
SWI-Prolog SGML/XML parser

Jan Wielemaker
VU University Amsterdam
University of Amsterdam

The Netherlands
E-mail: J.Wielemaker@vu.nl

September 9, 2012

Abstract

Markup languages are an increasingly important method for data-representation and ex-
change. This article documents the package sgml, a foreign library for SWI-Prolog to parse
SGML and XML documents, returning information on both the document and the document’s
DTD. The parser is designed to be small, fast and flexible.

1

Contents

1 Introduction 3

2 Bluffer’s Guide 3
2.1 ‘Goodies’ Predicates . 4

3 Predicate Reference 5
3.1 Loading Structured Documents . 5
3.2 Handling white-space . 7
3.3 XML documents . 7

3.3.1 XML Namespaces . 8
3.4 DTD-Handling . 9

3.4.1 The DOCTYPE declaration . 12
3.5 Extracting a DTD . 12
3.6 Parsing Primitives . 12

3.6.1 Partial Parsing . 17
3.7 Type checking . 18

4 Stream encoding issues 18

5 library(xpath): Select nodes in an XML DOM 18

6 Processing Indexed Files 20

7 External entities 21

8 library(pwp): Prolog Well-formed Pages 22

9 Writing markup 28
9.1 Writing documents . 28
9.2 XML Quote primitives . 29

10 Unsupported features 30

11 Installation 31
11.1 Unix systems . 31

12 Acknowledgements 31

2

1 Introduction

Markup languages have recently regained popularity for two reasons. One is document exchange,
which is largely based on HTML, an instance of SGML, and the other is for data exchange between
programs, which is often based on XML, which can be considered a simplified and rationalised version
of SGML.

James Clark’s SP parser is a flexible SGML and XML parser. Unfortunately it has some draw-
backs. It is very big, not very fast, cannot work under event-driven input and is generally hard to
program beyond the scope of the well designed generic interface. The generic interface however does
not provide access to the DTD, does not allow for flexible handling of input or parsing the DTD
independently of a document instance.

The parser described in this document is small (less than 100 kBytes executable on a Pentium),
fast (between 2 and 5 times faster than SP), provides access to the DTD, and provides flexible input
handling.

The document output is equal to the output produced by xml2pl, an SP interface to SWI-Prolog
written by Anjo Anjewierden.

2 Bluffer’s Guide

This package allows you to parse SGML, XML and HTML data into a Prolog data structure. The
high-level interface defined in sgml provides access at the file-level, while the low-level interface
defined in the foreign module works with Prolog streams. Please use the source of sgml.pl as
a starting point for dealing with data from other sources than files, such as SWI-Prolog resources,
network-sockets, character strings, etc. The first example below loads an HTML file.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>
<head>
<title>Demo</title>
</head>
<body>

<h1 align=center>This is a demo</title>

Paragraphs in HTML need not be closed.

This is called ‘omitted-tag’ handling.
</body>
</html>

?- load_html_file(’test.html’, Term),
pretty_print(Term).

[element(html,
[],

3

[element(head,
[],
[element(title,

[],
[’Demo’
])

]),
element(body,

[],
[’\n’,

element(h1,
[align = center
],
[’This is a demo’
]),

’\n\n’,
element(p,

[],
[’Paragraphs in HTML need not be closed.\n’
]),

element(p,
[],
[’This is called ‘omitted-tag\’ handling.’
])

])
])

].

The document is represented as a list, each element being an atom to represent CDATA or a term
element(Name, Attributes, Content). Entities (e.g. <) are expanded and included in the atom
representing the element content or attribute value.1

2.1 ‘Goodies’ Predicates

These predicates are for basic use of the library, converting entire and self-contained files in SGML,
HTML, or XML into a structured term. They are based on load structure/3.

load sgml file(+Source, -ListOfContent)
Same as load structure(Source, ListOfContent, [dialect(sgml)]).

load xml file(+Source, -ListOfContent)
Same as load structure(Source, ListOfContent, [dialect(xml)]).

load html file(+Source, -Content)
Load Source and parse as HTML. Source is either the name of a file or term stream(Handle).

1Up to SWI-Prolog 5.4.x, Prolog could not represent wide characters and entities that did not fit in the Prolog characters
set were emitted as a term number(+Code). With the introduction of wide characters in the 5.5 branch this is no longer
needed.

4

Implemented as below. Note that load html file/2 re-uses a cached DTD object as
defined by dtd/2. As DTD objects may be corrupted while loading errornous documents
sharing is undesirable if the documents are not known to be correct. See dtd/2 for details.

load_html_file(Source, Term) :-
dtd(html, DTD),
load_structure(Source, Term,

[dtd(DTD),
dialect(sgml),
shorttag(false)

]).

3 Predicate Reference

3.1 Loading Structured Documents

SGML or XML files are loaded through the common predicate load structure/3. This is a
predicate with many options. For simplicity a number of commonly used shorthands are provided:
load sgml file/2, load xml file/2, and load html file/2.

load structure(+Source, -ListOfContent, +Options)
Parse Source and return the resulting structure in ListOfContent. Source is either a term of
the format stream(StreamHandle) or a file-name. Options is a list of options controlling the
conversion process.

A proper XML document contains only a single toplevel element whose name matches the doc-
ument type. Nevertheless, a list is returned for consistency with the representation of element
content. The ListOfContent consists of the following types:

Atom
Atoms are used to represent CDATA. Note this is possible in SWI-Prolog, as there is no
length-limit on atoms and atom garbage collection is provided.

element(Name, ListAttributes, ListOfContent)
Name is the name of the element. Using SGML, which is case-insensitive, all element
names are returned as lowercase atoms.
ListOfAttributes is a list of Name=Value pairs for attributes. Attributes of type CDATA
are returned literal. Multi-valued attributes (NAMES, etc.) are returned as a list
of atoms. Handling attributes of the types NUMBER and NUMBERS depends on the
setting of the number(+NumberMode) attribute through set sgml parser/2 or
load structure/3. By default they are returned as atoms, but automatic conversion
to Prolog integers is supported. ListOfContent defines the content for the element.

sdata(Text)
If an entity with declared content-type SDATA is encountered, this term is returned hold-
ing the data in Text.

ndata(Text)
If an entity with declared content-type NDATA is encountered, this term is returned hold-
ing the data in Text.

