

rdf undo(+Type, +Id)
This event is broadcasted after an rdfe undo/0 or rdfe redo/0. Type is one of undo or
redo and Id identifies the transaction as above.

8 Related packages and issues

The SWI-Prolog SemWeb package is designed to provide access to the Semantic Web languages from
Prolog. It consists of the low level rdf_db.pl store with layers such as semweb/rdfs.pl to
provide more high level querying of a triple set with relations such as rdfs individual of/2,
rdfs subclass of/2, etc. SeRQL is a semantic web query language taking another route. Instead
of providing alternative relations SeRQL defines a graph query on de deductive closure of the triple
set. For example, under assumption of RDFS entailment rules this makes the query rdf(S, rdf:type,
Class) equivalent to rdfs individual of(S, Class).

35



We developed a parser for SeRQL which compiles SeRQL path expressions into Prolog conjunc-
tions of rdf(Subject, Predicate, Object) calls. Entailment modules realise a fully logical implementa-
tion of rdf/3 including the entailment reasoning required to deal with a Semantic Web language or
application specific reasoning. The infra structure is completed with a query optimiser and an HTTP
server compliant to the Sesame implementation of the SeRQL language. The Sesame Java client can
be used to access Prolog servers from Java, while the Prolog client can be used to access the Sesame
SeRQL server. For further details, see the project home.

Acknowledgements

This research was supported by the following projects: MIA and MultimediaN project
(www.multimedian.nl) funded through the BSIK programme of the Dutch Government, the FP-6
project HOPS of the European Commision.

The implementation of AVL trees is based on libavl by Brad Appleton. See the source file avl.c
for details.

36



Index
absolute file name/3, 29
atom concat/3, 17

broadcast, 35
broadcast library, 35

Collection
parseType, 30

compressed data, 23
concurrent/3, 27
crypt library, 16

event, 35
expand goal/2, 5, 18

goal expansion/2, 16, 17
gz

format, 23
gzip, 23

http/http open.pl library, 23

journal, 32, 34

labels/2, 17
load files/2, 12
load rdf/2, 29

once/1, 32
optimising

query, 35
OWL, 32

parseType
Collection, 30

Persistent store, 26
print message/2, 12
process rdf/3, 12, 29

RDF-Schema, 30
rdf.pl library, 4
rdf/3, 5, 6, 9, 10, 17, 30, 36
rdf/4, 6, 27
rdf active transaction/1, 11
rdf assert/3, 9, 10, 15, 34
rdf assert/4, 9
rdf assert/[3

4], 16
rdf atom md5/3, 16
rdf attach db/2, 26, 27
rdf bnode/1, 20, 31
rdf current db/1, 27, 29
rdf current literal/1, 7
rdf current predicate/1, 8
rdf db library, 6, 22, 31
rdf db.pl library, 29
rdf db:rdf file type/2, 23
rdf db:rdf input info/3, 22
rdf db:rdf load stream/3, 22
rdf db:rdf open hook/3, 22
rdf db:url protocol/1, 23
rdf db to file/2, 29
rdf delete literal map/2, 25
rdf destroy literal map/1, 25
rdf detach db/0, 27
rdf equal/2, 16
rdf estimate complexity/4, 20
rdf file type/2, 22
rdf find literal map/3, 26
rdf find literals/2, 23, 24
rdf flush journals/1, 27
rdf generation/1, 10, 20
rdf global id/2, 17
rdf global object/2, 17
rdf global term/2, 17
rdf graph/1, 13
rdf has/3, 6, 9, 20
rdf has/4, 5, 6
rdf has/[3

4], 30
rdf history library, 28
rdf input info/3, 22
rdf insert literal map/3, 25
rdf insert literal map/4, 25
rdf is bnode/1, 20
rdf journal file/2, 28
rdf keys in literal map/3, 26
rdf load/1, 11, 12, 21, 34
rdf load/2, 12–14, 19, 22, 23
rdf load/[1

