
SWI-Prolog HTTP support

Jan Wielemaker
HCS,

University of Amsterdam
The Netherlands

E-mail: J.Wielemaker@uva.nl

October 22, 2008

Abstract

This article documents the package HTTP, a series of libraries for accessing data on HTTP
servers as well as providing HTTP server capabilities from SWI-Prolog. Both server and client
are modular libraries. The server can be operated from the Unix inetd super-daemon as well as
as a stand-alone server that runs on all platforms supported by SWI-Prolog.

1

Contents

1 Introduction 4

2 The HTTP client libraries 4
2.1 The http/http open library . 4
2.2 The http/http client library . 6

2.2.1 The MIME client plug-in . 9
2.2.2 The SGML client plug-in . 9

3 The HTTP server libraries 9
3.1 The ‘Body’ . 10

3.1.1 Returning special status codes . 11
3.2 Dispatching HTTP locations over predicates . 11
3.3 HTTP Session management . 13
3.4 HTTP Authentication . 14
3.5 Get parameters from HTML forms . 15
3.6 Request format . 17

3.6.1 Handling POST requests . 18
3.7 Running the server . 19

3.7.1 Common server interface options . 19
3.7.2 Multi-threaded Prolog . 19
3.7.3 From an interactive Prolog session using XPCE 22
3.7.4 From (Unix) inetd . 22
3.7.5 MS-Windows . 23
3.7.6 As CGI script . 23
3.7.7 Using a reverse proxy . 23

3.8 The wrapper library . 24
3.9 http log.pl – HTTP Logging module . 25
3.10 Debugging Servers . 26
3.11 Handling HTTP headers . 26
3.12 The http/html write library . 27

3.12.1 Emitting HTML documents . 30
3.12.2 Repositioning HTML for CSS and javascript links 30
3.12.3 Adding rules for html//1 . 32
3.12.4 Generating layout . 32
3.12.5 Examples . 33
3.12.6 Remarks on the http/html write library 34

3.13 http path.pl – Abstract specification of HTTP server locations 34
3.14 Security . 35
3.15 Tips and tricks . 36

4 Transfer encodings 36
4.1 The http/http chunked library . 37

2

5 Supporting JSON 37
5.1 json.pl – Reading and writing JSON serialization 37
5.2 json convert.pl – Convert between JSON terms and Prolog application terms 39
5.3 http json.pl – HTTP JSON Plugin module . 41

6 Status 41

3

1 Introduction

The HTTP (HyperText Transfer Protocol) is the W3C standard protocol for transferring information
between a web-client (browser) and a web-server. The protocol is a simple envelope protocol where
standard name/value pairs in the header are used to split the stream into messages and communicate
about the connection-status. Many languages have client and or server libraries to deal with the HTTP
protocol, making it a suitable candidate for general purpose client-server applications. It is the basis
of popular agent protocols such as SOAP and FIPA.

In this document we describe a modular infra-structure to access web-servers from SWI-Prolog
and turn Prolog into a web-server. The server code is designed to allow the same ‘body’ to be used
from an interactive server for debugging or providing services from otherwise interactive applications,
run the body from an inetd super-server or as a CGI script behind a generic web-server.

The design of this module is different from the competing XPCE-based HTTP server located in
http/httpd.pl, which intensively uses XPCE functionality to reach its goals. Using XPCE is
not very suitable for CGI or inetd-driven servers due to required X11 connection and much larger
footprint.

Acknowledgements

This work has been carried out under the following projects: GARP, MIA, IBROW and KITS. The
following people have pioneered parts of this library and contributed with bug-report and suggestions
for improvements: Anjo Anjewierden, Bert Bredeweg, Wouter Jansweijer and Bob Wielinga.

2 The HTTP client libraries

This package provides two packages for building HTTP clients. The first, http/http open is a
very lightweight library for opening a HTTP URL address as a Prolog stream. It can only deal with
the HTTP GET protocol. The second, http/http client is a more advanced library dealing with
keep-alive, chunked transfer and a plug-in mechanism providing conversions based on the MIME
content-type.

2.1 The http/http open library

The library http/http open provides a very simple mechanism to read data from an HTTP server
using the HTTP 1.0 protocol and HTTP GET access method. It defines one predicate:

http open(+URL, -Stream, +Options)
Open the data at the HTTP server as a Prolog stream. URL is either an atom specifying a URL
or a list representing a broken-down URL compatible to parse url/2. After this predicate
succeeds the data can be read from Stream. After completion this stream must be closed using
the built-in Prolog predicate close/1. Options provides additional options:

final url(-FinalURL)
Unify FinalURL with the final destination. This differs from the original URL if the
returned head of the original indicates an HTTP redirect (codes 301, 302 or 303). Without
a redirect, FinalURL is unified with the canonical version of URL using

4

parse_url(URL, Parts),
parse_url(FinalURL, Parts)

header(+Name, -AtomValue)
If provided, AtomValue is unified with the value of the indicated field in the reply header.
Name is matched case-insensitive and the underscore () matches the hyphen (-).
Multiple of these options may be provided to extract multiple header fields. If the header
is not available AtomValue is unified to the empty atom (”).

method(Method)
One of get (default) or head. The head message can be used in combination with
the header(Name, Value) option to access information on the resource without actually
fetching the resource itself. The returned stream must be closed immediately.

proxy(+Host, +Port)
Use an HTTP proxy to connect to the outside world.

authorization(+Authorization)
Send authorization. Currently only supports basic(User, Password). See also
http set authorization/2.

request header(+Name = +Value)
Additional name-value parts are added in the order of appearance to the HTTP request
header. No interpretation is done.

size(-Size)
If provided Size is unified with the value of the Content-Length fields of the reply-
header.

timeout(+Timeout)
If provided, set a timeout on the stream using set stream/2. With this option if no
new data arrives within Timeout seconds the stream raises an exception. Default is to wait
forever (infinite).

user agent(+Agent)
Defines the value of the User-Agent field of the HTTP header. Default is
SWI-Prolog (http://www.swi-prolog.org).

Here is a simple example:

?- http_open(’http://www.swi-prolog.org/news.html’, In, []),
copy_stream_data(In, user_output),
close(In).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>
<HEAD>
<TITLE>News</TITLE>
</HEAD>
...

The example below fetches the modification time of a web-page. Note that Modified is ’’ if
the web-server does not provide a time-stamp for the resource. See also parse time/2.

5

modified(URL, Stamp) :-
http_open(URL, In,

[method(head),
header(last_modified, Modified)

]),
close(In),
Modified \== ’’,
parse_time(Modified, Stamp).

close(In).

The http open/3 predicate is designed to be lightweight. The http get/3 and
http post/4 predicates provide more powerful, but also more complicated and resource-
intensitive alternatives to http open/3. The http open/3 predicate supports transfer-
encoding hooks as described in section 4. In particular, loading http/http chunked pro-
vides support for HTTP 1.1 chunked encoding transfer.

http set authorization(+URLPrefix, +Authorization)
Set user/password to supply with URLs that start with URLPrefix. If Authorization is the atom
=—-—=, possibly defined authorization is cleared. For example:

?- http_set_authorization(’http://www.example.com/private/’,
basic(’John’, ’Secret’))

2.2 The http/http client library

The http/http client library provides more powerful access to reading HTTP resources, pro-
viding keep-alive connections, chunked transfer and conversion of the content, such as breaking down
multipart data, parsing HTML, etc. The library announces itself as providing HTTP/1.1.

http get(+URL, -Reply, +Options)
Performs a HTTP GET request on the given URL and then reads the reply using
http read data/3. Defined options are:

connection(ConnectionType)
If close (default) a new connection is created for this request and closed after the
request has completed. If ’Keep-Alive’ the library checks for an open connection on
the requested host and port and re-uses this connection. The connection is left open if the
other party confirms the keep-alive and closed otherwise.

http version(Major-Minor)
Indicate the HTTP protocol version used for the connection. Default is 1.1.

proxy(+Host, +Port)
Use an HTTP proxy to connect to the outside world.

timeout(+Timeout)
If provided, set a timeout on the stream using set stream/2. With this option if no
new data arrives within Timeout seconds the stream raises an exception. Default is to wait
forever (infinite).

6

user agent(+Agent)
Defines the value of the User-Agent field of the HTTP header. Default is
SWI-Prolog (http://www.swi-prolog.org).

request header(Name = Value)
Add a line ”Name: Value” to the HTTP request header. Both name and value are added
uninspected and literally to the request header. This may be used to specify accept
encodings, languages, etc. Please check the RFC2616 (HTTP) document for available
fields and their meaning.

reply header(Header)
Unify Header with a list of Name=Value pairs expressing all header fields of the reply.
See http read request/2 for the result format.

Remaining options are passed to http read data/3.

http post(+URL, +In, -Reply, +Options)
Performs a HTTP POST request on the given URL. It is equivalent to http get/3, except
for providing an input document, which is posted using http post data/3.

http read data(+Header, -Data, +Options)
Read data from an HTTP stream. Normally called from http get/3 or http post/4.
When dealing with HTTP POST in a server this predicate can be used to retrieve the posted
data. Header is the parsed header. Options is a list of Name(Value) pairs to guide the translation
of the data. The following options are supported:

to(Target)
Do not try to interpret the data according to the MIME-type, but return it literally accord-
ing to Target, which is one of:

stream(Output)
Append the data to the given stream, which must be a Prolog stream open for writing.
This can be used to save the data in a (memory-)file, XPCE object, forward it to
process using a pipe, etc.

atom
Return the result as an atom. Though SWI-Prolog has no limit on the size of atoms
and provides atom-garbage collection, this options should be used with care.1

codes
Return the page as a list of character-codes. This is especially useful for parsing it
using grammar rules.

content type(Type)
Overrule the Content-Type as provided by the HTTP reply header. Intended as a
work-around for badly configured servers.