5

pi(Text)
If a processing instruction is encountered (<?...?>), Text holds the text of the processing
instruction. Please note that the <?xml ...?> instruction is handled internally.

The Options list controls the conversion process. Currently defined options are:

dtd(?DTD)
Reference to a DTD object. If specified, the <!DOCTYPE ...> declaration is ignored
and the document is parsed and validated against the provided DTD. If provided as a
variable, the created DTD is returned. See section 3.5.

dialect(+Dialect)
Specify the parsing dialect. Supported are sgml (default), xml and xmlns. See sec-
tion 3.3 for details on the differences.

shorttag(+Bool)
Define whether SHORTTAG abbreviation is accepted. The default is true for SGML
mode and false for the XML modes. Without SHORTTAG, a / is accepted with warning
as part of an unquoted attribute-value, though /> still closes the element-tag in XML
mode. It may be set to false for parsing HTML documents to allow for unquoted URLs
containing /.

space(+SpaceMode)
Sets the ‘space-handling-mode’ for the initial environment. This mode is inherited by
the other environments, which can override the inherited value using the XML reserved
attribute xml:space. See section 3.2.

number(+NumberMode)
Determines how attributes of type NUMBER and NUMBERS are handled. If token (de-
fault) they are passed as an atom. If integer the parser attempts to convert the value
to an integer. If successful, the attribute is passed as a Prolog integer. Otherwise it is
still passed as an atom. Note that SGML defines a numeric attribute to be a sequence of
digits. The - sign is not allowed and 1 is different from 01. For this reason the default is
to handle numeric attributes as tokens. If conversion to integer is enabled, negative values
are silently accepted.

defaults(+Bool)
Determines how default and fixed values from the DTD are used. By default, defaults are
included in the output if they do not appear in the source. If false, only the attributes
occurring in the source are emitted.

entity(+Name, +Value)
Defines (overwrites) an entity definition. At the moment, only CDATA entities can be
specified with this construct. Multiple entity options are allowed.

file(+Name)
Sets the name of the file on which errors are reported. Sets the linenumber to 1.

line(+Line)
Sets the starting line-number for reporting errors.

max errors(+Max)
Sets the maximum number of errors. If this number is reached, an exception of the format
below is raised. The default is 50. Using max errors(-1) makes the parser continue, no
matter how many errors it encounters.

6

error(limit exceeded(max errors, Max),)

3.2 Handling white-space

SGML2PL has four modes for handling white-space. The initial mode can be switched using the
space(SpaceMode) option to load structure/3 and set sgml parser/2. In XML mode,
the mode is further controlled by the xml:space attribute, which may be specified both in the DTD
and in the document. The defined modes are:

space(sgml)
In SGML, newlines at the start and end of an element are removed.2 This is the default mode
for the SGML dialect.

space(preserve)
White space is passed literally to the application. This mode leaves all white space handling to
the application. This is the default mode for the XML dialect.

space(default)
In addition to sgml space-mode, all consequtive white-space is reduced to a single space-
character. This mode canonises all white space.

space(remove)
In addition to default, all leading and trailing white-space is removed from CDATA objects.
If, as a result, the CDATA becomes empty, nothing is passed to the application. This mode is
especially handy for processing ‘data-oriented’ documents, such as RDF. It is not suitable for
normal text documents. Consider the HTML fragment below. When processed in this mode,
the spaces between the three modified words are lost. This mode is not part of any standard;
XML 1.0 allows only default and preserve.

Consider adjacent bold and <it>italic</it> words.

3.3 XML documents

The parser can operate in two modes: sgml mode and xml mode, as defined by the
dialect(Dialect) option. Regardless of this option, if the first line of the document reads as be-
low, the parser is switched automatically into XML mode.

<?xml ... ?>

Currently switching to XML mode implies:

• XML empty elements
The construct <element [attribute...] /> is recognised as an empty element.

• Predefined entities
The following entitities are predefined: lt (<), gt (>), amp (&), apos (’) and quot (").

2In addition, newlines at the end of lines containing only markup should be deleted. This is not yet implemented.

7

• Case sensitivity
In XML mode, names are treated case-sensitive, except for the DTD reserved names (i.e.
ELEMENT, etc.).

• Character classes
In XML mode, underscores (_) and colon (:) are allowed in names.

• White-space handling
White space mode is set to preserve. In addition to setting white-space handling at the
toplevel the XML reserved attribute xml:space is honoured. It may appear both in the doc-
ument and the DTD. The remove extension is honoured as xml:space value. For example,
the DTD statement below ensures that the pre element preserves space, regardless of the de-
fault processing mode.

<!ATTLIST pre xml:space nmtoken #fixed preserve>

3.3.1 XML Namespaces

Using the dialect xmlns, the parser will interpret XML namespaces. In this case, the names of
elements are returned as a term of the format

URL:LocalName

If an identifier has no namespace and there is no default namespace it is returned as a simple atom.
If an identifier has a namespace but this namespace is undeclared, the namespace name rather than the
related URL is returned.

Attributes declaring namespaces (xmlns:〈ns〉=〈url〉) are reported as if xmlnswere not a defined
resource.

In many cases, getting attribute-names as url:name is not desirable. Such terms are hard to unify
and sometimes multiple URLs may be mapped to the same identifier. This may happen due to poor
version management, poor standardisation or because the the application doesn’t care too much about
versions. This package defines two call-backs that can be set using set sgml parser/2 to deal
with this problem.

The call-back xmlns is called as XML namespaces are noticed. It can be used to extend a
canonical mapping for later use by the urlns call-back. The following illustrates this behaviour.
Any namespace containing rdf-syntax in its URL or that is used as rdf namespace is canon-
ised to rdf. This implies that any attribute and element name from the RDF namespace appears as
rdf:\bnfmeta{name}

:- dynamic
xmlns/3.

on_xmlns(rdf, URL, _Parser) :- !,
asserta(xmlns(URL, rdf, _)).

on_xmlns(_, URL, _Parser) :-
sub_atom(URL, _, _, _, ’rdf-syntax’), !,
asserta(xmlns(URL, rdf, _)).

8

load_rdf_xml(File, Term) :-
load_structure(File, Term,

[dialect(xmlns),
call(xmlns, on_xmlns),
call(urlns, xmlns)

]).

