
A C++ interface to SWI-Prolog

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi.psy.uva.nl

September 9, 2012

Abstract

This document describes a C++ interface to SWI-Prolog. SWI-Prolog could be used with C++
for a very long time, but only by calling the extern ”C” functions of the C-interface. The interface
described herein provides a true C++ layer around the C-interface for much more concise and
natural programming from C++. The interface deals with automatic type-conversion to and from
native C data-types, transparent mapping of exceptions, making queries to Prolog and registering
foreign predicates.

1

Contents

1 Introduction 4

2 Overview 4

3 Examples 5
3.1 Hello(World) . 5
3.2 Adding numbers . 6
3.3 Average of solutions . 6

4 The class PlTerm 7
4.1 Constructors . 7
4.2 Casting PlTerm to native C-types . 8
4.3 Unification . 8
4.4 Comparison . 9
4.5 Analysing compound terms . 10
4.6 Miscellaneous . 10
4.7 The class PlString . 10
4.8 The class PlCodeList . 11
4.9 The class PlCharList . 11
4.10 The class PlCompound . 11
4.11 The class PlTail . 11

5 The class PlTermv 12

6 Supporting Prolog constants 13

7 The class PlRegister 15

8 The class PlQuery 15
8.1 The class PlFrame . 16

9 The PREDICATE macro 17
9.1 Controlling the Prolog destination module . 18

10 Exceptions 18
10.1 The class PlException . 18
10.2 The class PlTypeError . 19
10.3 The class PlDomainError . 20

11 Embedded applications 20

12 Considerations 20
12.1 The C++ versus the C interface . 20
12.2 Static linking and embedding . 21
12.3 Status and compiler versions . 21
12.4 Limitations . 21

2

13 Conclusions 21

3

1 Introduction

C++ provides a number of features that make it possible to define a much more natural and concise
interface to dynamically typed languages than plain C does. Using programmable type-conversion
(casting), native data-types can be translated automatically into appropriate Prolog types, automatic
destructors can be used to deal with most of the cleanup required and C++ exception handling can be
used to map Prolog exceptions and interface conversion errors to C++ exceptions, which are automat-
ically mapped to Prolog exceptions as control is turned back to Prolog.

Competing interfaces

Volker Wysk has defined an alternative C++ mapping based on templates and compatible to the STL
framework. See http://www.volker-wysk.de/swiprolog-c++/index.html.

Acknowledgements

I would like to thank Anjo Anjewierden for comments on the definition, implementation and docu-
mentation of this package.

2 Overview

The most useful area for exploiting C++ features is type-conversion. Prolog variables are dynamically
typed and all information is passed around using the C-interface type term t. In C++, term t is
embedded in the lightweight class PlTerm. Constructors and operator definitions provide flexible
operations and integration with important C-types (char *, long and double).

The list below summarises the classes defined in the C++ interface.

Class PlTerm
Generic Prolog term. Provides constructors and operators for conversion to native C-data and
type-checking.

Class PlString
Subclass of PlTerm with constructors for building Prolog string objects.

Class PlCodeList
Subclass of PlTerm with constructors for building Prolog lists of ASCII values.

Class PlCharList
Subclass of PlTerm with constructors for building Prolog lists of one-character atoms (as
atom chars/2).

Class PlCompound
Subclass of PlTerm with constructors for building compound terms.

Class PlTail
SubClass of PlTerm for building and analysing Prolog lists.

Class PlTermv
Vector of Prolog terms. See PL new term refs(). the [] operator is overloaded to access

4

elements in this vector. PlTermv is used to build complex terms and provide argument-lists to
Prolog goals.

Class PlException
Subclass of PlTerm representing a Prolog exception. Provides methods for the Prolog commu-
nication and mapping to human-readable text representation.

Class PlTypeError
Subclass of PlException for representing a Prolog type error exception.

Class PlDomainError
Subclass of PlException for representing a Prolog domain error exception.

Class PlAtom
Allow for manipulating atoms in their internal Prolog representation for fast comparison.

Class PlQuery
Represents opening and enumerating the solutions to a Prolog query.

Class PlFrame
This utility-class can be used to discard unused term-references as well as to do ‘data-
backtracking’.