If no to(Target) option is provided the library tries the registered plug-in conversion filters.
If none of these succeed it tries the built-in content-type handlers or returns the content as an
atom. The builtin content filters are described below. The provided plug-ins are described in
the following sections.

1Currently atom-garbage collection is activated after the creation of 10,000 atoms.

7

application/x-www-form-urlencoded
This is the default encoding mechanism for POST requests issued by a web-browser. It is
broken down to a list of Name = Value terms.

Finally, if all else fails the content is returned as an atom.

http post data(+Data, +Stream, +ExtraHeader)
Write an HTTP POST request to Stream using data from Data and passing the additional extra
headers from ExtraHeader. Data is one of:

html(+HTMLTokens)
Send an HTML token string as produced by the library html write described in section
section 3.12.

file(+File)
Send the contents of File. The MIME type is derived from the filename extension using
file mime type/2.

file(+Type, +File)
Send the contents of File using the provided MIME type, i.e. claiming the
Content-type equals Type.

codes(+Codes)
Same as string(text/plain, Codes).

codes(+Type, +Codes)
Send string (list of character codes) using the indicated MIME-type.

cgi stream(+Stream, +Len)
Read the input from Stream which, like CGI data starts with a partial HTTP header. The
fields of this header are merged with the provided ExtraHeader fields. The first Len
characters of Stream are used.

form(+ListOfParameter)
Send data of the MIME type application/x-www-form-urlencoded as pro-
duced by browsers issuing a POST request from an HTML form. ListOfParameter is a
list of Name=Value or Name(Value).

form data(+ListOfData)
Send data of the MIME type multipart/form-data as produced by browsers issu-
ing a POST request from an HTML form using enctype multipart/form-data.
This is a somewhat simplified MIME multipart/mixed encoding used by browser
forms including file input fields. ListOfData is the same as for the List alternative de-
scribed below. Below is an example from the SWI-Prolog Sesame interface. Repository,
etc. are atoms providing the value, while the last argument provides a value from a file.

...,
http_post([protocol(http),

host(Host),
port(Port),
path(ActionPath)

],
form_data([repository = Repository,

8

dataFormat = DataFormat,
baseURI = BaseURI,
verifyData = Verify,
data = file(File)

]),
_Reply,
[]),

...,

List
If the argument is a plain list, it is sent using the MIME type multipart/mixed and
packed using mime pack/3. See mime pack/3 for details on the argument format.

2.2.1 The MIME client plug-in

This plug-in library http/http mime plugin breaks multipart documents that are recognised
by the Content-Type: multipart/form-data or Mime-Version: 1.0 in the header
into a list of Name = Value pairs. This library deals with data from web-forms using the
multipart/form-data encoding as well as the FIPA agent-protocol messages.

2.2.2 The SGML client plug-in

This plug-in library http/http sgml plugin provides a bridge between the
SGML/XML/HTML parser provided by sgml and the http client library. After loading this
hook the following mime-types are automatically handled by the SGML parser.

text/html
Handed to sgml using W3C HTML 4.0 DTD, suppressing and ignoring all HTML syntax
errors. Options is passed to load structure/3.

text/xml
Handed to sgml using dialect xmlns (XML + namespaces). Options is passed to
load structure/3. In particular, dialect(xml) may be used to suppress namespace
handling.

text/x-sgml
Handled to sgml using dialect sgml. Options is passed to load structure/3.

3 The HTTP server libraries

The HTTP server library consists of two parts obligatory and one optional part. The first deals with
connection management and has three different implementation depending on the desired type of
server. The second implements a generic wrapper for decoding the HTTP request, calling user code
to handle the request and encode the answer. The optional http_dispatch module can be used to
assign HTTP locations (paths) to predicates. This design is summarised in figure 1.

The functional body of the user’s code is independent from the selected server-type, making it
easy to switch between the supported server types.

9

thread_httpd.pl

xpce_httpd.pl

inetd_httpd.pl

http_wrapper.pl

handler_1/1

Unix inetd based servers

XPCE event-driven servers

Multi-threaded severs

User’s application codeHTTP protocolSelect server-type

http_dispatch.pl handler_2/1

handler_n/1

Dispatch paths

Figure 1: Design of the HTTP server

3.1 The ‘Body’

The server-body is the code that handles the request and formulates a reply. To facilitate all mentioned
setups, the body is driven by http wrapper/5. The goal is called with the parsed request (see
section 3.6) as argument and current output set to a temporary buffer. Its task is closely related
to the task of a CGI script; it must write a header declaring holding at least the Content-type field
and a body. Here is a simple body writing the request as an HTML table.

reply(Request) :-
format(’Content-type: text/html˜n˜n’, []),
format(’<html>˜n’, []),
format(’<table border=1>˜n’),
print_request(Request),
format(’˜n</table>˜n’),
format(’</html>˜n’, []).

print_request([]).
print_request([H|T]) :-

H =.. [Name, Value],
format(’<tr><td>˜w<td>˜w˜n’, [Name, Value]),
print_request(T).

The infrastructure recognises the header Transfer-encoding: chunked, causing it to use
chunked encoding if the client allows for it. See also section 4 and the chunked option in
http handler/3. Other header lines are passed verbatim to the client. Typical examples are
Set-Cookie and authentication headers (see section 3.4.

10

3.1.1 Returning special status codes

Besides returning a page by writing it to the current output stream, the server goal can raise an ex-
ception using throw/1 to generate special pages such as not found, moved, etc. The defined
exceptions are:

http reply(+Reply, +HdrExtra)
Return a result page using http reply/3. See http reply/3 for details.

http reply(+Reply)
Equivalent to http reply(Reply, []).

http(not modified)
Equivalent to http reply(not modified, []). This exception is for backward compatibility
and can be used by the server to indicate the referenced resource has not been modified since it
was requested last time.

3.2 Dispatching HTTP locations over predicates

The library http/http_dispatch.pl can be between http wrapper/5 and the user handlers
as described in section 3.1 to distribute locations over multiple predicates. This has several advantages:

• It makes a distinction between failure of the predicate and undefined locations, giving a server
error on failure and a 404 existence error on undefined locations.

• It is much easier to put a spy-point on specific locations or find the code implementing a lo-
cation. In addition, the edit/1 interface is extended to deal with locations. This allows for
?- edit(’/path1/path2’). to open an editor on the implementation of the HTTP lo-
cation /path1/path2.

We introduce the library with a small but complete example combining the core HTTP libraries.
To test the example on port 5000, load the code, run ?- server(5000). and direct your browser
to http://localhost:5000.

:- use_module(library(’http/thread_httpd’)).
:- use_module(library(’http/http_dispatch’)).
:- use_module(library(’http/html_write’)).

server(Port) :-
http_server(http_dispatch, [port(Port)]).

:- http_handler(’/’, root, []).
:- http_handler(’/hello/world’, hello_world, []).

root(_Request) :-
reply_html_page([title(’Demo server’)

],
[p(a(href(’hello/world’), hello))
]).

11

hello_world(_Request) :-
reply_html_page([title(’Hello World’)

],
[h1(’Hello World’),

p(’This is my first page’)
]).

http dispatch(+Request)
Dispatch Request to a predicate defined to handle the path component (location) of the request.
Locations are declared using http handler/3. The predicate http dispatch/1 is
normally called from http server/2.

http handler(+Location, :Closure, +Options)
Call call(Closure, Request) if an HTTP request for the path Location is dispatched by
http dispatch/1. Options include:

authentication(+Type)
Demand authentication. Authentication methods define Type and are pluggable. The
library http_authenticate.pl provides a plugin for user/password based Basic
HTTP authentication.

chunked
Enable chunked transfer-encoding if the client allows for it. See section 4.

id(+ID)
Identifier of the handler. The default identifier is the predicate name. Used by
http location by id/2.

time limit(+Spec)
Specify a (wall-)time limit to handle the request. Spec is one of infinite, default
or a number expressing seconds. If default or omitted, the setting (see setting/4)
http:time limit is used.

prefix
If present, call handler for all paths that start with the given path. If multiple specifications
match the most specific one is used.

priority(+Integer)
If two handlers handle the same path, the one with the highest priority is used. If equal,
the last registered is used. Please be aware that the order of clauses in multifile predicates
can change due to reloading files.

spawn(+Spec)
Handle the request on a seperate thread. Spec is either the name of a thread pool (see
thread pool create/3 from library(thread pool) or a set of options that are passed
to thread create/3. See also http spawn/2.

Note that http handler/3 is normally invoked as a directive and processed using term-
expansion. Using term-expansion ensures proper update through make/0 when the specifi-
cation is modified. We do not expand when the cross-referencer is running to ensure proper
handling of the meta-call.

12

http delete handler(+Path)
Delete handler for Path. Typically, this should only be used for handlers that are registered
dynamically. Use the priority option to overrule an existing handler.

http location by id(+ID, -Location)
Find the HTTP Location of handler with ID. If the setting (see setting/2) http:prefix is
active, Location is the handler location prefixed with the prefix setting. Handler IDs can be
specified in two ways:

• id(ID)
If this appears in the option list of the handler, this it is used and takes preference over
using the predicate.

• 〈module〉:〈predicate〉
The module-qualified name of the predicate.

