SWI-Prolog RDF parser

Jan Wielemaker
HCS,
University of Amsterdam
The Netherlands
E-mail: jan@swi-prolog.org

January 10, 2010

Abstract

RDF (Resource Description Format) is a W3C standard for expressing meta-data about web-
resources. It has two representations providing the same semantics. RDF documents are normally
transferred as XML documents using the RDF-XML syntax. This format is unsuitable for pro-
cessing. The parser defined here converts an RDF-XML document into the triple notation. The
library rdf_write creates an RDF/XML document from a list of triples.

Contents
1 Introduction
2 Parsing RDF in Prolog

3 Predicates
3.1 RDF Objectrepresentation v v v vt vt e e e e e e
3.2 NAmME SPACES .« v v v v v e e e e e e e e e e e e e e e e e e e
3.3 Low-levelaccess o i e e e e e

4 Writing RDF graphs
5 Testing the RDF translator
A Metrics

B Installation
B.l Unix systems o . o e e e e e e e
B2 Windows e

oo

1 Introduction

RDF is a promising standard for representing meta-data about documents on the web as well as ex-
changing frame-based data (e.g. ontologies). RDF is often associated with ‘semantics on the web’. It
consists of a formal data-model defined in terms of triples. In addition, a graph model is defined for
visualisation and an XML application is defined for exchange.

‘Semantics on the web’ is also associated with the Prolog programming language. It is assumed
that Prolog is a suitable vehicle to reason with the data expressed in RDF models. Most of the related
web-infra structure (e.g. XML parsers, DOM implementations) are defined in Java, Perl, C or C++.

Various routes are available to the Prolog user. Low-level XML parsing is due to its nature best
done in C or C++. These languages produce fast code. As XML/SGML are at the basis of most
of the other web-related formats we will benefit most here. XML and SGML, being very stable
specifications, make fast compiled languages even more attractive.

But what about RDF? RDF-XML is defined in XML, and provided with a Prolog term representing
the XML document processing it according to the RDF syntax is quick and easy in Prolog. The
alternative, getting yet another library and language attached to the system, is getting less attractive.
In this document we explore the suitability of Prolog for processing XML documents in general and
into RDF in particular.

2 Parsing RDF in Prolog

We realised an RDF compiler in Prolog on top of the sgml2pl package (providing a name-space
sensitive XML parser). The transformation is realised in two passes.

The first pass rewrites the XML term into a Prolog term conveying the same information in a more
friendly manner. This transformation is defined in a high-level pattern matching language defined on
top of Prolog with properties similar to DCG (Definite Clause Grammar).

The source of this translation is very close to the BNF notation used by the specification, so
correctness is ‘obvious’. Below is a part of the definition for RDF containers. Note that XML elements
are represented using a term of the format:

element(Name, [AttrName = Value...], [Content ...])

memberElt (LI) ::=
\referencedItem(LI) .

memberElt (LI) ::=
\inlineItem(LI) .

referencedItem(LI) ::=
element (\rdf (1i),
[\resourceAttr (LI)],
(1.

inlineItem(literal (LI)) ::=
element (\rdf (1i),
[\parseLiteral 1],
LI).
inlineltem(description(description, _, _, Properties))

element (\rdf (11),
[\parseResource],
\propertyElts (Properties)) .
inlineItem(LI) ::=
element (\rdf (11),
(1,
[\rdf_object (LI)]), !. % inlined object
inlineItem(literal (LI)) ::=
element (\rdf (1i),
(1,
[LI]). % string value

Expression in the rule that are prefixed by the \ operator acts as invocation of another rule-set. The
body-term is converted into a term where all rule-references are replaced by variables. The resulting
term is matched and translation of the arguments is achieved by calling the appropriate rule. Below is
the Prolog code for the referencedItem rule:

referencedItem (A, element (B, [C], [])) :—
rdf (11, B),
resourceAttr (A, C).

Additional code can be added using a notation close to the Prolog DCG notation. Here is the rule for
a description, producing properties both using propAttrs and propertyElts.

description(description, About, BaglID, Properties) ::=
element (\rdf (' Description’),
\attrs ([\?idAboutAttr (About),
\?bagIdAttr (BagID)
| \propAttrs (PropAttrs)
1)
\propertyElts (PropElts)),
{ !, append(PropAttrs, PropElts, Properties)
}.