Class PlEngine
This class is used in embedded applications (applications where the main control is held in
C++). It provides creation and destruction of the Prolog environment.

Class PlRegister
The encapsulation of PL register foreign() is defined to be able to use C++ global constructors
for registering foreign predicates.

The required C(++) function header and registration of a predicate is arranged through a macro
called PREDICATE().

3 Examples

Before going into a detailed description of the C++ classes we present a few examples illustrating the
‘feel’ of the interface.

3.1 Hello(World)

This very simple example shows the basic definition of the predicate hello/1 and how a Prolog
argument is converted to C-data:

PREDICATE(hello, 1)
{ cout << "Hello " << (char *)A1 << endl;

return TRUE;
}

5

The arguments to PREDICATE() are the name and arity of the predicate. The macros A〈n〉 provide
access to the predicate arguments by position and are of the type PlTerm. Casting a PlTerm to a char
* provides the natural type-conversion for most Prolog data-types, using the output of write/1
otherwise:

?- hello(world).
Hello world

Yes
?- hello(X)
Hello _G170

X = _G170

3.2 Adding numbers

This example shows arithmetic using the C++ interface, including unification, type-checking and
conversion. The predicate add/3 adds the two first arguments and unifies the last with the result.

PREDICATE(add, 3)
{ return A3 = (long)A1 + (long)A2;
}

Casting a PlTerm to a long performs a PL get long() and throws a C++ exception if the Prolog
argument is not a Prolog integer or float that can be converted without loss to a long. The = operator
of PlTerm is defined to perform unification and returns TRUE or FALSE depending on the result.

?- add(1, 2, X).

X = 3.
?- add(a, 2, X).
[ERROR: Type error: ‘integer’ expected, found ‘a’]

Exception: (7) add(a, 2, _G197) ?

3.3 Average of solutions

This example is a bit harder. The predicate average/3 is defined to take the template
average(+Var, :Goal, -Average), where Goal binds Var and will unify Average with average of the
(integer) results.

PlQuery takes the name of a predicate and the goal-argument vector as arguments. From this
information it deduces the arity and locates the predicate. the member-function next solution() yields
TRUE if there was a solution and FALSE otherwise. If the goal yielded a Prolog exception it is mapped
into a C++ exception.

6

PREDICATE(average, 3)
{ long sum = 0;
long n = 0;

PlQuery q("call", PlTermv(A2));
while(q.next_solution())
{ sum += (long)A1;

n++;
}
return A3 = (double)sum/(double)n;

}

4 The class PlTerm

As we have seen from the examples, the PlTerm class plays a central role in conversion and operating
on Prolog data. This section provides complete documentation of this class.

4.1 Constructors

PlTerm::PlTerm()
Creates a new initialised term (holding a Prolog variable).

PlTerm::PlTerm(term t t)
Converts between the C-interface and the C++ interface by turning the term-reference into an
instance of PlTerm. Note that, being a lightweight class, this is a no-op at the machine-level!

PlTerm::PlTerm(const char *text)
Creates a term-references holding a Prolog atom representing text.

PlTerm::PlTerm(const PlAtom &atom)
Creates a term-references holding a Prolog atom from an atom-handle.

PlTerm::PlTerm(long n)
Creates a term-references holding a Prolog integer representing n.

PlTerm::PlTerm(double f)
Creates a term-references holding a Prolog float representing f.

PlTerm::PlTerm(void *ptr)
Creates a term-references holding a Prolog pointer. A pointer is represented in Prolog as a
mangled integer. The mangling is designed to make most pointers fit into a tagged-integer.
Any valid pointer can be represented. This mechanism can be used to represent pointers to C++
objects in Prolog. Please note that ‘myclass’ should define conversion to and from void *.

PREDICATE(make_my_object, 1)
{ myclass *myobj = new myclass();

7

return A1 = (void *)myobj;
}

PREDICATE(free_my_object, 1)
{ myclass *myobj = (void *)A1;

delete(myobj);
return TRUE;

}

4.2 Casting PlTerm to native C-types

PlTerm can be casted to the following types:

PlTerm::operator term t(void)
This cast is used for integration with the C-interface primitives.