• 〈predicate〉

http current handler(?Location, ?Closure)
True if Location is handled by Closure. It Location is given, the Closure with highest priority
is returned.

http reply file(+FileSpec, +Options, +Request)
Reply a file. The argument order is defined to allow using the predicate as a closure for
http handler/3. Options include:

cache(+Boolean)
If true (default), handle If-modified-since and send modification time.

mime type(+Type)
Overrule mime-type guessing from the filename as provided by file mime type/

Below is an example. Note that the file argument can be a specification for
absolute file name/3 that is searched over application libraries defined using
file search path/2.

:- http_handler(’/css/myapp.css’,
http_reply_file(’myapp.css’, []),
[]).

3.3 HTTP Session management

The library http/http session.pl provides cookie-based session management. The library
installs a session-id cookie using the hook http:request expansion/2. It allows querying the session
and provides a simple assert/retract based store to store information related to a session. Note that
session management only works with the threaded and XPCE based server frameworks as the inetd
based server starts a server for each request.

The examples contain the file calc.pl, which realises a simple calculator with internal state.

13

http set session options(+Options)
Set options for the session manager. Defined options are:

timeout(+Seconds)
Max idle time of a session. Session cookies are deleted if no request is received within
the specified time. The value ‘0’ disables timeout handling.

cookie(+Atom)
Name of the cookie to use for session management. The default is swipl session.

path(+Atom)
Path with which to associate the session management. Default is /, associating it with the
entire server.

http session id(-Id)
Returns an identifier for the current session. The identifier is an atom.

http current session(?Id, ?Data)
Enumerate sessions and associated data. All sessions have the Data item idle(Seconds),
describing the current idle-time of the session. Other data elements are added by the user using
http session assert/1 and friends.

http session asserta(+Term)
Associate Term with the current session, before any other associated term.

http session assert(+Term)
Associate Term with the current session, after any other associated term.

http session retract(?Term)
Non-deterministically retract terms associated with the current session.

http session retractall(+Term)
Retract all matching terms from associated with the current session.

http session data(?Term)
Enumerate all associated terms that unify with Term.

3.4 HTTP Authentication

The module http/http_authenticate provides the basics to validate an HTTP
Authorization error. User and password information are read from a Unix/Apache com-
patible password file. This information, as well as the validation process is cached to achieve optimal
performance.

http authenticate(T)
rue if Request contains the information to continue according to Type. Type identifies the
required authentication technique:

basic(+PasswordFile)
Use HTTP Basic authentication and verify the password from PasswordFile. Pass-
wordFile is a file holding usernames and passwords in a format compatible to Unix and
Apache. Each line is record with : separated fields. The first field is the username and
the second the password hash . Password hashes are validated using crypt/2.

14

Successful authorization is cached for 60 seconds to avoid overhead of decoding and lookup of
the user and password data.

http authenticate/3 just validates the header. If authorization is not provided the
browser must be challenged, in response to which it normally opens a user-password dialogue.
Example code realising this is below. The exception causes the HTTP wrapper code to generate
an HTTP 401 reply.

...,
(http_authenticate(basic(passwd), Request, User)
-> true
; throw(http_reply(authorise(basic, Realm)))
).

Alternatively basic(+PasswordFile) can be passed as an option to http handler/3.

3.5 Get parameters from HTML forms

The library http/http parameters provides two predicates to fetch HTTP request parameters
as a type-checked list easily. The library transparently handles both GET and POST requests. It builds
on top of the low-level request representation described in section 3.6.

http parameters(+Request, ?Parameters)
The predicate is passes the Request as provided to the handler goal by http wrapper/5
as well as a partially instantiated lists describing the requested parameters and their types.
Each parameter specification in Parameters is a term of the format Name(-Value, +Options).
Options is a list of option terms describing the type, default, etc. If no options are specified
the parameter must be present and its value is returned in Value as an atom. If a parameter is
missing the exception error(existence error(form data, Name),) is thrown. Defined
options are:

default(Default)
If the named parameter is missing, Value is unified to Default.

optional(true)
If the named parameter is missing, Value is left unbound and no error is generated.

zero or more
The same parameter may not appear or appear multiple times. If this option is present,
default and optional are ignored and the value is returned as a list. Type checking
options are processed on each value.

oneof(List)
Succeeds if the value is member of the given list.

length > N
Succeeds if value is an atom of more than N characters.

length >= N
Succeeds if value is an atom of more or than equal to N characters.

length < N
Succeeds if value is an atom of less than N characters.

15

length =< N
Succeeds if value is an atom of length than or equal to N characters.

number
Convert value to a number. Throws a type-error otherwise.

integer
Convert value to an integer. Throws a type-error otherwise.

float
Convert value to a float. Integers are transformed into float. Throws a type-error other-
wise.

between(+Low, +High)
Convert value to a number and if either Low or High is a float, force value to be a float.
Then check that the value is in the given range, which includes the boundaries.

Below is an example

reply(Request) :-
http_parameters(Request,

[title(Title, [optional(true)]),
name(Name, [length >= 2]),
age(Age, [integer])

]),
...

Same as http parameters(Request, Parameters, [])

http parameters(+Request, ?Parameters, +Options)
In addition to http parameters/2, the following options are defined.

form data(-Data)
Return the entire set of provided Name=Value pairs from the GET or POST request. All
values are returned as atoms.

attribute declarations(:Goal)
If a parameter specification lacks the parameter options, call call(Goal, +ParamName,
-Options) to find the options. Intended to share declarations over many calls to
http parameters/3. Using this construct the above can be written as below.

reply(Request) :-
http_parameters(Request,

[title(Title),
name(Name),
age(Age)

],
[attribute_declarations(param)
]),

...

16

param(title, [optional(true)]).
param(name, [length >= 2]).
param(age, [integer]).

3.6 Request format

The body-code (see section 3.1) is driven by a Request. This request is generated from
http read request/2 defined in http/http header.

http read request(+Stream, -Request)
Reads an HTTP request from Stream and unify Request with the parsed request. Request is
a list of Name(Value) elements. It provides a number of predefined elements for the result
of parsing the first line of the request, followed by the additional request parameters. The
predefined fields are:

host(Host)
If the request contains Host: Host, Host is unified with the host-name. If Host is of the
format 〈host〉:〈port〉 Host only describes 〈host〉 and a field port(Port) where Port is an
integer is added.

input(Stream)
The Stream is passed along, allowing to read more data or requests from the same stream.
This field is always present.

method(Method)
Method is one of get, put or post. This field is present if the header has been parsed
successfully.

path(Path)
Path associated to the request. This field is always present.

peer(Peer)
Peer is a term ip(A,B,C,D) containing the IP address of the contacting host.

port(Port)
Port requested. See host for details.

search(ListOfNameValue)
Search-specification of URI. This is the part after the ?, normally used to transfer data
from HTML forms that use the ‘GET’ protocol. In the URL it consists of a www-form-
encoded list of Name=Value pairs. This is mapped to a list of Prolog Name=Value terms
with decoded names and values. This field is only present if the location contains a
search-specification.

http version(Major-Minor)
If the first line contains the HTTP/Major.Minor version indicator this element indicate
the HTTP version of the peer. Otherwise this field is not present.

cookie(ListOfNameValue)
If the header contains a Cookie line, the value of the cookie is broken down in
Name=Value pairs, where the Name is the lowercase version of the cookie name as used
for the HTTP fields.

17

set cookie(set cookie(Name, Value, Options))
If the header contains a SetCookie line, the cookie field is broken down into the Name
of the cookie, the Value and a list of Name=Value pairs for additional options such as
expire, path, domain or secure.

If the first line of the request is tagged with HTTP/Major.Minor, http read request/2
reads all input upto the first blank line. This header consists of Name:Value fields. Each such
field appears as a term Name(Value) in the Request, where Name is canonised for use with
Prolog. Canonisation implies that the Name is converted to lower case and all occurrences
of the - are replaced by . The value for the Content-length fields is translated into an
integer.

Here is an example:

?- http_read_request(user, X).
|: GET /mydb?class=person HTTP/1.0
|: Host: gollem
|:
X = [input(user),

method(get),
search([class = person

]),
path(’/mydb’),
http_version(1-0),
host(gollem)

].

3.6.1 Handling POST requests

Where the HTTP GET operation is intended to get a document, using a path and possibly some
additional search information, the POST operation is intended to hand potentially large amounts of
data to the server for processing.

The Request parameter above contains the term method(post). The data posted is left on the
input stream that is available through the term input(Stream) from the Request header. This data
can be read using http read data/3 from the HTTP client library. Here is a demo implementation
simply returning the parsed posted data as plain text (assuming pp/1 pretty-prints the data).

reply(Request) :-
member(method(post), Request), !,
http_read_data(Request, Data, []),
format(’Content-type: text/plain˜n˜n’, []),
pp(Data).

If the POST is initiated from a browser, content-type is generally either
application/x-www-form-urlencoded or multipart/form-data. The latter is
broken down automatically if the plug-in http/http mime plugin is loaded.

18

3.7 Running the server

The functionality of the server should be defined in one Prolog file (of course this file is allowed to
load other files). Depending on the wanted server setup this ‘body’ is wrapped into a small Prolog file
combining the body with the appropriate server interface. There are three supported server-setups.
For most applications we advice the multi-threaded server. Examples of this server architecture are
the PlDoc documentation system and the SeRQL Semantic Web server infrastructure.

All the server setups may be wrapped in a reverse proxy to make them available from the public
web-server as described in section 3.7.7.

• Using thread httpd for a multi-threaded server
This server exploits the multi-threaded version of SWI-Prolog, running the users body code
parallel from a pool of worker threads. As it avoids the state engine and copying required in the
event-driven server it is generally faster and capable to handle multiple requests concurrently.