2], 15, 16

37



rdf load db/1, 12, 15, 16, 19
rdf load stream/3, 22, 23
rdf load turtle/3, 29
rdf make/0, 14
rdf match label/3, 21, 31
rdf md5/2, 16
rdf meta/1, 17, 18
rdf monitor/2, 7, 11, 19, 23, 25, 32
rdf new literal map/1, 25
rdf node/1, 20
rdf persistency/2, 27
rdf predicate property/2, 8, 20
rdf process turtle/3, 29
rdf quote uri/2, 15
rdf reachable/3, 6, 21
rdf register ns/2, 16, 17
rdf reset db/0, 19, 21
rdf reset literal map/1, 25
rdf retractall/3, 9, 28, 34
rdf retractall/4, 9
rdf retractall/[3

4], 16
rdf save/1, 12
rdf save/2, 12
rdf save db/1, 15
rdf save db/2, 26
rdf save footer/1, 15
rdf save header/2, 13, 15
rdf save subject/3, 15
rdf set cache options/1, 14
rdf set predicate/2, 8
rdf source/1, 13, 14, 26, 29
rdf source/2, 13
rdf source location/2, 20
rdf split url/3, 17, 31
rdf statistics/1, 20
rdf statistics literal map/2, 26
rdf subject/1, 7
rdf token expansions/2, 24
rdf tokenize literal/2, 24
rdf transaction/1, 11
rdf transaction/2, 10, 11, 19, 32
rdf unload/1, 12, 19, 34
rdf update/4, 10, 29, 34
rdf update/5, 10
rdf version/1, 21
rdfe assert/3, 34

rdfe can redo/1, 34
rdfe can undo/1, 34
rdfe clear modified/1, 33
rdfe close journal/0, 35
rdfe current journal/1, 35
rdfe delete/1, 34
rdfe get file property/2, 33
rdfe is modified/1, 33
rdfe load/1, 34
rdfe open journal/2, 35
rdfe redo/0, 34, 35
rdfe replay journal/1, 35
rdfe retractall/3, 34
rdfe set file property/2, 32, 33
rdfe set transaction name/1, 32
rdfe transaction/1, 32–34
rdfe transaction/2, 32
rdfe transaction member/2, 33
rdfe transaction name/2, 32, 33
rdfe undo/0, 32, 34, 35
rdfe unload/1, 34
rdfe update/4, 34
rdfs assert list/2, 31
rdfs assert list/3, 31
rdfs class property/2, 30
rdfs find/5, 31
rdfs individual of/2, 30, 35
rdfs label/2, 31
rdfs label/3, 31
rdfs list to prolog list/2, 31
rdfs member/2, 31
rdfs ns label/2, 31
rdfs ns label/3, 31
rdfs subclass of/2, 30, 35
rdfs subproperty of/2, 30

search, 31
semweb/owl.pl library, 4
semweb/rdf cache library, 14
semweb/rdf db.pl library, 4
semweb/rdf edit.pl library, 4
semweb/rdf litindex.pl library, 23
semweb/rdf persistency library, 26
semweb/rdf turtle library, 29
semweb/rdfs library, 30
semweb/rdfs.p library, 30
semweb/rdfs.pl library, 4, 35

38



SeRQL, 35
Sesame, 35

term expansion/2, 18
time file/2, 22
tokenize atom/2, 24
transaction, 10
transactions, 32
turtle, 29

undo, 32, 34

xhtml, 23

zlib library, 23

39


	Introduction
	Modules
	Module semweb/rdf_db
	Query the RDF database
	Literal matching and indexing

	Predicate properties
	Modifying the database
	Modifying predicates
	Transactions

	Loading and saving to file
	Caching triples
	Partial save
	Fast loading and saving
	MD5 digests

	Namespace Handling
	Namespace handling for custom predicates

	Monitoring the database
	Miscellaneous predicates
	Issues with rdf_db

	Plugin modules for rdf_db
	Hooks into the RDF library
	Library semweb/rdf_zlib_plugin
	Library semweb/rdf_http_plugin
	Library semweb/rdf_litindex: Indexing words in literals
	Literal maps: Creating additional indices on literals
	Module semweb/rdf_persistency
	Enriching the journals

	Module semweb/rdf_turtle

	Module semweb/rdfs
	Hierarchy and class-individual relations
	Collections and Containers
	Labels and textual search

	OWL
	Module semweb/rdf_edit
	Transaction management
	File management
	Encapsulated predicates
	High-level modification predicates
	Undo
	Journalling
	Broadcasting change events

	Related packages and issues