PlTerm::operator long(void)
Yields a long if the PlTerm is a Prolog integer or float that can be converted without loss to a
long. throws a type error exception otherwise.

PlTerm::operator int(void)
Same as for long, but might represent fewer bits.

PlTerm::operator double(void)
Yields the value as a C double if PlTerm represents a Prolog integer or float.

PlTerm::operator char *(void)
Converts the Prolog argument using PL get chars() using the flags
CVT ALL|CVT WRITE|BUF RING, which implies Prolog atoms and strings are con-
verted to the represented text. All other data is handed to write/1. If the text is static in
Prolog, a direct pointer to the string is returned. Otherwise the text is saved in a ring of 16
buffers and must be copied to avoid overwriting.

PlTerm::operator void *(void)
Extracts pointer value from a term. The term should have been created by
PlTerm::PlTerm(void*).

4.3 Unification

int PlTerm::operator =(Type)
The operator = is defined for the Types PlTerm, long, double, char * and PlAtom. It
performs Prolog unification and returns TRUE if successful and FALSE otherwise.

The boolean return-value leads to somewhat unconventional-looking code as normally, assign-
ment returns the value assigned in C. Unification however is fundamentally different to assign-
ment as it can succeed or fail. Here is a common example.

8

PREDICATE(hostname, 1)
{ char buf[32];

if (gethostname(buf, sizeof(buf)) == 0)
return A1 = buf;

return FALSE;
}

4.4 Comparison

int PlTerm::operator ==(const PlTerm &t)
int PlTerm::operator !=(const PlTerm &t)
int PlTerm::operator <(const PlTerm &t)
int PlTerm::operator >(const PlTerm &t)
int PlTerm::operator <=(const PlTerm &t)
int PlTerm::operator >=(const PlTerm &t)

Compare the instance with t and return the result according to the Prolog defined standard
order of terms.

int PlTerm::operator ==(long num)
int PlTerm::operator !=(long num)
int PlTerm::operator <(long num)
int PlTerm::operator >(long num)
int PlTerm::operator <=(long num)
int PlTerm::operator >=(long num)

Convert PlTerm to a long and perform standard C-comparison between the two long integers.
If PlTerm cannot be converted a type error is raised.

int PlTerm::operator ==(const char *)
Yields TRUE if the PlTerm is an atom or string representing the same text as the argument,
FALSE if the conversion was successful, but the strings are not equal and an type error
exception if the conversion failed.

Below are some typical examples. See section 6 for direct manipulation of atoms in their internal
representation.

A1 < 0 Test A1 to hold a Prolog integer or float that can be
transformed lossless to an integer less than zero.

A1 < PlTerm(0) A1 is before the term ‘0’ in the ‘standard order of terms’.
This means that if A1 represents an atom, this test yields
TRUE.

A1 == PlCompound("a(1)") Test A1 to represent the term a(1).
A1 == "now" Test A1 to be an atom or string holding the text “now”.

9

4.5 Analysing compound terms

Compound terms can be viewed as an array of terms with a name and arity (length). This view is
expressed by overloading the [] operator.

A type error is raised if the argument is not compound and a domain error if the index is
out of range.

In addition, the following functions are defined:

PlTerm PlTerm::operator [](int arg)
If the PlTerm is a compound term and arg is between 1 and the arity of the term, return a
new PlTerm representing the arg-th argument of the term. If PlTerm is not compound, a
type error is raised. Id arg is out of range, a domain error is raised. Please note
the counting from 1 which is consistent to Prolog’s arg/3 predicate, but inconsistent to
C’s normal view on an array. See also class PlCompound. The following example tests x to
represent a term with first-argument an atom or string equal to gnat.

...,
if (x[1] == "gnat")

...

const char * PlTerm::name()
Return a const char * holding the name of the functor of the compound term. Raises a
type error if the argument is not compound.

int PlTerm::arity()
Returns the arity of the compound term. Raises a type error if the argument is not com-
pound.

4.6 Miscellaneous

int PlTerm::type()
Yields the actual type of the term as PL term type(). Return values are PL VARIABLE,
PL FLOAT, PL INTEGER, PL ATOM, PL STRING or PL TERM

To avoid very confusing combinations of constructors and therefore possible undesirable effects
a number of subclasses of PlTerm have been defined that provide constructors for creating special
Prolog terms. These subclasses are defined below.