This server is harder to debug due to the involved threading, although the GUI tracer provides
reasonable support for multi-threaded applications using the tspy/1 command. It can provide
fast communication to multiple clients and can be used for more demanding servers.

• Using xpce httpd for an event-driven server
This approach provides a single-threaded event-driven application. The clients talk to XPCE
sockets that collect an HTTP request. The server infra-structure can talk to multiple clients
simultaneously, but once a request is complete the wrappers call the user’s goal and blocks
all further activity until the request is handled. Requests from multiple clients are thus fully
serialised in one Prolog process.

This server setup is very suitable for debugging as well as embedded server in simple applica-
tions in a fairly controlled environment.

• Using inetd httpd for server-per-client
In this setup the Unix inetd user-daemon is used to initialise a server for each connection.
This approach is especially suitable for servers that have a limited startup-time. In this setup a
crashing client does not influence other requests.

This server is very hard to debug as the server is not connected to the user environment. It
provides a robust implementation for servers that can be started quickly.

3.7.1 Common server interface options

All the server interfaces provide http server(:Goal, +Options) to create the server. The list of
options differ, but the servers share common options:

port(?Port)
Specify the port to listen to for stand-alone servers. Port is either an integer or unbound. If
unbound, it is unified to the selected free port.

3.7.2 Multi-threaded Prolog

The http/thread httpd.pl provides the infrastructure to manage multiple clients using a pool
of worker-threads. This realises a popular server design, also seen in Java Tomcat and Microsoft

19

.NET. As a single persistent server process maintains communication to all clients startup time is not
an important issue and the server can easily maintain state-information for all clients.

In addition to the functionality provided by the other (XPCE and inetd) servers, the threaded server
can also be used to realise an HTTPS server exploiting the ssl library. See option ssl(+SSLOptions)
below.

http server(:Goal, +Options)
Create the server. Options must provide the port(?Port) option to specify the port the server
should listen to. If Port is unbound an arbitrary free port is selected and Port is unified to this
port-number. The server consists of a small Prolog thread accepting new connection on Port
and dispatching these to a pool of workers. Defined Options are:

port(?Port)
Port the server should listen to. If unbound Port is unified with the selected free port.

workers(+N)
Defines the number of worker threads in the pool. Default is to use two workers. Choosing
the optimal value for best performance is a difficult task depending on the number of
CPUs in your system and how much resources are required for processing a request. Too
high numbers makes your system switch too often between threads or even swap if there
is not enough memory to keep all threads in memory, while a too low number causes
clients to wait unnecessary for other clients to complete. See also http workers/2.

timeout(+SecondsOrInfinite)
Determines the maximum period of inactivity handling a request. If no data arrives
within the specified time since the last data arrived the connection raises an exception,
the worker discards the client and returns to the pool-queue for a new client. Default
is infinite, making each worker wait forever for a request to complete. Without a
timeout, a worker may wait forever on an a client that doesn’t complete its request.

keep alive timeout(+SecondsOrInfinite)
Maximum time to wait for new activity on Keep-Alive connections. Choosing the correct
value for this parameter is hard. Disabling Keep-Alive is bad for performance if the
clients request multiple documents for a single page. This may —for example– be caused
by HTML frames, HTML pages with images, associated CSS files, etc. Keeping a
connection open in the threaded model however prevents the thread servicing the client
servicing other clients. The default is 5 seconds.

local(+KBytes)
Size of the local-stack for the workers. Default is taken from the commandline option.

global(+KBytes)
Size of the global-stack for the workers. Default is taken from the commandline option.

trail(+KBytes)
Size of the trail-stack for the workers. Default is taken from the commandline option.

ssl(+SSLOptions)
Use SSL (Secure Socket Layer) rather than plan TCP/IP. A server created this way is
accessed using the https:// protocol. SSL allows for encrypted communication to
avoid others from tapping the wire as well as improved authentication of client and server.
The SSLOptions option list is passed to ssl init/3. The port option of the main option
list is forwarded to the SSL layer. See the ssl library for details.

20

http current server(?:Goal, ?Port)
Query the running servers. Note that http server/3 can be called multiple times to create
multiple servers on different ports.

http workers(:Port, ?Workers)
Query or manipulate the number of workers of the server identified by Port. If Workers is
unbound it is unified with the number of running servers. If it is an integer greater than the
current size of the worker pool new workers are created with the same specification as the
running workers. If the number is less than the current size of the worker pool, this predicate
inserts a number of ‘quit’ requests in the queue, discarding the excess workers as they finish
their jobs (i.e. no worker is abandoned while serving a client).

This can be used to tune the number of workers for performance. Another possible application
is to reduce the pool to one worker to facilitate easier debugging.

http stop server(+Port, +Options)
Stop the HTTP server at Port. Halting a server is done gracefully, which means that requests
being processed are not abandoned. The Options list is for future refinements of this predicate
such as a forced immediate abort of the server, but is currently ignored.

http current worker(?Port, ?ThreadID)
True if ThreadID is the identifier of a Prolog thread serving Port. This predicate is motivated to
allow for the use of arbitrary interaction with the worker thread for development and statistics.

http spawn(:Goal, +Spec)
Continue handling this request in a new thread running Goal. After http spawn/2, the
worker returns to the pool to process new requests. In its simplest form, Spec is the name
of a thread pool as defined by thread pool create/3. Alternatively it is an option list,
whose options are passed to thread create in pool/4 if Spec contains pool(Pool)
or to thread create/3 of the pool option is not present. If the dispatch module is used
(see section 3.2), spawning is normally specified as an option to the http handler/3
registration.

We recomment the use of thread pools. They allow registration of a set of threads using common
characteristics, specify how many can be active and what to do if all threads are active. A typical
application may define a small pool of threads with large stacks for computation intensive tasks,
and a large pool of threads with small stacks to serve media. The declaration could be the one
below, allowing for max 3 concurrent solvers and a maximum backlog of 5 and 30 tasks creating
image thumbnails.

:- use_module(library(thread_pool)).

:- thread_pool_create(compute, 3,
[local(20000), global(100000), trail(50000),
backlog(5)

]).
:- thread_pool_create(media, 30,

[local(100), global(100), trail(100),
backlog(100)

21

]).

:- http_handler(’/solve’, solve, [spawn(compute)]).
:- http_handler(’/thumbnail’, thumbnail, [spawn(media)]).

3.7.3 From an interactive Prolog session using XPCE

The http/xpce httpd.pl provides the infrastructure to manage multiple clients with an event-
driven control-structure. This version can be started from an interactive Prolog session, providing a
comfortable infra-structure to debug the body of your server. It also allows the combination of an
(XPCE-based) GUI with web-technology in one application.

http server(:Goal, +Options)
Create an instance of interactive httpd. Options must provide the port(?Port) option to spec-
ify the port the server should listen to. If Port is unbound an arbitrary free port is selected and
Port is unified to this port-number. Currently no options are defined.

The file demo_xpce gives a typical example of this wrapper, assuming demo_body defines the
predicate reply/1.

:- use_module(xpce_httpd).
:- use_module(demo_body).

server(Port) :-
http_server(reply, Port, []).

The created server opens a server socket at the selected address and waits for incoming connections.
On each accepted connection it collects input until an HTTP request is complete. Then it opens an
input stream on the collected data and using the output stream directed to the XPCE socket it calls
http wrapper/5. This approach is fundamentally different compared to the other approaches:

• Server can handle multiple connections
When inetd will start a server for each client, and CGI starts a server for each request, this
approach starts a single server handling multiple clients.

• Requests are serialised
All calls to Goal are fully serialised, processing on behalf of a new client can only start after all
previous requests are answered. This easier and quite acceptable if the server is mostly inactive
and requests take not very long to process.

• Lifetime of the server
The server lives as long as Prolog runs.

3.7.4 From (Unix) inetd

All modern Unix systems handle a large number of the services they run through the super-server
inetd. This program reads /etc/inetd.conf and opens server-sockets on all ports defined in this
file. As a request comes in it accepts it and starts the associated server such that standard I/O refers to
the socket. This approach has several advantages:

22

• Simplification of servers
Servers don’t have to know about sockets and -operations.

• Centralised authorisation
Using tcpwrappers simple and effective firewalling of all services is realised.

• Automatic start and monitor
The inetd automatically starts the server ‘just-in-time’ and starts additional servers or restarts a
crashed server according to the specifications.

The very small generic script for handling inetd based connections is in inetd_httpd, defining
http server/1:

http server(:Goal, +Options)
Initialises and runs http wrapper/5 in a loop until failure or end-of-file. This server does
not support the Port option as the port is specified with the inetd configuration. The only
supported option is After.

Here is the example from demo_inetd

#!/usr/bin/pl -t main -q -f
:- use_module(demo_body).
:- use_module(inetd_httpd).

main :-
http_server(reply).

With the above file installed in /home/jan/plhttp/demo_inetd, the following line in /etc/
inetd enables the server at port 4001 guarded by tcpwrappers. After modifying inetd, send the
daemon the HUP signal to make it reload its configuration. For more information, please check
inetd.conf(5).

4001 stream tcp nowait nobody /usr/sbin/tcpd /home/jan/plhttp/demo_inetd

3.7.5 MS-Windows

There are rumours that inetd has been ported to Windows.

3.7.6 As CGI script

To be done.

3.7.7 Using a reverse proxy

There are three options for public deployment of a service. One is to run it on a dedicated machine
on port 80, the standard HTTP port. The machine may be a virtual machine running —for example—
under VMWARE or XEN. The (virtual) machine approach isolates security threads and allows for
using a standard port. The server can also be hosted on a non-standard port such as 8000, or 8080.