The library provides iri xml namespace/3 to break down an IRI into its namespace and local-
name:

iri xml namespace(+IRI, -Namespace, -Localname) [det]

Split an IRI (Unicode URI) into its Namespace (an IRI) and Localname (a Unicode XML
name, see xml name/2). The Localname is defined as the longest last part of the IRI that
satisfies the syntax of an XML name. With IRI schemas that are designed to work with XML
namespaces, this will typically break the IRI on the last # or /. Note however that this can
produce unexpected results. E.g., in the example below, one might expect the namespace to be
http://example.com/images#, but an XML name cannot start with a digit.

?- iri_xml_namespace(’http://example.com/images#12345’, NS, L).
NS = ’http://example.com/images#12345’,
L = ’’.

As we see from the example above, the Localname can be the empty atom. Similarly, Names-
pace can be the empty atom if IRI is an XML name. Applications will often have to check
for either or both these conditions. We decided against failing in these conditions because the
application typically wants to know which of the two conditions (empty namespace or empty
localname) holds. This predicate is often used for generating RDF/XML from an RDF graph.

iri xml namespace(+IRI, -Namespace) [det]

Same as iri xml namespace/3, but avoids creating an atom for the Localname.

3.4 DTD-Handling

The DTD (Document Type Definition) is a separate entity in sgml2pl, that can be created, freed,
defined and inspected. Like the parser itself, it is filled by opening it as a Prolog output stream and
sending data to it. This section summarises the predicates for handling the DTD.

new dtd(+DocType, -DTD)
Creates an empty DTD for the named DocType. The returned DTD-reference is an opaque
term that can be used in the other predicates of this package.

free dtd(+DTD)
Deallocate all resources associated to the DTD. Further use of DTD is invalid.

load dtd(+DTD, +File)
Define the DTD by loading the SGML-DTD file File. Same as load dtd/3 with empty
option list.

9

load dtd(+DTD, +File, +Options)
Define the DTD by loading File. Defined options are the dialect option from open dtd/3
and the encoding option from open/4. Notably the dialect option must match the
dialect used for subsequent parsing using this DTD.

open dtd(+DTD, +Options, -OutStream)
Open a DTD as an output stream. See load dtd/2 for an example. Defined options are:

dialect(Dialect)
Define the DTD dialect. Default is sgml. Using xml or xmlns processes the DTD
case-sensitive.

dtd(+DocType, -DTD)
Find the DTD representing the indicated doctype. This predicate uses a cache of DTD objects.
If a doctype has no associated dtd, it searches for a file using the file search path dtd using the
call:

...,
absolute_file_name(dtd(Type),

[extensions([dtd]),
access(read)

], DtdFile),
...

Note that DTD objects may be modified while processing errornous documents. For example,
loading an SGML document starting with <?xml ...?> switches the DTD to XML mode and
encountering unknown elements adds these elements to the DTD object. Re-using a DTD object
to parse multiple documents should be restricted to situations where the documents processed
are known to be error-free.

dtd property(+DTD, ?Property)
This predicate is used to examine the content of a DTD. Property is one of:

doctype(DocType)
An atom representing the document-type defined by this DTD.

elements(ListOfElements)
A list of atoms representing the names of the elements in this DTD.

element(Name, Omit, Content)
The DTD contains an element with the given name. Omit is a term of the format
omit(OmitOpen, OmitClose), where both arguments are booleans (true or false
representing whether the open- or close-tag may be omitted. Content is the content-model
of the element represented as a Prolog term. This term takes the following form:

empty
The element has no content.

cdata
The element contains non-parsed character data. All data up to the matching end-tag
is included in the data (declared content).

10

rcdata
As cdata, but entity-references are expanded.

any
The element may contain any number of any element from the DTD in any order.

#pcdata
The element contains parsed character data .

element(A)
n element with this name.

*(SubModel)
0 or more appearances.

?(SubModel)
0 or one appearance.

+(SubModel)
1 or more appearances.

,(SubModel1, SubModel2)
SubModel1 followed by SubModel2.

&(SubModel1, SubModel2)
SubModel1 and SubModel2 in any order.

|(SubModel1, SubModel2)
SubModel1 or SubModel2.

attributes(Element, ListOfAttributes)
ListOfAttributes is a list of atoms representing the attributes of the element Element.

attribute(Element, Attribute, Type, Default)
Query an element. Type is one of cdata, entity, id, idref, name, nmtoken,
notation, number or nutoken. For DTD types that allow for a list, the notation
list(Type) is used. Finally, the DTD construct (a|b|...) is mapped to the term
nameof(ListOfValues).
Default describes the sgml default. It is one required, current, conref or
implied. If a real default is present, it is one of default(Value) or fixed(Value).

entities(ListOfEntities)
ListOfEntities is a list of atoms representing the names of the defined entities.

entity(Name, Value)
Name is the name of an entity with given value. Value is one of

Atom
If the value is atomic, it represents the literal value of the entity.

system(Url)
Url is the URL of the system external entity.

public(Id, Url)
For external public entities, Id is the identifier. If an URL is provided this is returned
in Url. Otherwise this argument is unbound.

notations(ListOfNotations)
Returns a list holding the names of all NOTATION declarations.

notation(Name, Decl)
Unify Decl with a list if system(+File) and/or public(+PublicId).

11

3.4.1 The DOCTYPE declaration

As this parser allows for processing partial documents and process the DTD separately, the DOCTYPE
declaration plays a special role.

If a document has no DOCTYPE declaraction, the parser returns a list holding all elements and
CDATA found. If the document has a DOCTYPE declaraction, the parser will open the element
defined in the DOCTYPE as soon as the first real data is encountered.

3.5 Extracting a DTD

Some documents have no DTD. One of the neat facilities of this library is that it builds a DTD while
parsing a document with an implicit DTD. The resulting DTD contains all elements encountered in the
document. For each element the content model is a disjunction of elements and possibly #PCDATA
that can be repeated. Thus, if we found element y and CDATA in element x, the model is:

<!ELEMENT x - - (y|#PCDATA)*>

Any encountered attribute is added to the attribute list with the type CDATA and default #IMPLIED.
The example below extracts the elements used in an unknown XML document.

elements_in_xml_document(File, Elements) :-
load_structure(File, _,

[dialect(xml),
dtd(DTD)

]),
dtd_property(DTD, elements(Elements)),
free_dtd(DTD).