4.7 The class PlString

A SWI-Prolog string represents a byte-string on the global stack. It’s lifetime is the same as for com-
pound terms and other data living on the global stack. Strings are not only a compound representation
of text that is garbage-collected, but as they can contain 0-bytes, they can be used to contain arbitrary
C-data structures.

PlString::PlString(const char *text)
Create a SWI-Prolog string object from a 0-terminated C-string. The text is copied.

10

PlString::PlString(const char *text, int len)
Create a SWI-Prolog string object from a C-string with specified length. The text may contain
0-characters and is copied.

4.8 The class PlCodeList

PlCodeList::PlCodeList(const char *text)
Create a Prolog list of ASCII codes from a 0-terminated C-string.

4.9 The class PlCharList

Character lists are compliant to Prolog’s atom chars/2 predicate.

PlCharList::PlCharList(const char *text)
Create a Prolog list of one-character atoms from a 0-terminated C-string.

4.10 The class PlCompound

PlCompound::PlCompound(const char *text)
Create a term by parsing (as read/1) the text. If the text is not valid Prolog syntax, a
syntax error exception is raised. Otherwise a new term-reference holding the parsed text
is created.

PlCompound::PlCompound(const char *functor, PlTermv args)
Create a compound term with the given name from the given vector of arguments. See PlTermv
for details. The example below creates the Prolog term hello(world).

PlCompound("hello", PlTermv("world"))

4.11 The class PlTail

The class PlTail is both for analysing and constructing lists. It is called PlTail as enumeration-steps
make the term-reference follow the ‘tail’ of the list.

PlTail::PlTail(PlTerm list)
A PlTail is created by making a new term-reference pointing to the same object. As PlTail is
used to enumerate or build a Prolog list, the initial list term-reference keeps pointing to the
head of the list.

int PlTail::append(const PlTerm &element)
Appends element to the list and make the PlTail reference point to the new variable tail. If A
is a variable, and this function is called on it using the argument "gnat", a list of the form
[gnat|B] is created and the PlTail object now points to the new variable B.

This function returns TRUE if the unification succeeded and FALSE otherwise. No exceptions
are generated.

The example below translates the main() argument vector to Prolog and calls the prolog predi-
cate entry/1 with it.

11

int
main(int argc, char **argv)
{ PlEngine e(argv[0]);

PlTermv av(1);
PlTail l(av[0]);

for(int i=0; i<argc; i++)
l.append(argv[i]);

l.close();

PlQuery q("entry", av);
return q.next_solution() ? 0 : 1;

}

int PlTail::close()
Unifies the term with [] and returns the result of the unification.

int PlTail::next(PlTerm &t)
Bind t to the next element of the list PlTail and advance PlTail. Returns TRUE on success
and FALSE if PlTail represents the empty list. If PlTail is neither a list nor the empty list, a
type error is thrown. The example below prints the elements of a list.

PREDICATE(write_list, 1)
{ PlTail tail(A1);

PlTerm e;

while(tail.next(e))
cout << (char *)e << endl;

return TRUE;
}

5 The class PlTermv

The class PlTermv represents an array of term-references. This type is used to
pass the arguments to a foreignly defined predicate, construct compound terms (see
PlTerm::PlTerm(const char *name, PlTermv arguments)) and to create queries (see PlQuery).

The only useful member function is the overloading of [], providing (0-based) access to the
elements. Range checking is performed and raises a domain error exception.

The constructors for this class are below.

PlTermv::PlTermv(int size)
Create a new array of term-references, all holding variables.

12

PlTermv::PlTermv(int size, term t t0)
Convert a C-interface defined term-array into an instance.

PlTermv::PlTermv(PlTerm ...)
Create a vector from 1 to 5 initialising arguments. For example:

load_file(const char *file)
{ return PlCall("compile", PlTermv(file));
}

If the vector has to contain more than 5 elements, the following construction should be used:

{ PlTermv av(10);

av[0] = "hello";
...

6 Supporting Prolog constants

Both for quick comparison as for quick building of lists of atoms, it is desirable to provide access
to Prolog’s atom-table, mapping handles to unique string-constants. If the handles of two atoms are
different it is guaranteed they represent different text strings.