23

Using non-standard ports however may cause problems with intermediate proxy- and/or firewall poli-
cies. Isolation can be achieved using a Unix chroot environment. Another option, also recommended
for Tomcat servers, is the use of Apache reverse proxies. This causes the main web-server to relay re-
quests below a given URL location to our Prolog based server. This approach has several advantages:

• We can access the server on port 80, just as for a dedicated machine. We do not need a machine
though and we only need access to the Apache configuration.

• As Apache is doing the front-line service, the Prolog server is normally protected from mal-
formed HTTP requests that could result in denial of service or otherwise compromise the server.
In addition, Apache can provide encodings such as compression to the outside world.

Note that the proxy technology can be combined with isolation methods such as dedicated ma-
chines, virtual machines and chroot jails. The proxy can also provide load balancing.

Setting up a reverse proxy The Apache reverse proxy setup is really simple. Ensure the modules
proxy and proxy http are loaded. Then add two simple rules to the server configuration. Below
is an example that makes a PlDoc server on port 4000 available from the main Apache server at port
80.

ProxyPass /pldoc/ http://localhost:4000/pldoc/
ProxyPassReverse /pldoc/ http://localhost:4000/pldoc/

Apache rewrites the HTTP headers passing by, but using the above rules it does not examine the con-
tent. This implies that URLs embedded in the (HTML) content must use relative addressing. If the lo-
cations on the public and Prolog server are the same (as in the example above) it is allowed to use abso-
lute locations. I.e. /pldoc/search is ok, but http://myhost.com:4000/pldoc/search
is not. If the locations on the server differ, locations must be relative (i.e. not start with /.

This problem can also be solved using the contributed Apache module proxy html that can be
instructed to rewrite URLs embedded in HTML documents. In our experience, this is not troublefree
as URLs can appear in many places in generated documents. JavaScript can create URLs on the fly,
which makes rewriting virtually impossible.

3.8 The wrapper library

The body is called by the module http/http wrapper.pl. This module realises the commu-
nication between the I/O streams and the body described in section 3.1. The interface is realised by
http wrapper/5:

http wrapper(:Goal, +In, +Out, -Connection, +Options)
Handle an HTTP request where In is an input stream from the client, Out is an output stream
to the client and Goal defines the goal realising the body. Connection is unified to
’Keep-alive’ if both ends of the connection want to continue the connection or close if
either side wishes to close the connection.

This predicate reads an HTTP request-header from In, redirects current output to a memory file
and then runs call(Goal, Request), watching for exceptions and failure. If Goal exe-
cutes successfully it generates a complete reply from the created output. Otherwise it generates
an HTTP server error with additional context information derived from the exception.

http wrapper/5 supports the following options:

24

request(-Request)
Return the executed request to the caller.

peer(+Peer)
Add peer(Peer) to the request header handed to Goal. The format of Peer is defined by
tcp accept/3 from the clib package.

http:request expansion(+RequestIn, -RequestOut)
This multifile hook predicate is called just before the goal that produces the body, while the
output is already redirected to collect the reply. If it succeeds it must return a valid modified
request. It is allowed to throw exceptions as defined in section 3.1.1. It is intended for
operations such as mapping paths, deny access for certain requests or manage cookies. If it
writes output, these must be HTTP header fields that are added before header fields written by
the body. The example below is from the session management library (see section 3.3) sets a
cookie.

...,
format(’Set-Cookie: ˜w=˜w; path=˜w˜n’, [Cookie, SessionID, Path]),
...,

http current request(-Request)
Get access to the currently executing request. Request is the same as handed to Goal of
http wrapper/5 after applying rewrite rules as defined by http:request expansion/2. Raises
an existence error if there is no request in progress.

http relative path(+AbsPath, -RelPath)
Convert an absolute path (without host, fragment or search) into a path relative
to the current page, defined as the path component from the current request (see
http current request/1). This call is intended to create reusable components
returning relative paths for easier support of reverse proxies.

If —for whatever reason— the conversion is not possible it simply unifies RelPath to AbsPath.

3.9 http log.pl – HTTP Logging module

Simple module for logging HTTP requests to a file. Logging is enabled by loading this file and ensure
the setting http:logfile is not the empty atom. The default file for writing the log is httpd.log. See
library(settings) for details.

The level of logging can modified using the multifile predicate http log:nolog/1 to hide HTTP
request fields from the logfile and http log:password field/1 to hide passwords from HTTP
search specifications (e.g. /topsecret?password=secret.

http log stream(-Stream) [semidet]

Returns handle to open logfile. Fails if no logfile is open and none is defined.

http log(+Format, +Args) [det]

Write message from Format and Args to log-stream. See format/2 for details. Succeed
without side effects if logging is not enabled.

25

3.10 Debugging Servers

The library http/http error.pl defines a hook that decorates uncaught exceptions with a stack-
trace. This will generate a 500 internal server error document with a stack-trace. To enable this
feature, simply load this library. Please do note that providing error information to the user simplifies
the job of a hacker trying to compromise your server. It is therefore not recommended to load this file
by default.

The example program calc.pl has the error handler loaded which can be triggered by forcing
a divide-by-zero in the calculator.

3.11 Handling HTTP headers

The library http/http header provides primitives for parsing and composing HTTP headers. Its
functionality is normally hidden by the other parts of the HTTP server and client libraries. We provide
a brief overview of http reply/3 which can be accessed from the reply body using an exception
as explain in section 3.1.1.

http reply(+Type, +Stream, +HdrExtra)
Compose a complete HTTP reply from the term Type using additional headers from HdrExtra
to the output stream Stream. ExtraHeader is a list of Field(Value). Type is one of:

html(+HTML)
Produce a HTML page using print html/1, normally generated using the
http/html write described in section 3.12.

file(+MimeType, +Path)
Reply the content of the given file, indicating the given MIME type.

tmp file(+MimeType, +Path)
Similar to File(+MimeType, +Path), but do not include a modification time header.

stream(+Stream, +Len)
Reply using the next Len characters from Stream. The user must provides the MIME type
and other attributes through the ExtraHeader argument.

cgi stream(+Stream, +Len)
Similar to stream(+Stream, +Len), but the data on Stream must contain an HTTP
header.

moved(+URL)
Generate a “301 Moved Permanently” page with the given target URL.

moved temporary(+URL)
Generate a “302 Moved Temporary” page with the given target URL.

see other(+URL)
Generate a “303 See Other” page with the given target URL.

not found(+URL)
Generate a “404 Not Found” page.

forbidden(+URL)
Generate a “403 Forbidden” page, denying access without challenging the client.

26

authorise(+Method, +Realm)
Generate a “401 Authorization Required”, requesting the client to retry using proper
credentials (i.e. user and password).

not modified
Generate a “304 Not Modified” page, indicating the requested resource has not changed
since the indicated time.

server error(+Error)
Generate a “500 Internal server error” page with a message generated from a Prolog
exception term (see print message/2).

3.12 The http/html write library

Producing output for the web in the form of an HTML document is a requirement for many Prolog
programs. Just using format/2 is satisfactory as it leads to poorly readable programs generating
poor HTML. This library is based on using DCG rules.

The http/html write structures the generation of HTML from a program. It is an extensible
library, providing a DCG framework for generating legal HTML under (Prolog) program control. It
is especially useful for the generation of structured pages (e.g. tables) from Prolog data structures.

The normal way to use this library is through the DCG html//1. This non-terminal provides the
central translation from a structured term with embedded calls to additional translation rules to a list
of atoms that can then be printed using print html/[1,2].

html(:Spec) //
The DCG non-terminal html//1 is the main predicate of this library. It translates the spec-
ification for an HTML page into a list of atoms that can be written to a stream using
print html/[1,2]. The expansion rules of this predicate may be extended by defining
the multifile DCG html write:expand//1. Spec is either a single specification or a list of single
specifications. Using nested lists is not allowed to avoid ambiguity caused by the atom []

• Atomic data
Atomic data is quoted using html quoted//1.

• Fmt - Args
Fmt and Args are used as format-specification and argument list to sformat/3. The
result is quoted and added to the output list.

• \List
Escape sequence to add atoms directly to the output list. This can be used to embed
external HTML code.

• \Term
Invoke the non-terminal Term in the calling module. This is the common mechanism to
realise abstraction and modularisation in generating HTML.

• Module:Term
Invoke the non-terminal 〈Module〉:〈Term〉. This is similar to \Term but allows for invok-
ing grammar rules in external packages.

• &(Entity)
Emit &〈Entity〉;. As Prolog understands Unicode and automatically inserts appropriate
entity declarations, this is normally not needed.

27

• Tag(Content)
Emit HTML element Tag using Content and no attributes. Content is handed to html//1.
See section 3.12.4 for details on the automatically generated layout.

• Tag(Attributes, Content)
Emit HTML element Tag using Attributes and Content. Attributes is either a single at-
tribute of a list of attributes. Each attributes is of the format Name(Value) or Name=Value.
Value is the atomic attribute value but allows for a limited functional notation:

– A + B
Concatenation of A and B

– encode(Atom)
Use www form encode/2 to create a valid URL component.

– location by id(ID)
HTTP location of the HTTP handler with given ID. See
http location by id/2.

– List
A list is handled as a URL ‘search’ component. The list members are terms of the
format Name = Value or Name(Value). Values are encoded as in the encode option
described above.