3.6 Parsing Primitives

new sgml parser(-Parser, +Options)
Creates a new parser. A parser can be used one or multiple times for parsing documents or
parts thereof. It may be bound to a DTD or the DTD may be left implicit, in which case it is
created from the document prologue or parsing is performed without a DTD. Options:

dtd(?DTD)
If specified with an initialised DTD, this DTD is used for parsing the document, regardless
of the document prologue. If specified using as a variable, a reference to the created DTD
is returned. This DTD may be created from the document prologue or build implicitely
from the document’s content.

free sgml parser(+Parser)
Destroy all resources related to the parser. This does not destroy the DTD if the parser was
created using the dtd(DTD) option.

set sgml parser(+Parser, +Option)
Sets attributes to the parser. Currently defined attributes:

12

file(File)
Sets the file for reporting errors and warnings. Sets the line to 1.

line(Line)
Sets the current line. Useful if the stream is not at the start of the (file) object for generating
proper line-numbers.

charpos(Offset)
Sets the current character location. See also the file(File) option.

dialect(Dialect)
Set the markup dialect. Known dialects:

sgml
The default dialect is to process as SGML. This implies markup is case-insensitive
and standard SGML abbreviation is allowed (abreviated attributes and omitted tags).

xml
This dialect is selected automatically if the processing instruction <?xml ...> is
encountered. See section 3.3 for details.

xmlns
Process file as XML file with namespace support. See section 3.3.1 for details. See
also the qualify_attributes option below.

xmlns(+URI)
Set the default namespace of the outer environment. This option is provided to process
partial XML content with proper namespace resolution.

xmlns(+NS, +URI)
Specify a namespace for the outer environment. This option is provided to process partial
XML content with proper namespace resolution.

qualify attributes(Boolean)
How to handle unqualified attribute (i.e. without an explicit namespace) in XML names-
pace (xmlns) mode. Default and standard compliant is not to qualify such elements. If
true, such attributes are qualified with the namespace of the element they appear in.
This option is for backward compatibility as this is the behaviour of older versions. In
addition, the namespace document suggests unqualified attributes are often interpreted in
the namespace of their element.

space(SpaceMode)
Define the initial handling of white-space in PCDATA. This attribute is described in
section 3.2.

number(NumberMode)
If token (default), attributes of type number are passed as a Prolog atom. If integer,
such attributes are translated into Prolog integers. If the conversion fails (e.g. due to
overflow) a warning is issued and the value is passed as an atom.

encoding(Encoding)
Set the initial encoding. The default initial encoding for XML documents is UTF-8 and
for SGML documents ISO-8859-1. XML documents may change the encoding using the
encoding= attribute in the header. Explicit use of this option is only required to parse
non-conforming documents. Currently accepted values are iso-8859-1 and utf-8.

13

doctype(Element)
Defines the toplevel element expected. If a <!DOCTYPE declaration has been parsed, the
default is the defined doctype. The parser can be instructed to accept the first element
encountered as the toplevel using doctype(). This feature is especially useful when
parsing part of a document (see the parse option to sgml parse/2.

get sgml parser(+Parser, -Option)
Retrieve infomation on the current status of the parser. Notably useful if the parser is used in
the call-back mode. Currently defined options:

file(-File)
Current file-name. Note that this may be different from the provided file if an external
entity is being loaded.

line(-Line)
Line-offset from where the parser started its processing in the file-object.

charpos(-CharPos)
Offset from where the parser started its processing in the file-object. See section 6.

charpos(-Start, -End)
Character offsets of the start and end of the source processed causing the current call-back.
Used in PceEmacs to for colouring text in SGML and XML modes.

source(-Stream)
Prolog stream being processed. May be used in the on begin, etc. callbacks from
sgml parse/2.

dialect(-Dialect)
Return the current dialect used by the parser (sgml, xml or xmlns).

event class(-Class)
The event class can be requested in call-back events. It denotes the cause of the event,
providing useful information for syntax highlighting. Defined values are:

explicit
The code generating this event is explicitely present in the document.

omitted
The current event is caused by the insertion of an omitted tag. This may be a normal
event in SGML mode or an error in XML mode.

shorttag
The current event (begin or end) is caused by an element written down using the
shorttag notation (<tag/value/>.

shortref
The current event is caused by the expansion of a shortref. This allows for highlight-
ing shortref strings in the source-text.

doctype(-Element)
Return the defined document-type (= toplevel element). See also set sgml parser/2.

dtd(-DTD)
Return the currently used DTD. See dtd property/2 for obtaining information on
the DTD such as element and attribute properties.

14

context(-StackOfElements)
Returns the stack of currently open elements as a list. The head of this list is the current
element. This can be used to determine the context of, for example, CDATA events in
call-back mode. The elements are passed as atoms. Currently no access to the attributes
is provided.

allowed(-Elements)
Determines which elements may be inserted at the current location. This information is
returned as a list of element-names. If character data is allowed in the current location,
#pcdata is part of Elements. If no element is open, the doctype is returned.
This option is intended to support syntax-sensitive editors. Such an editor should load the
DTD, find an appropriate starting point and then feed all data between the starting point
and the caret into the parser. Next it can use this option to determine the elements allowed
at this point. Below is a code fragment illustrating this use given a parser with loaded
DTD, an input stream and a start-location.

...,
seek(In, Start, bof, _),
set_sgml_parser(Parser, charpos(Start)),
set_sgml_parser(Parser, doctype(_)),
Len is Caret - Start,
sgml_parse(Parser,

[source(In),
content_length(Len),
parse(input) % do not complete document

]),
get_sgml_parser(Parser, allowed(Allowed)),
...

sgml parse(+Parser, +Options)
Parse an XML file. The parser can operate in two input and two output modes. Output is
either a structured term as described with load structure/2 or call-backs on predefined
events. The first is especially suitable for manipulating not-too-large documents, while the
latter provides a primitive means for handling very large documents.

Input is a stream. A full description of the option-list is below.

document(-Term)
A variable that will be unified with a list describing the content of the document (see
load structure/2).

source(+Stream)
An input stream that is read. This option must be given.

content length(+Characters)
Stop parsing after Characters. This option is useful to parse input embedded in envelopes,
such as the HTTP protocol.

parse(Unit)
Defines how much of the input is parsed. This option is used to parse only parts of a file.