Suppose we want to test whether a term represents a certain atom, this interface presents a large
number of alternatives:

Direct comparision to char *

Example:

PREDICATE(test, 1)
{ if (A1 == "read")

...;

This writes easily and is the preferred method is performance is not critical and only a few comparisons
have to be made. It validates A1 to be a term-reference representing text (atom, string, integer or float)
extracts the represented text and uses strcmp() to match the strings.

Direct comparision to PlAtom

Example:

static PlAtom ATOM_read("read");

PREDICATE(test, 1)
{ if (A1 == ATOM_read)

...;

13

This case raises a type error if A1 is not an atom. Otherwise it extacts the atom-handle and
compares it to the atom-handle of the global PlAtom object. This approach is faster and provides
more strict type-checking.

Extraction of the atom and comparison to PlAtom

Example:

static PlAtom ATOM_read("read");

PREDICATE(test, 1)
{ PlAtom a1(A1);

if (a1 == ATOM_read)
...;

This approach is basically the same as section 6, but in nested if-then-else the extraction of the atom
from the term is done only once.

Extraction of the atom and comparison to char *

Example:

PREDICATE(test, 1)
{ PlAtom a1(A1);

if (a1 == "read")
...;

This approach extracts the atom once and for each test extracts the represented string from the atom
and compares it. It avoids the need for global atom constructors.

PlAtom::PlAtom(atom t handle)
Create from C-interface atom handle. Used internally and for integration with the C-interface.

PlAtom::PlAtom(const char *text)
Create from a string. The text is copied if a new atom is created.

PlAtom::PlAtom(const PlTerm &t)
If t represents an atom, the new instance represents this atom. Otherwise a type error is
thrown.

int PlAtom::operator ==(const char *text)
Yields TRUE if the atom represents text, FALSE otherwise. Performs a strcmp() for this.

int PlAtom::operator ==(const PlAtom &a)
Compares the two atom-handles, returning TRUE or FALSE.

14

7 The class PlRegister

This class encapsulates PL register foreign(). It is defined as a class rather then a function to exploit
the C++ global constructor feature. This class provides a constructor to deal with the PREDICATE()
way of defining foreign predicates as well as constructors to deal with more conventional foreign
predicate definitions.

PlRegister::PlRegister(const char *module, const char *name, int arity, foreign t (f)(term t t0, int a, control t ctx))
Register f as a the implementation of the foreign predicate 〈name〉/〈arity〉. This interface uses
the PL FA VARARGS calling convention, where the argument list of the predicate is passed
using an array of term t objects as returned by PL new term refs(). This interface poses no
limits on the arity of the predicate and is faster, especially for a large number of arguments.

PlRegister::PlRegister(const char *module, const char *name, foreign t (*f)(PlTerm a0, . . .))
Registers functions for use with the traditional calling conventional, where each positional
argument to the predicate is passed as an argument to the function f. This can be used to define
functions as predicates similar to what is used in the C-interface:

static foreign_t
pl_hello(PlTerm a1)
{ ...
}

PlRegister x_hello_1(NULL, "hello", 1, pl_hello);

This construct is currently supported upto 3 arguments.

8 The class PlQuery

This class encapsulates the call-backs onto Prolog.

PlQuery::PlQuery(const char *name, const PlTermv &av)
Create a query where name defines the name of the predicate and av the argument vector. The
arity is deduced from av. The predicate is located in the Prolog module user.

PlQuery::PlQuery(const char *module, const char *name, const PlTermv &av)
Same, but performs the predicate lookup in the indicated module.

int PlQuery::next solution()
Provide the next solution to the query. Yields TRUE if successful and FALSE if there are no
(more) solutions. Prolog exceptions are mapped to C++ exceptions.

Below is an example listing the currently defined Prolog modules to the terminal.

PREDICATE(list_modules, 0)
{ PlTermv av(1);

PlQuery q("current_module", av);

15

while(q.next_solution())
cout << (char *)av[0] << endl;

return TRUE;
}

In addition to the above, the following functions have been defined.

int PlCall(const char *predicate, const PlTermv &av)
Creates a PlQuery from the arguments generates the first next solution() and destroys the
query. Returns the result of next solution() or an exception.

int PlCall(const char *module, const char *predicate, const PlTermv &av)
Same, locating the predicate in the named module.

int PlCall(const char *goal)
Translates goal into a term and calls this term as the other PlCall() variations. Especially
suitable for simple goals such as making Prolog load a file.