The example below generates a URL that references the predicate set lang/1 in the ap-
plication with given parameters. The http handler/3 declaration binds /setlang
to the predicate set lang/1 for which we provide a very simple implementation.
The code between ... is part of an HTML page showing the english flag which,
when pressed, calls set lang(Request) where Request contains the search parameter
lang = en. Note that the HTTP location (path) /setlang can be moved without af-
fecting this code.

:- http_handler(’/setlang’, set_lang, []).

set_lang(Request) :-
http_parameters(Request,

[lang(Lang, [])
]),

http_session_retractall(lang(_)),
http_session_assert(lang(Lang)),
reply_html_page(title(’Switched language’),

p([’Switch language to ’, Lang])).

...
html(a(href(location_by_id(set_lang) + [lang(en)]),

img(src(’/www/images/flags/en.png’)))),
...

page(:HeadContent, :BodyContent) //
The DCG non-terminal page//2 generated a complete page, including the SGML DOCTYPE

28

declaration. HeadContent are elements to be placed in the head element and BodyContent are
elements to be placed in the body element.

To achieve common style (background, page header and footer), it is possible to define DCG
non-terminals head//1 and/or body//1. Non-terminal page//1 checks for the definition of these
non-terminals in the module it is called from as well as in the user module. If no definition is
found, it creates a head with only the HeadContent (note that the title is obligatory) and a
body with bgcolor set to white and the provided BodyContent.

Note that further customisation is easily achieved using html//1 directly as page//2 is (besides
handling the hooks) defined as:

page(Head, Body) -->
html([\[’<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 4.0//EN">\n’],

html([head(Head),
body(bgcolor(white), Body)

])
]).

page(:Contents) //
This version of the page/[1,2] only gives you the SGML DOCTYPE and the HTML element.
Contents is used to generate both the head and body of the page.

html begin(+Begin) //
Just open the given element. Begin is either an atom or a compound term, In the latter case the
arguments are used as arguments to the begin-tag. Some examples:

html_begin(table)
html_begin(table(border(2), align(center)))

This predicate provides an alternative to using the \Command syntax in the html//1 specifi-
cation. The following two fragments are the same. The preferred solution depends on your
preferences as well as whether the specification is generated or entered by the programmer.

table(Rows) -->
html(table([border(1), align(center), width(’80%’)],

[\table_header,
\table_rows(Rows)

])).

% or

table(Rows) -->
html_begin(table(border(1), align(center), width(’80%’))),
table_header,
table_rows,
html_end(table).

html end(+End) //
End an element. See html begin/1 for details.

29

3.12.1 Emitting HTML documents

The non-terminal html//1 translates a specification into a list of atoms and layout instructions. Cur-
rently the layout instructions are terms of the format nl(N), requesting at least N newlines. Multiple
consecutive nl(1) terms are combined to an atom containing the maximum of the requested number
of newline characters.

To simplify handing the data to a client or storing it into a file, the following predicates are avail-
able from this library:

reply html page(:Head, :Body)
Writes an HTML page preceded by an HTTP header as required by http wrapper (CGI-
style). Here is a simple typical example:

reply(Request) :-
reply_html_page(title(’Welcome’),

[h1(’Welcome’),
p(’Welcome to our ...’)

]).

print html(+List)
Print the token list to the Prolog current output stream.

print html(+Stream, +List)
Print the token list to the specified output stream

html print length(+List, -Length)
When calling html print/[1,2] on List, Length characters will be produced. Knowing
the length is needed to provide the Content-length field of an HTTP reply-header.

3.12.2 Repositioning HTML for CSS and javascript links

Modern HTML commonly uses CSS and Javascript. This requires <link> elements in the HTML
<head> element or <script> elements in the <body>. Unfortunately this seriously harms re-using
HTML DCG rules as components as each of these components may rely on their own style sheets or
JavaScript code. We added a ‘mailing’ system to reposition and collect fragments of HTML. This is
implemented by html post//2, html receive//1 and html receive//2.

html post(+Id, :HTML) // [det]

Reposition HTML to the receiving Id. The http post//2 call processes HTML using
html//1. Embedded \-commands are executed by mainman/1 from print html/1
or html print length/2. These commands are called in the calling context of the
html post//2 call.

A typical usage scenario is to get required CSS links in the document head in a reusable fashion.
First, we define css//1 as:

css(URL) -->
html_post(css,

30

link([type(’text/css’),
rel(’stylesheet’),
href(URL)

])).

Next we insert the unique CSS links, in the pagehead using the following call to
reply html page/2:

reply_html_page([title(...),
\html_receive(css)

],
...)

html receive(+Id) // [det]

Receive posted HTML tokens. Unique sequences of tokens posted with html post//2 are
inserted at the location where html receive//1 appears.

See also
- The local predicate sorted html//1 handles the output of html receive//1.
- html receive//2 allows for post-processing the posted material.

html receive(+Id, :Handler) // [det]

This extended version of html receive//1 causes Handler to be called to process all
messages posted to the channal at the time output is generated. Handler is a grammar rule that
is called with three extra arguments.

1. A list of Module:Term, of posted terms. Module is the contest module of html post and
Term is the unmodified term. Members are in the order posted and may contain duplicates.

2. DCG input list. The final output must be produced by a call to html//1.

3. DCG output list.

Typically, Handler collects the posted terms, creating a term suitable for html//1 and finally
calls html//1.

The library predefines the receiver channel head at the end of the head element for all pages that
write the html head through this library. The following code can be used anywhere inside an HTML
generating rule to demand a javascript in the header:

js_script(URL) -->
html_post(head, script([src(URL),

type(’text/javascript’)
], [])).

This mechanism is also exploited to add XML namespace (xmlns) declarations to the (outer)
html element using xhml ns//2:

31

xhtml ns(Id, Value) //
Demand an xmlns:id=Value in the outer html tag. This uses the
html post/2 mechanism to post to the xmlns channel. Rdfa
(http://www.w3.org/2006/07/SWD/RDFa/syntax/), embedding RDF in
(x)html provides a typical usage scenario where we want to publish the required namespaces in
the header. We can define:

rdf_ns(Id) -->
{ rdf_global_id(Id:’’, Value) },
xhtml_ns(Id, Value).

After which we can use rdf ns//1 as a normal rule in html//1 to publish namespaces from
library(semweb/rdf db). Note that this macro only has effect if the dialect is set to xhtml. In
html mode it is silently ignored.

The required xmlns receiver is installed by html begin//1 using the html tag and thus is
present in any document that opens the outer html environment through this library.

3.12.3 Adding rules for html//1

In some cases it is practical to extend the translations imposed by html//1. When using XPCE for
example, it is comfortable to be able defining default translation to HTML for objects. We also used
this technique to define translation rules for the output of the SWI-Prolog sgml package.

The html//1 non-terminal first calls the multifile ruleset html write:expand//1.

html write:expand(+Spec) //
Hook to add additional translation rules for html//1.

html quoted(+Atom) //
Emit the text in Atom, inserting entity-references for the SGML special characters <&>.

html quoted attribute(+Atom) //
Emit the text in Atom suitable for use as an SGML attribute, inserting entity-references for the
SGML special characters <&>".

3.12.4 Generating layout

Though not strictly necessary, the library attempts to generate reasonable layout in SGML output. It
does this only by inserting newlines before and after tags. It does this on the basis of the multifile
predicate html write:layout/3

html write:layout(+Tag, -Open, -Close)
Specify the layout conventions for the element Tag, which is a lowercase atom. Open is a term
Pre-Post. It defines that the element should have at least Pre newline characters before and
Post after the tag. The Close specification is similar, but in addition allows for the atom -,
requesting the output generator to omit the close-tag altogether or empty, telling the library
that the element has declared empty content. In this case the close-tag is not emitted either, but
in addition html//1 interprets Arg in Tag(Arg) as a list of attributes rather than the content.

A tag that does not appear in this table is emitted without additional layout. See also
print html/[1,2]. Please consult the library source for examples.

32

3.12.5 Examples

In the following example we will generate a table of Prolog predicates we find from the SWI-Prolog
help system based on a keyword. The primary database is defined by the predicate predicate/5
We will make hyperlinks for the predicates pointing to their documentation.

html_apropos(Kwd) :-
findall(Pred, apropos_predicate(Kwd, Pred), Matches),
phrase(apropos_page(Kwd, Matches), Tokens),
print_html(Tokens).

% emit page with title, header and table of matches

apropos_page(Kwd, Matches) -->
page([title([’Predicates for ’, Kwd])

],
[h2(align(center),

[’Predicates for ’, Kwd]),
table([align(center),

border(1),
width(’80%’)

],
[tr([th(’Predicate’),

th(’Summary’)
])

| \apropos_rows(Matches)
])

]).

% emit the rows for the body of the table.

apropos_rows([]) -->
[].

apropos_rows([pred(Name, Arity, Summary)|T]) -->
html([tr([td(\predref(Name/Arity)),

td(em(Summary))
])

]),
apropos_rows(T).

% predref(Name/Arity)
%
% Emit Name/Arity as a hyperlink to
%
% /cgi-bin/plman?name=Name&arity=Arity
%
% we must do form-encoding for the name as it may contain illegal
% characters. www_form_encode/2 is defined in library(url).

33

predref(Name/Arity) -->
{ www_form_encode(Name, Encoded),
sformat(Href, ’/cgi-bin/plman?name=˜w&arity=˜w’,

[Encoded, Arity])
},
html(a(href(Href), [Name, /, Arity])).

% Find predicates from a keyword. ’$apropos_match’ is an internal
% undocumented predicate.

apropos_predicate(Pattern, pred(Name, Arity, Summary)) :-
predicate(Name, Arity, Summary, _, _),
(’$apropos_match’(Pattern, Name)
-> true
; ’$apropos_match’(Pattern, Summary)
).