15

file
Default. Parse everything upto the end of the input.

element
The parser stops after reading the first element. Using source(Stream), this implies
reading is stopped as soon as the element is complete, and another call may be issued
on the same stream to read the next element.

content
The value content is like element but assumes the element has already been
opened. It may be used in a call-back from call(on begin, Pred) to parse
individual elements after validating their headers.

declaration
This may be used to stop the parser after reading the first declaration. This is espe-
cially useful to parse only the doctype declaration.

input
This option is intended to be used in conjunction with the allowed(Elements)
option of get sgml parser/2. It disables the parser’s default to complete the
parse-tree by closing all open elements.

max errors(+MaxErrors)
Set the maximum number of errors. If this number is exceeded further writes to the
stream will yield an I/O error exception. Printing of errors is suppressed after reaching
this value. The default is 100.

syntax errors(+ErrorMode)
Defines how syntax errors are handled.
quiet

Suppress all messages.
print

Default. Pass messages to print message/2.
style

Print dubious input such as attempts for redefinitions in the DTD using
print message/2 with severity informational.

xml no ns(+Mode)
Error handling if an XML namespace is not defined. Default generates an error. If quiet,
the error is suppressed. Can be used together with call(urlns, Closure) to provide
external expansion of namespaces. See also section 3.3.1.

call(+Event, :PredicateName)
Issue call-backs on the specified events. PredicateName is the name of the predicate to
call on this event, possibly prefixed with a module identifier. If the handler throws an
exception, parsing is stopped and sgml parse/2 re-throws the exception. The defined
events are:
begin

An open-tag has been parsed. The named handler is called with three arguments:
Handler(+Tag, +Attributes, +Parser).

end
A close-tag has been parsed. The named handler is called with two arguments:
Handler(+Tag, +Parser).

16

cdata
CDATA has been parsed. The named handler is called with two arguments:
Handler(+CDATA, +Parser), where CDATA is an atom representing the data.

pi
A processing instruction has been parsed. The named handler is called with two
arguments: Handler(+Text, +Parser), where Text is the text of the processing
instruction.

decl
A declaration (<!...>) has been read. The named handler is called with two ar-
guments: Handler(+Text, +Parser), where Text is the text of the declaration with
comments removed.
This option is expecially useful for highlighting declarations and comments
in editor support, where the location of the declaration is extracted using
get sgml parser/2.

error
An error has been encountered. the named handler is called with three arguments:
Handler(+Severity, +Message, +Parser), where Severity is one of warning or
error and Message is an atom representing the diagnostic message. The location
of the error can be determined using get sgml parser/2
If this option is present, errors and warnings are not reported using
print message/3

xmlns
When parsing an in xmlns mode, a new namespace declaraction is pushed
on the environment. The named handler is called with three arguments: Han-
dler(+NameSpace, +URL, +Parser). See section 3.3.1 for details.

urlns
When parsing an in xmlns mode, this predicate can be used to map a url into either
a canonical URL for this namespace or another internal identifier. See section 3.3.1
for details.

3.6.1 Partial Parsing

In some cases, part of a document needs to be parsed. One option is to use load structure/2
or one of its variations and extract the desired elements from the returned structure. This is a clean
solution, especially on small and medium-sized documents. It however is unsuitable for parsing really
big documents. Such documents can only be handled with the call-back output interface realised by
the call(Event, Action) option of sgml parse/2. Event-driven processing is not very natural in
Prolog.

The SGML2PL library allows for a mixed approach. Consider the case where we
want to process all descriptions from RDF elements in a document. The code below calls
process rdf description(Element) on each element that is directly inside an RDF ele-
ment.

:- dynamic
in_rdf/0.

load_rdf(File) :-

17

retractall(in_rdf),
open(File, read, In),
new_sgml_parser(Parser, []),
set_sgml_parser(Parser, file(File)),
set_sgml_parser(Parser, dialect(xml)),
sgml_parse(Parser,

[source(In),
call(begin, on_begin),
call(end, on_end)

]),
close(In).

on_end(’RDF’, _) :-
retractall(in_rdf).

on_begin(’RDF’, _, _) :-
assert(in_rdf).

on_begin(Tag, Attr, Parser) :-
in_rdf, !,
sgml_parse(Parser,

[document(Content),
parse(content)

]),
process_rdf_description(element(Tag, Attr, Content)).

3.7 Type checking

xml is dom(@Term)
True if Term is an SGML/XML term as produced by one of the above predciates and acceptable
by xml write/3 and friends.

4 Stream encoding issues

The parser can deal with ISO Latin-1 and UTF-8 encoded files, doing decoding based on the encoding
argument provided to set sgml parser/2 or, for XML, based on the encoding attribute of the
XML header. The parser reads from SWI-Prolog streams, which also provide encoding handling.
Therefore, there are two modes for parsing. If the SWI-Prolog stream has encoding octet (which is
the default for binary streams), the decoder of the SGML parser will be used and positions reported
by the parser are octet offsets in the stream. In other cases, the Prolog stream decoder is used and
offsets are character code counts.

5 library(xpath): Select nodes in an XML DOM
See also http://www.w3.org/TR/xpath

18

The library xpath.pl provides predicates to select nodes from an XML DOM tree as produced
by library(sgml) based on descriptions inspired by the XPATH language.

The predicate xpath/3 selects a sub-structure of the DOM non-deterministically based on an
xpath-like specification. Not all selectors of XPATH are implemented, but the ability to mix xpath/3
calls with arbitrary Prolog code provides a powerful tool for extracting information from XML parse-
trees.

xpath chk(+DOM, +Spec, ?Content) [semidet]

Semi-deterministic version of xpath/3.

xpath(+DOM, +Spec, ?Content) [nondet]

Match an element in a DOM structure. The syntax is inspired by XPath, using () rather than []
to select inside an element. First we can construct paths using / and //:

//Term Select any node in the DOM matching term.

/Term Match the root against Term.

Term Select the immediate children of the root matching Term.