8.1 The class PlFrame

The class PlFrame provides an interface to discard unused term-references as well as rewinding uni-
fications (data-backtracking). Reclaiming unused term-references is automatically performed after a
call to a C++-defined predicate has finished and returns control to Prolog. In this scenario PlFrame
is rarely of any use. This class comes into play if the toplevel program is defined in C++ and calls
Prolog multiple times. Setting up arguments to a query requires term-references and using PlFrame
is the only way to reclaim them.

PlFrame::PlFrame()
Creating an instance of this class marks all term-references created afterwards to be valid only
in the scope of this instance.

PlFrame::˜PlFrame()
Reclaims all term-references created after constructing the instance.

void PlFrame::rewind()
Discards all term-references and global-stack data created as well as undoing all unifications
after the instance was created.

A typical use for PlFrame is the definition of C++ functions that call Prolog and may be called
repeatedly from C++. Consider the definition of assertWord(), adding a fact to word/1:

void
assertWord(const char *word)
{ PlFrame fr;
PlTermv av(1);

av[0] = PlCompound("word", PlTermv(word));
PlQuery q("assert", av);

16

q.next_solution();
}

This example shows the most sensible use of PlFrame if it is used in the context of a foreign predicate.
The predicate’s thruth-value is the same as for the Prolog unification (=/2), but has no side effects. In
Prolog one would use double negation to achieve this.

PREDICATE(can_unify, 2)
{ PlFrame fr;

int rval = (A1=A2);
fr.rewind();
return rval;

}

9 The PREDICATE macro

The PREDICATE macro is there to make your code look nice, taking care of the interface to the
C-defined SWI-Prolog kernel as well as mapping exceptions. Using the macro

PREDICATE(hello, 1)

is the same as writing:

static foreign_t pl_hello__1(PlTermv _av);

static foreign_t
_pl_hello__1(term_t t0, int arity, control_t ctx)
{ try
{ return pl_hello__1(PlTermv(1, t0));
} catch (PlTerm &ex)
{ return ex.raise();
}

}

static PlRegister _x_hello__1("hello", 1, _pl_hello__1);

static foreign_t
pl_hello__1(PlTermv _av)

The first function converts the parameters passed from the Prolog kernel to a PlTermv instance and
maps exceptions raised in the body to Prolog exceptions. The PlRegister global constructor registers
the predicate. Finally, the function header for the implementation is created.

17

9.1 Controlling the Prolog destination module

With no special precautions, the predicates are defined into the module from which
load foreign library/1 was called, or in the module user if there is no Prolog context from
which to deduce the module such as while linking the extension statically with the Prolog kernel.

Alternatively, before loading the SWI-Prolog include file, the macro PROLOG MODULE may be
defined to a string containing the name of the destination module. A module name may only contain
alpha-numerical characters (letters, digits,). See the example below:

#define PROLOG_MODULE "math"
#include <SWI-Prolog.h>
#include <math.h>

PREDICATE(pi, 1)
{ A1 = M_PI;
}

?- math:pi(X).

X = 3.14159

10 Exceptions

Prolog exceptions are mapped to C++ exceptions using the subclass PlException of PlTerm to repre-
sent the Prolog exception term. All type-conversion functions of the interface raise Prolog-compliant
exceptions, providing decent error-handling support at no extra work for the programmer.

For some commonly used exceptions, subclasses of PlException have been created to exploit both
their constructors for easy creation of these exceptions as well as selective trapping in C++. Currently,
these are PlTypeEror and PlDomainError.

To throw an exception, create an instance of PlException and use throw() or PlExcep-
tion::cppThrow(). The latter refines the C++ exception class according to the represented Prolog
exception before calling throw().

char *data = "users";

throw PlException(PlCompound("no_database", PlTerm(data)));

10.1 The class PlException

This subclass of PlTerm is used to represent exceptions. Currently defined methods are:

PlException::PlException(const PlTerm &t)
Create an exception from a general Prolog term. This is provides the interface for throwing any
Prolog terms as an exception.