3.12.6 Remarks on the http/html write library

This library is the result of various attempts to reach at a more satisfactory and Prolog-minded way to
produce HTML text from a program. We have been using Prolog for the generation of web pages in
a number of projects. Just using format/2 never was a real option, generating error-prone HTML
from clumsy syntax. We started with a layer on top of format/2, keeping track of the current
nesting and thus always capable of properly closing the environment.

DCG based translation however naturally exploits Prolog’s term-rewriting primitives. If genera-
tion fails for whatever reason it is easy to produce an alternative document (for example holding an
error message).

The approach presented in this library has been used in combination with http/httpd in three
projects: viewing RDF in a browser, selecting fragments from an analysed document and presenting
parts of the XPCE documentation using a browser. It has proven to be able to deal with generating
pages quickly and comfortably.

In a future version we will probably define a goal expansion/2 to do compile-time optimi-
sation of the library. Quotation of known text and invocation of sub-rules using the \RuleSet and
〈Module〉:〈RuleSet〉 operators are costly operations in the analysis that can be done at compile-time.

3.13 http path.pl – Abstract specification of HTTP server locations
To be done

- Make this module replace the http:prefix option.
- Remove hard-wired support for prefix().

This module provides an abstract specification of HTTP server locations that is inspired on
absolute file name/3. The specification is done by adding rules to the dynamic multifile pred-
icate http:location/3. The speficiation is very similar to user:file search path/2, but takes
an additional argument with options. Currently only one option is defined:

34

priority(+Integer)
If two rules match, take the one with highest priority. Using priorities is needed because we
want to be able to overrule paths, but we do not want to become dependent on clause ordering.

Here is an example that binds /login to login/1. The user can reuse this application while
moving all locations using a new rule for the admin location with the option [priority(10)].

:- multifile http:location/3.
:- dynamic http:location/3.

http:location(admin, /, []).

:- http_handler(admin(login), login, []).

login(Request) :-
...

http absolute location(+Spec, -Path, +Options) [det]

Path is the HTTP location for the abstract specification Spec. Options:

relative to(Base)
Path is made relative to Base. Default is to generate absolute URLs.

3.14 Security

Writing servers is an inherently dangerous job that should be carried out with some considerations.
You have basically started a program on a public terminal and invited strangers to use it. When using
the interactive server or inetd based server the server runs under your privileges. Using CGI scripted it
runs with the privileges of your web-server. Though it should not be possible to fatally compromise a
Unix machine using user privileges, getting unconstrained access to the system is highly undesirable.

Symbolic languages have an additional handicap in their inherent possibilities to modify the run-
ning program and dynamically create goals (this also applies to the popular perl and java scripting
languages). Here are some guidelines.

• Check your input
Hardly anything can go wrong if you check the validity of query-arguments before formulating
an answer.

• Check filenames
If part of the query consists of filenames or directories, check them. This also applies to files you
only read. Passing names as /etc/passwd, but also ../../../../../etc/passwd
are tried by experienced hackers to learn about the system they want to attack. So, expand
provided names using absolute file name/[2,3] and verify they are inside a folder
reserved for the server. Avoid symbolic links from this subtree to the outside world. The
example below checks validity of filenames. The first call ensures proper canonisation of the
paths to avoid an mismatch due to symbolic links or other filesystem ambiguities.

35

check_file(File) :-
absolute_file_name(’/path/to/reserved/area’, Reserved),
absolute_file_name(File, Tried),
atom_concat(Reserved, _, Tried).

• Check scripts
Should input in any way activate external scripts using shell/1 or
open(pipe(Command), ...), verify the argument once more.

• Check meta-calling
The attractive situation for you and your attacker is below:

reply(Query) :-
member(search(Args), Query),
member(action=Action, Query),
member(arg=Arg, Query),
call(Action, Arg). % NEVER EVER DO THIS!

All your attacker has to do is specify Action as shell and Arg as /bin/sh and he has an
uncontrolled shell!

3.15 Tips and tricks

• URL Locations
With an application in mind, it is tempting to make all URL locations short and directly con-
nected to the root (/). This is not a good idea. It is adviced to have all locations in a server
below a directory with an informative name. Consider to make the root location something that
can be changed using a global setting.

– Page generating code can easily be reused. Using locations directly below the root how-
ever increases the likelihood of conflicts.

– Multiple servers can be placed behind the same public server as explained in section 3.7.7.
Using a common and fairly unique root, redirection is much easier and less likely to lead
to conflicts.

• Debugging
Please check the section “Thread-support library(threadutil)” of the SWI-Prolog reference man-
ual.

4 Transfer encodings

The HTTP protocol provides for transfer encodings. These define filters applied to the data described
by the Content-type. The two most popular transfer encodings are chunked and deflate. The
chunked encoding avoids the need for a Content-length header, sending the data in chunks,
each of which is preceded by a length. The deflate encoding provides compression.

36

Transfer-encodings are supported by filters defined as foreign libraries that realise an en-
coding/decoding stream on top of another stream. Currently there are two such libraries:
http/http chunked.pl and zlib.pl.

There is an emerging hook interface dealing with transfer encodings. The
http/http chunked.pl provides a hook used by http/http open.pl to support chunked
encoding in http open/3. Note that both http_open.pl and http_chunked.pl must be
loaded for http open/3 to support chunked encoding.

4.1 The http/http chunked library

http chunked open(+RawStream, -DataStream, +Options)
Create a stream to realise HTTP chunked encoding or decoding. The technique is similar to
library(zlib), using a Prolog stream as a filter on another stream. See online documentation at
http://gollem.science.uva.nl/SWI-Prolog/pldoc/ for details.

5 Supporting JSON

From http://json.org, ” JSON (JavaScript Object Notation) is a lightweight data-interchange
format. It is easy for humans to read and write. It is easy for machines to parse and generate. It
is based on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd Edition -
December 1999. JSON is a text format that is completely language independent but uses conventions
that are familiar to programmers of the C-family of languages, including C, C++, C#, Java, JavaScript,
Perl, Python, and many others. These properties make JSON an ideal data-interchange language.”

JSON is interesting to Prolog because using AJAX web technology we can easily created web-
enabled user interfaces where we implement the server side using the SWI-Prolog HTTP services
provided by this package. The interface consists of three libraries:

• library(http/json) provides support for the core JSON object serialization.

• library(http/json convert) converts between the primary representation of JSON terms in Prolog
and more application oriented Prolog terms. E.g. point(X,Y) vs. object([x=X,y=Y]).

• library(http/http json) hooks the conversion libraries into the HTTP client and server libraries.

5.1 json.pl – Reading and writing JSON serialization
author Jan Wielemaker
See also

- http_json.pl links JSON to the HTTP client and server modules.
- json_convert.pl converts JSON Prolog terms to more comfortable terms.

This module supports reading and writing JSON objects. The canonical Prolog representation for
a JSON value is defined as:

• A JSON object is mapped to a term json(NameValueList), where NameValueList is a list of
Name=Value. Name is an atom created from the JSON string.

• A JSON array is mapped to a Prolog list of JSON values.

• A JSON string is mapped to a Prolog atom

37

• A JSON number is mapped to a Prolog number

• The JSON constants true and false are mapped -like JPL- to @(true) and @(false).

• The JSON constant null is mapped to the Prolog term @(null)

Here is a complete example in JSON and its corresponding Prolog term.

{ "name":"Demo term",
"created": {

"day":null,
"month":"December",
"year":2007

},
"confirmed":true,
"members":[1,2,3]

}

json([name=’Demo term’,
created=json([day= @null, month=’December’, year=2007]),
confirmed= @true,
members=[1, 2, 3]

])

atom json term(+Atom, -JSONTerm, +Options) [det]

atom json term(-Text, +JSONTerm, +Options) [det]

Convert between textual representation and a JSON term. In write mode, the option as(Type)
defines the output type, which is one of atom, string or codes.

json read(+Stream, -Term) [det]

json read(+Stream, -Term, +Options) [det]

Read next JSON value from Stream into a Prolog term. Options are:

null(NullTerm)
Term used to represent JSON null. Default @(null)

true(TrueTerm)
Term used to represent JSON true. Default @(true)

false(FalsTerm)
Term used to represent JSON false. Default @(false)

value string as(Type)
Prolog type used for strings used as value. Default is atom. The alternative is string,
producing a packed string object. Please note that codes or chars would produce
ambiguous output and is therefore not supported.

38

json write(+Stream, +Term) [det]

json write(+Stream, +Term, +Options) [det]

Write a JSON term to Stream. The JSON object is of the same format as produced by
json read/2, though we allow for some more flexibility with regard to pairs in objects. All
of Name=Value, Name-Value and Name(Value) produce the same output. In addition to the
options recognised by json read/3, we process the following options are recognised:

width(+Width)
Width in which we try to format the result. Too long lines switch from horizontal to
vertical layout for better readability. If performance is critical and human readability is
not an issue use Width = 0, which causes a single-line output.

step(+Step)
Indentation increnment for next level. Default is 2.

tab(+TabDistance)
Distance between tab-stops. If equal to Step, layout is generated with one tab per level.

is json term(@Term) [semidet]

is json term(@Term, +Options) [semidet]

True if Term is a json term. Options are the same as for json read/2, defining the Prolog
representation for the JSON true, false and null constants.

5.2 json convert.pl – Convert between JSON terms and Prolog application terms
To be done

- Ignore extra fields. Using a partial list of extra?
- Consider a sensible default for handling JSON null. Conversion to Prolog could translate @null
into a variable if the desired type is not any. Conversion to JSON could map variables to null,
though this may be unsafe. If the Prolog term is known to be non-ground and JSON @null is a
sensible mapping, we can also use this simple snipit to deal with that fact.

term_variables(Term, Vars),
maplist(=(@null), Vars).