The Terms above are of type callable. The functor specifies the element name. The element
name ’*’ refers to any element. The name self refers to the top-element itself and is often
used for processing matches of an earlier xpath/3 query. A term NS:Term refers to an XML
name in the namespace NS. Optional arguments specify additional constraints and functions.
The arguments are processed from left to right. Defined conditional argument values are:

Integer The N-th element with the given name

last The last element with the given name.

last - IntExpr The IntExpr-th element counting from the last (0-based)

Defined function argument values are:

self Evaluate to the entire element

content Evaluate to the content of the element (a list)

text Evaluates to all text from the sub-tree as an atom

normalize space As text, but uses normalize space/2 to normalise white-space
in the output

number Extract an integer or float from the value. Ignores leading and trailing white-space

@Attribute Evaluates to the value of the given attribute

In addition, the argument-list can be conditions:

Left = Right Succeeds if the left-hand unifies with the right-hand. E.g. normalize space =
’euro’

contains(Haystack, Needle) Succeeds if Needle is a sub-string of Haystack.

19

Examples:

Match each table-row in DOM:

xpath(DOM, //tr, TR)

Match the last cell of each tablerow in DOM. This example illustrates that a result can be the
input of subsequent xpath/3 queries. Using multiple queries on the intermediate TR term
guarantee that all results come from the same table-row:

xpath(DOM, //tr, TR),
xpath(TR, /td(last), TD)

Match each href attribute in an <a> element

xpath(DOM, //a(@href), HREF)

Suppose we have a table containing rows where each first column is the name of a product with
a link to details and the second is the price (a number). The following predicate matches the
name, URL and price:

product(DOM, Name, URL, Price) :-
xpath(DOM, //tr, TR),
xpath(TR, td(1), C1),
xpath(C1, /self(normalize_space), Name),
xpath(C1, a(@href), URL),
xpath(TR, td(2, number), Price).

Suppose we want to select books with genre=”thriller” from a tree containing elements
<book genre=...>

thriller(DOM, Book) :-
xpath(DOM, //book(@genre=thiller), Book).

6 Processing Indexed Files

In some cases applications wish to process small portions of large SGML, XML or RDF files. For
example, the OpenDirectory project by Netscape has produced a 90MB RDF file representing the
main index. The parser described here can process this document as a unit, but loading takes 85
seconds on a Pentium-II 450 and the resulting term requires about 70MB global stack. One option is
to process the entire document and output it as a Prolog fact-base of RDF triplets, but in many cases
this is undesirable. Another example is a large SGML file containing online documentation. The
application normally wishes to provide only small portions at a time to the user. Loading the entire
document into memory is then undesirable.

Using the parse(element) option, we open a file, seek (using seek/4) to the position of the
element and read the desired element.

20

The index can be built using the call-back interface of sgml parse/2. For example, the follow-
ing code makes an index of the structure.rdf file of the OpenDirectory project:

:- dynamic
location/3. % Id, File, Offset

rdf_index(File) :-
retractall(location(_,_)),
open(File, read, In, [type(binary)]),
new_sgml_parser(Parser, []),
set_sgml_parser(Parser, file(File)),
set_sgml_parser(Parser, dialect(xml)),
sgml_parse(Parser,

[source(In),
call(begin, index_on_begin)

]),
close(In).

index_on_begin(_Element, Attributes, Parser) :-
memberchk(’r:id’=Id, Attributes),
get_sgml_parser(Parser, charpos(Offset)),
get_sgml_parser(Parser, file(File)),
assert(location(Id, File, Offset)).

The following code extracts the RDF element with required id:

rdf_element(Id, Term) :-
location(Id, File, Offset),
load_structure(File, Term,

[dialect(xml),
offset(Offset),
parse(element)

]).

7 External entities

While processing an SGML document the document may refer to external data. This occurs in three
places: external parameter entities, normal external entities and the DOCTYPE declaration. The cur-
rent version of this tool deals rather primitively with external data. External entities can only be loaded
from a file and the mapping between the entity names and the file is done using a catalog file in a for-
mat compatible with that used by James Clark’s SP Parser, based on the SGML Open (now OASIS)
specification.

Catalog files can be specified using two primitives: the predicate
sgml register catalog file/2 or the environment variable SGML CATALOG FILES
(compatible with the SP package).

21

sgml register catalog file(+File, +Location)
Register the indicated File as a catalog file. Location is either start or end and defines
whether the catalog is considered first or last. This predicate has no effect if File is already part
of the catalog.

If no files are registered using this predicate, the first query on the catalog examines
SGML CATALOG FILES and fills the catalog with all files in this path.

Two types of lines are used by this package.

DOCTYPE doctype file
PUBLIC "Id" file

The specified file path is taken relative to the location of the catolog file. For the DOCTYPE
declaraction, sgml first makes an attempt to resolve the SYSTEM or PUBLIC identifier. If this fails
it tries to resolve the doctype using the provided catalog files.

Strictly speaking, sgml breaks the rules for XML, where system identifiers must be Universal
Resource Indicators, not local file names. Simple uses of relative URIs will work correctly under
UNIX and Windows.

In the future we will design a call-back mechanism for locating and processing external entities,
so Prolog-based file-location and Prolog resources can be used to store external entities.

8 library(pwp): Prolog Well-formed Pages
author Richard O’Keefe
To be done Support compilation of PWP input files

PWP is an approach to server-side scripting using Prolog which is based on a simple key principle:

• The source form of a PWP should be WELL-FORMED XML

Especially when generating XML rather than HTML, this is such an obvious thing to do. We have
many kinds of XML checking tools.

• We can tell whether an XML document is WELL FORMED (all the punctuation is right, all
tags balance) using practically any decent parser, including SWI Prolog’s ’sgml’.

• If we can write a Document Type Description then we can check that a document is VALID
using tools like Open SP (formerly James Clark’s SP) or SWI Prolog’s ’sgml’. This does not
guarantee that the output will be valid, but it does catch a lot of errors very early.

• If we can write an XML Schema then we can check that a document is schema-valid. (SWI
Prolog’s ’sgml’ does not yet come with a schema validator, but who knows what the future
holds?).

• Since an XML document is just a data structure, we can use any checking tool that we can write
in Prolog, IF the input is well-formed so that we can load a template as a Prolog data structure.

22

Having decided that the input should be well formed, that means NO NEW SYNTAX
None of the weird and horrible <% ... %> or whatever not-quite-XML stuff you see in other tem-

plate systems, making checking so very hard (and therefore, making errors so distressingly common).
That in turns means that PWP ”markup” must be based on special elements or special attributes.