3 Predicates

The parser is designed to operate in various environments and therefore provides interfaces at various
levels. First we describe the top level defined in rdf, simply parsing a RDF-XML file into a list
of triples. Please note these are not asserted into the database because it is not necessarily the final
format the user wishes to reason with and it is not clean how the user wants to deal with multiple
RDF documents. Some options are using global URI’s in one pool, in Prolog modules or using an
additional argument.

load_rdf(+File, -Triples)
Same as 1oad_rdf(File, Triples, []).

load_rdf(+File, -Triples, +Options)
Read the RDF-XML file File and return a list of Triples. Options defines additional processing
options. Currently defined options are:

base_uri(BaseURI)
If provided local identifiers and identifier-references are globalised using this URI. If
omited or the atom [], local identifiers are not tagged.

blank _nodes(Mode)
If Mode is share (default), blank-node properties (i.e. complex properties without iden-
tifier) are reused if they result in exactly the same triple-set. Two descriptions are shared
if their intermediate description is the same. This means they should produce the same set
of triples in the same order. The value noshare creates a new resource for each blank
node.

expand_foreach(Boolean)
If Boolean is t rue, expand rdf : aboutEach into a set of triples. By default the parser
generates rdf(each(Container), Predicate, Subject).

lang(Lang)
Define the initial language (i.e. pretend there is an xm1 : 1ang declaration in an enclosing
element).

ignore_lang(Bool)
If true, xml:lang declarations in the document are ignored. This is mostly for com-
patibility with older versions of this library that did not support language identifiers.

convert_typed _literal(:ConvertPred)
If the parser finds a literal with the rdf : dat at ype=Type attribute, call ConvertPred(+Type,
+Content, -Literal). Content is the XML element contentas returned by the XML parser (a
list). The predicate must unify Literal with a Prolog representation of Content according
to Type or throw an exception if the conversion cannot be made.

This option servers two purposes. First of all it can be used to ignore type declarations for
backward compatibility of this library. Second it can be used to convert typed literals to a
meaningful Prolog representation. E.g. convert "42’ to the Prolog integer 42 if the type is
xsd:int or arelated type.

namespaces(-List)
Unify List with a list of NS=URL for each encountered xm1ns:NS=URL declaration found
in the source.

entity(+Name, +Value)
Overrule entity declaration in file. As it is common practice to declare namespaces using
entities in RDF/XML, this option allows for changing the namespace without changing
the file. Multiple of these options are allowed.

The Triples list is a list of rdf(Subject, Predicate, Object) triples. Subject is either a plain
resource (an atom), or one of the terms each(URI) or pre £ i x(URI) with the obvious meaning.
Predicate is either a plain atom for explicitely non-qualified names or a term NameSpace:Name.
If NameSpace is the defined RDF name space it is returned as the atom rdf. Finally, Object is
a URI, a Predicate or a term of the format 1iteral(Value) for literal values. Value is either a
plain atom or a parsed XML term (list of atoms and elements).

3.1 RDF Object representation

The Object (3rd) part of a triple can have several different types. If the object is a resource it is returned
as either a plain atom or a term NameSpace:Name. If it is a literal it is returned as 1iteral(Value),
where Value takes one of the formats defined below.

e An atom
If the literal Value is a plain atom is a literal value not subject to a datatype or xml:lang
qualifier.

e lang(LanguagelD, Atom)
If the literal is subject to an xm1 : Lang qualifier LanguagelD specifies the language and Arom
the actual text.

o A list
If the literal is an XML literal as created by parseType="Literal”, the raw output of the XML
parser for the content of the element is returned. This content is a list of e lement (Name,
Attributes, Content) and atoms for CDATA parts as described with the SWI-Prolog SGML/XML
parser

o type(Type, StringValue)
If the literal has an rdf : datatype=Type a term of this format is returned.

3.2 Name spaces

XML name spaces are identified using a URI. Unfortunately various URI’s are in common use to re-
fer to RDF. The rdf_parser.pl module therefore defines the namespace as a multifile/1
predicate, that can be extended by the user. For example, to parse the Netscape OpenDirectory
structure. rdf file, the following declarations are used:

:— multifile
rdf_parser:rdf_name_space/1.

rdf_parser:rdf_name_space (' http://www.w3.0rg/TR/RDF/’) .
rdf_parser:rdf_name_space ('http://directory.mozilla.org/rdf’) .
rdf_parser:rdf_name_space ('http://dmoz.org/rdf’).

The initial definition of this predicate is given below.

rdf_name_space (' http://www.w3.0rg/1999/02/22-rdf-syntax-ns#’) .
rdf_name_space (' http://www.w3.0rg/TR/REC-rdf-syntax’) .

3.3 Low-level access

The above defined 1oad_rdf/ [2, 3] is not always suitable. For example, it cannot deal with doc-
uments where the RDF statement is embedded in an XML document. It also cannot deal with really
large documents (e.g. the Netscape OpenDirectory project, currently about 90 MBytes), without huge
amounts of memory.