The idea behind this module is to provide a flexible high-level mapping between Prolog terms as
you would like to see them in your application and the standard representation of a JSON object as
a Prolog term. For example, an X-Y point may be represented in JSON as {"x":25, "y":50}.
Represented in Prolog this becomes json([x=25,y=50]), but this is a pretty non-natural representation
from the Prolog point of view.

This module allows for defining records (just like library(record)) that provide transparent two-
way transformation between the two representations.

:- json_object
point(x:integer, y:integer).

This declaration causes prolog to json/2 to translate the native Prolog representation into a
JSON Term:

?- prolog_to_json(point(25,50), X).

X = json([x=25, y=50])

39

A json object/1 declaration can define multiple objects separated by a comma (,), similar to
the dynamic/1 directive. Optionally, a declaration can be qualified using a module. The converstion
predicates prolog to json/2 and json to prolog/2 first try a conversion associated with the
calling module. If not successful, they try conversions associated with the module user.

JSON objects have no type. This can be solved by adding an extra field to the JSON object,
e.g. {"type":"point", "x":25, "y":50}. As Prolog records are typed by their functor we
need some notation to handle this gracefully. This is achieved by adding +Fields to the declaration.
I.e.

:- json_object
point(x:integer, y:integer) + [type=point].

Using this declaration, the conversion becomes:

?- prolog_to_json(point(25,50), X).

X = json([x=25, y=50, type=point])

The predicate json to prolog/2 is often used after http read json/2 and
prolog to json/2 before reply json/1. For now we consider them seperate predicates
because the transformation may be too general, too slow or not needed for dedicated applications.
Using a seperate step also simplifies debugging this rather complicated process.

json object +Declaration
Declare a JSON object. The declaration takes the same format as using in record/1 from
library(record). E.g.

?- json_object
point(x:int, y:int, z:int=0).

prolog to json(:Term, -JSONObject) [det]

Translate a Prolog application Term into a JSON object term. This transformation is based on
:- json object/1 declarations. If a json object/1 declaration declares a field of type
boolean, commonly used thruth-values in Prolog are converted to JSON booleans. Boolean
translation accepts one of true, on, 1, @true, false, fail, off or 0, @false.

Errors
- type error(json term, X)
- instantiation error

json to prolog(+JSON, -Term) [det]

Translate a JSON term into an application term. This transformation is based on :-
json object/1 declarations. An efficient transformation is non-trivial, but we rely on the
assumption that, although the order of fields in JSON terms is irrelevant and can therefore vary
a lot, practical applications will normally generate the JSON objects in a consistent order.

If a field in a json object is declared of type boolean, @true and @false are translated to
true or false, the most commonly used Prolog representation for truth-values.

40

5.3 http json.pl – HTTP JSON Plugin module
See also

- JSON Requests are discussed in http://json.org/JSONRequest.html
- json.pl describes how JSON objects are represented in Prolog terms.
- json_convert.pl converts between more natural Prolog terms and json terms.

This module inserts the JSON parser for documents of MIME type
application/jsonrequest and application/json requested through the
http_client.pl library.

Typically JSON is used by Prolog HTTP servers. Below is a skeleton for handling a JSON request,
answering in JSON.

handle(Request) :-
http_read_json(Request, JSONIn),
json_to_prolog(JSONIn, PrologIn),
<compute>(PrologIn, PrologOut),

% application body
prolog_to_json(PrologOut, JSONOut),
reply_json(JSONOut).

This module also integrates JSON support into the http client provided by http_client.
pl. Posting a JSON query and processing the JSON reply (or any other reply understood by
http read data/3) is as simple as below, where Term is a JSON term as described in json.pl
and reply is of the same format if the server replies with JSON.

...,
http_post(URL, json(Term), Reply, [])

http read json(+Request, -JSON) [det]

http read json(+Request, -JSON, +Options) [det]

Extract JSON data posted to this HTTP request.

Errors
- domain error(mimetype, Found) if the mimetype is not known (see json type/1).
- domain error(method, Method) if the request is not a POST request.

reply json(+JSONTerm) [det]

reply json(+JSONTerm, +Options) [det]

Formulate a JSON HTTP reply. See json write/2 for details. Options accepts con-
tent type(+Type) and options accepted by json write/3.

6 Status

The SWI-Prolog HTTP library is in active use in a large number of projects. It is considered one of the
SWI-Prolog core libraries that is actively maintained and regularly extended with new features. This
is particularly true for the multi-threaded server. The XPCE and inetd based servers are not widely
used.

This library is by no means complete and you are free to extend it.

41

Index
absolute file name/3, 13
absolute file name/[2

3], 35
atom json term/3, 38

chunked
encoding, 36

close/1, 4
crypt/2, 14

deflate
encoding, 36

edit/1, 11

file mime type/2, 8
file search path/2, 13
format/2, 27, 34

goal expansion/2, 34

html/1, 27
html begin/1, 29
html end/1, 29
html post//2, 30
html print/[1

2], 30
html print length/2, 30
html quoted/1, 32
html quoted attribute/1, 32
html receive//1, 31
html receive//2, 31
html write library, 8
html write:expand/1, 32
html write:layout/3, 32
http/html write library, 26, 27, 34
http/http chunked library, 6, 37
http/http chunked.pl library, 37
http/http client library, 4, 6
http/http error.pl library, 26
http/http header library, 17, 26
http/http mime plugin library, 9, 18
http/http open library, 4
http/http open.pl library, 37
http/http parameters library, 15
http/http session.pl library, 13

http/http sgml plugin library, 9
http/http wrapper.pl library, 24
http/httpd library, 34
http/httpd.pl library, 4
http/thread httpd.pl library, 19
http/xpce httpd.pl library, 22
http:request expansion/2, 25
http absolute location/3, 35
http authenticate/+Type

+Request
-User, 14

http authenticate/3, 15
http chunked open/3, 37
http current handler/2, 13
http current request/1, 25
http current server/2, 21
http current session/2, 14
http current worker/2, 21
http delete handler/1, 13
http dispatch/1, 12
http get/3, 6, 7
http handler/3, 10, 12, 13, 15, 21, 28
http location by id/2, 12, 13, 28
http log/2, 25
http log stream/1, 25
http open/3, 4, 6, 37
http parameters/2, 15, 16
http parameters/3, 16
http post/4, 6, 7
http post data/3, 7, 8
http read data/3, 6, 7, 18
http read json/2, 41
http read json/3, 41
http read request/2, 7, 17, 18
http relative path/2, 25
http reply/3, 11, 26
http reply file/3, 13
http server/1, 23
http server/2, 12, 22, 23
http server/3, 20, 21
http session assert/1, 14
http session asserta/1, 14
http session data/1, 14
http session id/1, 14

42

http session retract/1, 14
http session retractall/1, 14
http set authorization/2, 5, 6
http set session options/1, 14
http spawn/2, 12, 21
http stop server/2, 21
http workers/2, 20, 21
http wrapper library, 30
http wrapper/5, 10, 11, 15, 22–25

inetd httpd library, 19
interactive httpd class, 22
is json term/1, 39
is json term/2, 39

json object/1, 40
json read/2, 38
json read/3, 38
json to prolog/2, 40
json write/2, 39
json write/3, 39

load structure/3, 9

make/0, 12
mime pack/3, 9

page/1, 29
page/2, 28
page/[1

2], 29
parse time/2, 5
parse url/2, 4
pp/1, 18
predicate/5, 33
print html/1, 26, 30
print html/2, 30
print html/[1

2], 27, 32
print message/2, 27
prolog to json/2, 40

reply/1, 22
reply html page/2, 30
reply json/1, 41
reply json/2, 41

set lang/1, 28
set stream/2, 5, 6

setting/2, 13
setting/4, 12
sformat/3, 27
sgml library, 9, 32
shell/1, 36
socket class, 22
ssl library, 20
ssl init/3, 20

tcp accept/3, 25
thread create/3, 12, 21
thread create in pool/4, 21
thread httpd library, 19
thread pool create/3, 12, 21
throw/1, 11
tspy/1, 19

www form encode/2, 28

xhtml ns/2, 32
xpce httpd library, 19

zlib.pl library, 37

43

	Introduction
	The HTTP client libraries
	The http/http_open library
	The http/http_client library
	The MIME client plug-in
	The SGML client plug-in

	The HTTP server libraries
	The `Body'
	Returning special status codes

	Dispatching HTTP locations over predicates
	HTTP Session management
	HTTP Authentication
	Get parameters from HTML forms
	Request format
	Handling POST requests

	Running the server
	Common server interface options
	Multi-threaded Prolog
	From an interactive Prolog session using XPCE
	From (Unix) inetd
	MS-Windows
	As CGI script
	Using a reverse proxy

	The wrapper library
	http_log.pl -- HTTP Logging module
	Debugging Servers
	Handling HTTP headers
	The http/html_write library
	Emitting HTML documents
	Repositioning HTML for CSS and javascript links
	Adding rules for html//1
	Generating layout
	Examples
	Remarks on the http/html_write library

	http_path.pl -- Abstract specification of HTTP server locations
	Security
	Tips and tricks

	Transfer encodings
	The http/http_chunked library

	Supporting JSON
	json.pl -- Reading and writing JSON serialization
	json_convert.pl -- Convert between JSON terms and Prolog application terms
	http_json.pl -- HTTP JSON Plugin module

	Status