The fact that an XML parser must allow undeclared attributes on any element even when validating,
but must not allow undeclared elements, suggests doing this through attributes. In particular, one
should be able to take an existing DTD, such as an XHTML DTD, and just use that without modifica-
tion. So the design reduces to

• Allow dynamic data selection, insertion, and transformation just using a small number of extra
attributes.

This description uses the following name space:

xmlns:pwp=’http://www.cs.otago.ac.nz/staffpriv/ok/pwp.pl’

The attributes are

• pwp:ask = Query
• pwp:use = Term
• pwp:how = text | xml
• pwp:tag = QName or ’-’
• pwp:att = ” | ’one non-alphanumeric character’

Here’s what they mean. Each element is expanded in the context of a set of variable bindings.
After expansion, if the tag is not mapped to ’-’, all attributes in the pwp: namespace are removed and
the children elements are recursively expanded.

• pwp:ask = Query

– Query is a Prolog goal. For each solution of Query, the element is further processed with
the new variables of Query added to the context.

– If Query is not a well formed Prolog goal, or if execution of Query throws an exception,
page transformation comes to a complete halt and no page is generated.

• pwp:use = Term

• pwp:how = text | xml | text-file | xml-file

Term is a Prolog term; variables in Term are bound by the context. An empty Term is
regarded as a missing value for this attribute. The Prolog variable CONTEXT refers
to the entire context, a list of Name = Value, where Name is a Prolog atom holding
the name of the context variable and Value is an arbitrary Prolog term.

– If pwp:how is text, The value of Term is used to define a sequence of characters.

∗ A number produces the same characters that write/1 would.
∗ An atom produces the same characters that write/1 would.

23

∗ A string produces the same characters that write/1 would.
∗ A list of character codes produces those characters.
∗ The following terms produce the same sequence of characters that the corresponding

goal would have sent to the current output stream:

write(Datum)

writeq(Datum)

write canonical(Datum)

print(Datum)

print(Datum)

format(Format)

format(Format, Arguments)

∗ A singleton list [X] defines the characters that X defines.
∗ Any other term F(T1,...,Tn) defines the characters that T1 defines, followed by the

characters that T2 defines, ..., followed by the characters that Tn defines.

– If pwp:how is xml,

The value of Term must be an XML term as defined in the SGML2PL documen-
tation or a list of such terms. A single term is taken as if it had been [Term]. The
resulting list of terms replaces the children of the current element and will not be
further processed.

– If pwp:how is text-file,

The value of Term is used to define a sequence of characters. That sequence of
characters is used as a file name. The file is read as a sequence of characters, and
that sequence used as character data.

– If pwp:how is xml-file,

The value of Term is used to define a sequence of characters. That sequence of
characters is used as a file name. The file is loaded as XML, and the sequence of
XML items thus obtained used. This means that PWP provides XML inclusion
without depending on the parser to support XInclude.

The default value for pwp:how is text.

• pwp:tag = QName or ’-’

If pwp:tag is missing or the value is empty, the current element appears in the output
(after further processing) with its present tag. If pwp:tag is a QName, the current
element appears (...) with that as its tag. That option is most useful in DTDs, where
an ”authoring” DTD may use one tag and have it automatically mapped to another

24

tag in the output, e.g., <item> -> . Finally, if pwp:tag is ’-’, the children of
the current element (either the result of pwp:use or the transformed original children,
whichever applies) appear in the output but there is no element around them.

A missing or empty pwp:ask is just like pwp:ask = ’true’.

• pwp:att = ” | ’one non-alphanumeric character’.

Attributes in the pwp namespace are not affected by this attribute. Such attributes
are always stripped out and never substituted into.

If pwp:att is missing or empty, attributes of the current element are copied over to
the output unchanged.

If pwp:att = ’c’ for some non-alphanumeric character c, each attribute is examined
for occurrences of c(...)c and c[...]c which are as short as possible. There is no
one character which could be used every time, so you have to explicitly choose a
substitution marker which is safe for the data you do not want to be altered. None of
the pwp attributes are inherited, least of all this one.

Text outside c(...)c groups is copied unchanged; text inside a c(...)c group is parsed
as a Prolog term and treated as if by pwp:how = text. Text inside a c[...]c group is
evaluated (in the current context), and if it fails, the entire attribute will be removed
from the element.

Examples:

1. A ”Hello World” like example

<html
xmlns:pwp="http://www.cs.otago.ac.nz/staffpriv/ok/pwp.pl"
pwp:ask = "ensure_loaded(msg), once(msg(Greeting))">
<head>

<title pwp:use="Greeting"/>
</head>
<body>

<p></p>
</body>

</html>

where msg.pl contains

msg(’Hello, World!’).

This example illustrates an important point. Prolog Well-Formed Pages provide NO way to
physically incorporate Prolog clauses into a page template. Prolog clauses must be put in
separate files which can be checked by a Prolog syntax checker, compiler, cross-referencer, &c
WITHOUT the Prolog tool in question needing to know anything whatsoever about PWP. You
load the files using pwp:ask on the root element.

25

2. Binding some variables and using them

<html
xmlns:pwp="http://www.cs.otago.ac.nz/staffpriv/ok/pwp.pl">
<head><title>Example 2</title></head>
<body pwp:ask="Hello = ’Hello world’, A = 20, B = 22">

<h1 pwp:use="Hello"/>
<p>The answer is .</p>

</body>
</html>

3. Making a table We are given a Prolog database staff.pl defining staff(NickName, Full-
Name, Office, Phone, E Mail Address). status(NickName, full time | part time). We want to
make a phone list of full time staff.