18

PlException::operator char *(void)
The exception is translated into a message as produced by print message/2. The character
data is stored in a ring. Example:

...;
try
{ PlCall("consult(load)");
} catch (PlException &ex)
{ cerr << (char *) ex << endl;
}

int plThrow()
Used in the PREDICATE() wrapper to pass the exception to Prolog. See PL raise exeption().

int cppThrow()
Used by PlQuery::next solution() to refine a generic PlException representing a specific class
of Prolog exceptions to the corresponding C++ exception class and finally then executes
throw(). Thus, if a PlException represents the term

error(type error(Expected, Actual), Context)

PlException::cppThrow() throws a PlTypeEror exception. This ensures consistency in the
exception-class whether the exception is generated by the C++-interface or returned by Pro-
log.

The following example illustrates this behaviour:

PREDICATE(call_atom, 1)
{ try

{ return PlCall((char *)A1);
} catch (PlTypeError &ex)
{ cerr << "Type Error caugth in C++" << endl;

cerr << "Message: \"" << (char *)ex << "\"" << endl;
return FALSE;

}
}

10.2 The class PlTypeError

A type error expresses that a term does not satisfy the expected basic Prolog type.

PlTypeError::PlTypeError(const char *expected, const PlTerm &actual)
Creates an ISO standard Prolog error term expressing the expected type and actual term that
does not satisfy this type.

19

10.3 The class PlDomainError

A domain error expresses that a term satisfies the basic Prolog type expected, but is unacceptable to
the restricted domain expected by some operation. For example, the standard Prolog open/3 call
expect an io mode (read, write, append, ...). If an integer is provided, this is a type error, if an atom
other than one of the defined io-modes is provided it is a domain error.

PlDomainError::PlDomainError(const char *expected, const PlTerm &actual)
Creates an ISO standard Prolog error term expressing a the expected domain and the actual
term found.

11 Embedded applications

Most of the above assumes Prolog is ‘in charge’ of the application and C++ is used to add functionality
to Prolog, either for accessing external resources or for performance reasons. In some applications,
there is a main-program and we want to use Prolog as a logic server. For these applications, the class
PlEngine has been defined.

Only a single instance of this class can exist in a process. When used in a multi-threading applica-
tion, only one thread at a time may have a running query on this engine. Applications should ensure
this using proper locking techniques.1

PlEngine::PlEngine(int argc, char **argv)
Initialises the Prolog engine. The application should make sure to pass argv[0] from its main
function, which is needed in the Unix version to find the running executable. See PL initialise()
for details.

PlEngine::PlEngine(char *argv0)
Simple constructure using the main constructor with the specified argument for argv[0].

PlEngine::˜PlEngine()
Calls PL cleanup() to destroy all data created by the Prolog engine.

Section 4.11 has a simple example using this class.

12 Considerations

12.1 The C++ versus the C interface

Not all functionality of the C-interface is provided, but as PlTerm and term t are essentially the
same thing with automatic type-conversion between the two, this interface can be freely mixed with
the functions defined for plain C.

Using this interface rather than the plain C-interface requires a little more resources. More term-
references are wasted (but reclaimed on return to Prolog or using PlFrame). Use of some intermediate
types (functor t etc.) is not supported in the current interface, causing more hash-table lookups.
This could be fixed, at the price of slighly complicating the interface.

1For Unix, there is a multi-threaded version of SWI-Prolog. In this version each thread can create and destroy a thread-
engine. There is currently no C++ interface defined to access this functionality, though —of course— you can use the
C-functions.

20

12.2 Static linking and embedding

The mechanisms outlined in this document can be used for static linking with the SWI-Prolog kernel
using plld(1). In general the C++ linker should be used to deal with the C++ runtime libraries and
global constructors. As of SWI-Prolog 3.2.9, PL register foreign() can be called before PL initialise(),
which is required to handle the calls from the global PlRegister calls.

12.3 Status and compiler versions

The current interface is entirely defined in the .h file using inlined code. This approach has a few
advantages: as no C++ code is in the Prolog kernel, different C++ compilers with different name-
mangling schemas can cooperate smoothly.