For really large documents, the sgml2pl parser can be programmed to handle the content of a spe-
cific element (i.e. <rdf :RDF>) element-by-element. The parsing primitives defined in this section
can be used to process these one-by-one.

xml_to_rdf(+XML, +BaseURI, -Triples)
Process an XML term produced by 1oad_structure/ 3 using the dialect(xmins) output
option. XML is either a complete <rdf : RDF> element, a list of RDF-objects (container or
description) or a single description of container.

process_rdf(+Input, :OnTriples, +Options)
Exploits the call-back interface of sgml2pl, calling OnTriples(Triples, File:Line) with the list
of triples resulting from a single top level RDF object for each RDF element in the input as
well as the source-location where the description started. Input is either a file name or term
stream(Stream). When using a stream all triples are associated to the value of the base_uri
option. This predicate can be used to process arbitrary large RDF files as the file is processed
object-by-object. The example below simply asserts all triples into the database:

assert_list([], _).

assert_list ([H|T], Source) :-—
assert (H),
assert_1list (T, Source).

?— process_rdf (' structure,rdf’, assert_list, []).

Options are described with 1oad_rdf/3. The option expand_foreach is not supported as
the container may be in a different description. Additional it provides embedded:

embedded(Boolean)
The predicate process_rdf/3 processes arbitrary XML documents, only interpreting
the content of rdf : RDF elements. If this option is false (default), it gives a warning
on elements that are not processed. The option embedded(true) can be used to process
RDF embedded in xAtml without warnings.

4 Writing RDF graphs

The library rdf _write provides the inverse of 1oad_rdf /2 using the predicate rdf write_xml/2.

In most cases the RDF parser is used in combination with the Semweb package providing semweb/rdf_db.
This library defines rdf_save/2 to save a named RDF graph from the database to a file. This library
writes a list of rdf terms to a stream. It has been developed for the SeRQL server which computes

an RDF graph that needs to be transmitted in an HTTP request. As we see this as a typical use-case
scenario the library only provides writing to a stream.

rdf_write_xml(+Stream, +Triples)
Write an RDF/XML document to Stream from the list of Triples. Stream must use one of the
following Prolog stream encodings: ascii, iso_latin_1 or ut£8. Characters that can-
not be represented in the encoding are represented as XML entities. Using ASCII is a good
idea for documents that can be represented almost completely in ASCII. For more international
documents using UTF-8 creates a more compact document that is easier to read.

‘rdf_write(File, Triples) :- ‘
‘ open(File, write, Out, [encoding(utf8)1), ‘
‘ call_cleanup (rdf_write_xml (Out, Triples), ‘
‘ close (Out)) . ‘

S Testing the RDF translator

A test-suite and driver program are provided by rdf_test .pl in the source directory. To run these
tests, load this file into Prolog in the distribution directory. The test files are in the directory suite
and the proper output in suite/ok. Predicates provided by rdf_test .pl:

suite(+N)
Run test N using the file suite/tN. rdf and display the RDF source, the intermediate Prolog
representation and the resulting triples.

passed(+N)
Process suite/tN.rdf and store the resulting triples in suite/ok/tN.pl for later vali-

dation by test /0.

test
Run all tests and classify the result.

A Metrics

It took three days to write and one to document the Prolog RDF parser. A significant part of the time
was spent understanding the RDF specification.
The size of the source (including comments) is given in the table below.

lines words bytes | file function
109 255 2663 | rdf.pl Driver program
312 649 6416 | rdf_parser.pl | 1-st phase parser
246 752 5852 | rdf_triple.pl | 2-nd phase parser
126 339 2596 | rewrite.pl rule-compiler
793 1995 17527 | total

We also compared the performance using an RDF-Schema file generated by Protege-2000 and
interpreted as RDF. This file contains 162 descriptions in 50 Kbytes, resulting in 599 triples. Environ-
ment: Intel Pentium-1I/450 with 384 Mbytes memory running SuSE Linux 6.3.

The parser described here requires 0.15 seconds excluding 0.13 seconds Prolog startup time to
process this file. The Pro Solutions parser (written in Perl) requires 1.5 seconds exluding 0.25 seconds
startup time.

B Installation

B.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install sequence.
SWI-Prolog should be installed before building this package. If SWI-Prolog is not installed as p1, the
environment variable PL must be set to the name of the SWI-Prolog executable. Installation is now
accomplished using:

./configure
make
make install

o° oo

o°

This installs the Prolog library files in $PLBASE/library, where SPLBASE refers to the SWI-
Prolog ‘home-directory’.
B.2 Windows

Run the file setup.pl by double clicking it. This will install the required files into the SWI-Prolog
directory and update the library directory.

	Introduction
	Parsing RDF in Prolog
	Predicates
	RDF Object representation
	Name spaces
	Low-level access

	Writing RDF graphs
	Testing the RDF translator
	Metrics
	Installation
	Unix systems
	Windows