Also, changes to the header file have no consequences to binary compatibility with the SWI-Prolog
kernel. This makes it possible to have different versions of the header file with few compatibility
consequences. If the interface stabilises we will consider options to share more code.

12.4 Limitations

Currently, the following limitations are recognised:

• Predicate naming
Using the PREDICATE() macro, only predicates with a name that is valid as part of a C-symbol
can be defined. Notably this makes the definition of predicates with names consisting of symbol
characters impossible.

• Non-deterministic predicates
The current interface does not provide for foreign-defined non-deterministic predicates. It
would not be hard to add this.

13 Conclusions

In this document, we presented a high-level interface to Prolog exploiting automatic type-conversion
and exception-handling defined in C++.

Programming using this interface is much more natural and requires only little extra resources in
terms of time and memory.

Especially the smooth integration between C++ and Prolog exceptions reduce the coding effort
for type checking and reporting in foreign predicates.

21

Index
add/3, 6
arg/3, 10
assert, 16
atom chars/2, 4, 11
average/3, 6

cppThrow(), 19

entry/1, 11

hello/1, 5

load foreign library/1, 18

open/3, 20

PlAtom class, 5, 8, 14
PlAtom::operator ==(), 14
PlAtom::PlAtom(), 14
PlCall(), 16
PlCharList class, 4
PlCharList::PlCharList(), 11
PlCodeList class, 4
PlCodeList::PlCodeList(), 11
PlCompound class, 4, 10
PlCompound::PlCompound(), 11
PlDomainError class, 5, 18
PlDomainError::PlDomainError(), 20
PlEngine class, 5, 20
PlEngine::˜PlEngine(), 20
PlEngine::PlEngine(), 20
PlException class, 5, 18, 19
PlException::operator char *(), 19
PlException::PlException(), 18
PlFrame class, 5, 16, 17, 20
PlFrame::˜PlFrame(), 16
PlFrame::PlFrame(), 16
PlFrame::rewind(), 16
PlQuery class, 5, 6, 12, 16
PlQuery::next solution(), 15
PlQuery::PlQuery(), 15
PlRegister class, 5, 17, 21
PlRegister::PlRegister(), 15
PlString class, 4
PlString::PlString(), 10, 11
PlTail class, 4, 11, 12

PlTail::append(), 11
PlTail::close(), 12
PlTail::next(), 12
PlTail::PlTail(), 11
PlTerm class, 4–10, 18, 20
PlTerm::arity(), 10
PlTerm::name(), 10
PlTerm::operator !=(), 9
PlTerm::operator <(), 9
PlTerm::operator <=(), 9
PlTerm::operator >(), 9
PlTerm::operator >=(), 9
PlTerm::operator =(), 8
PlTerm::operator ==(), 9
PlTerm::operator [](), 10
PlTerm::operator char *(), 8
PlTerm::operator double(), 8
PlTerm::operator int(), 8
PlTerm::operator long(), 8
PlTerm::operator term t(), 8
PlTerm::operator void *(), 8
PlTerm::PlTerm(), 7
PlTerm::type(), 10
PlTermv class, 4, 5, 11, 12, 17
PlTermv::PlTermv(), 12, 13
plThrow(), 19
PlTypeEror class, 18, 19
PlTypeError class, 5
PlTypeError::PlTypeError(), 19
print message/2, 19

read/1, 11

word/1, 16
write/1, 6, 8

22

	Introduction
	Overview
	Examples
	Hello(World)
	Adding numbers
	Average of solutions

	The class PlTerm
	Constructors
	Casting PlTerm to native C-types
	Unification
	Comparison
	Analysing compound terms
	Miscellaneous
	The class PlString
	The class PlCodeList
	The class PlCharList
	The class PlCompound
	The class PlTail

	The class PlTermv
	Supporting Prolog constants
	The class PlRegister
	The class PlQuery
	The class PlFrame

	The PREDICATE macro
	Controlling the Prolog destination module

	Exceptions
	The class PlException
	The class PlTypeError
	The class PlDomainError

	Embedded applications
	Considerations
	The C++ versus the C interface
	Static linking and embedding
	Status and compiler versions
	Limitations

	Conclusions