<html
xmlns:pwp="http://www.cs.otago.ac.nz/staffpriv/ok/pwp.pl"
pwp:ask=’ensure_loaded(staff)’>
<head>

<title>Phone list for Full-Time staff.</title>
</head>
<body>

<h1>Phone list for Full-Time staff.</h1>
<table
pwp:ask = "setof(FullName-Phone,

NˆOˆEˆ(
status(N, full_time),
staff(N, FullName, O, Phone, E)

),
Staff_List)">

<tr><th>Name</th><th>Phone</th></tr>
<tr pwp:ask="member(FullName-Phone, Staff_List)">

<td pwp:use="FullName"/>
<td pwp:use="Phone"/>

</tr>
</table>

</body>
</html>

4. Substituting into an attribute Same data base as before, but now we want to make a mailing
list page.

<html
xmlns:pwp="http://www.cs.otago.ac.nz/staffpriv/ok/pwp.pl"
pwp:ask=’ensure_loaded(staff)’>
<head>

26

<title>Phone list for Full-Time staff.</title>
</head>
<body>

<h1>Phone list for Full-Time staff.</h1>
<table
pwp:ask = "setof(FullName-E_Mail,

NˆOˆPˆstaff(N, FullName, O, P, E_Mail),
Staff_List)">

<tr><th>Name</th><th>Address</th></tr>
<tr pwp:ask="member(FullName-E_Mail, Staff_List)">

<td pwp:use="FullName"/>
<td><a pwp:use="E_Mail"

pwp:att=’$’ href="mailto:$(E_Mail)$"/></td>
</tr>

</table>
</body>

</html>

5. If-then-else effect A page that displays the value of the ’SHELL’ environment variable if it has
one, otherwise displays ’There is no default shell.’

<html
xmlns:pwp="http://www.cs.otago.ac.nz/staffpriv/ok/pwp.pl">
<head><title>$SHELL</title></head>
<body>

<p pwp:ask="getenv(’SHELL’, Shell)"
>The default shell is .</p>
<p pwp:ask="\+getenv(’SHELL’,_)">There is no default shell.</p>

</body>
</html>

There is one other criterion for a good server-side template language:

It should be possible to compile templates so as to eliminate most if not all interpretation over-
head.

This particular notation satisfies that criterion with the limitation that the conversion of a term
to character data requires run-time traversal of terms (because the terms are not known until run
time).

pwp files(:In:atom, +Out:atom) [det]

loads an Xml document from the file named In, transforms it using the PWP attributes, and
writes the transformed version to the new file named Out.

pwp stream(:Input:input stream, +Output:output stream, +Context:list) [det]

Loads an Xml document from the given Input stream, transforms it using the PWP attributes,

27

and writes the transformed version to the given Output stream. Context provides initial
contextual variables and is a list of Name=Value.

pwp xml(:In:list(xml), -Out:list(xml), +Context)
maps down a list of XML items, acting specially on elements and copying everything else
unchanged, including white space. The Context is a list of ’VariableName’=CurrentValue
bindings.

9 Writing markup

9.1 Writing documents

The library sgml write provides the inverse of the parser, converting the parser’s output back into a
file. This process is fairly simple for XML, but due to the power of the SGML DTD it is much harder
to achieve a reasonable generic result for SGML.

These predicates can write the output in two encoding schemas depending on the encoding of the
Stream. In UTF-8 mode, all characters are encoded using UTF-8 sequences. In ISO Latin-1 mode,
characters outside the ISO Latin-1 range are represented using a named character entity if provided
by the DTD or a numeric character entity.

xml write(+Stream, +Term, +Options)
Write the XML header with encoding information and the content of the document as repre-
sented by Term to Stream. This predicate deals with XML with or without namespaces. If
namespace identifiers are not provided they are generated. This predicate defines the following
Options

dtd(DTD)
Specify the DTD. In SGML documents the DTD is required to distinguish between el-
ements that are declared empty in the DTD and elements that just happen to have no
content. Further optimisation (shortref, omitted tags, etc.) could be considered in the
future. The DTD is also used to find the declared named character entities.

doctype(Doctype)
Document type to include in the header. When omitted it is taken from the outer element.

header(Bool)
If Bool is false, the XML header is suppressed. Useful for embedding in other XML
streams.

layout(Bool)
Do/do not emit layout characters to make the output readable, Default is to emit layout.
With layout enabled, elements only containing other elements are written using increasing
indentation. This introduces (depending on the mode and defined whitespace handling)
CDATA sequences with only layout between elements when read back in. If false, no
layout characters are added. As this mode does not need to analyse the document it is
faster and guarantees correct output when read back. Unfortunately the output is hardly
human readable and causes problems with many editors.

indent(Integer)
Set the initial element indentation. It more than zero, the indent is written before the
document.

28

nsmap(Map)
Set the initial namespace map. Map is a list of Name = URI. This option, together with
header and ident is added to use xml write/3 to generate XML that is embedded
in a larger XML document.

net(Bool)
Use/do not use Null End Tags. For XML, this applies only to empty elements, so you get
<foo/> (default, net(true)) or \bnfmeta{foo}</foo> (net(false)). For SGML,
this applies to empty elements, so you get \bnfmeta{foo} (if foo is declared to
be EMPTY in the DTD), \bnfmeta{foo}</foo> (default, net(false)) or <foo//
(net(true)). In SGML code, short character content not containing / can be emitted as
\bnfmeta{b}xxx (default, net(false) or <b/xxx/ (net(true))

sgml write(+Stream, +Term, +Options)
Write the SGML DOCTYPE header and the content of the document as represented by Term to
Stream. The Options are described with xml write/3.

html write(+Stream, +Term, +Options)
Same as sgml write/3, but passes the HTML DTD as obtained from dtd/2. The Options
are described with xml write/3.

9.2 XML Quote primitives

In most cases, the preferred way to create an XML document is to create a Prolog tree of
element(Name, Attributes, Content) terms and call xml write/3 to write this to a stream. There
are some exceptions where one might not want to pay the price of the intermediate representation.
For these cases, this library contains building blocks for emitting markup data. The quote funtions
return a version of the input text into one that contains entities for characters that need to be escaped.
These are the XML meta characters and the characters that cannot be expressed by the document
encoding. Therefore these predicates accept an encoding argument. Accepted values are ascii,
iso latin 1, utf8 and unicode. Versions with two arguments are provided for backward com-
patibility, making the safe ascii encoding assumption.

xml quote attribute(+In, -Quoted, +Encoding)
Map the characters that may not appear in XML attributes to entities. Currently these are
<>&".3 Characters that cannot represented in Encoding are mapped to XML character entities.

xml quote attribute(+In, -Quoted)
Backward compatibility version for xml quote attribute/3. Assumes ascii encoding.

xml quote cdata(+In, -Quoted, +Encoding)
Very similar to xml quote attribute/3, but does not quote the single- and double-quotes.

xml quote cdata(+In, -Quoted)
Backward compatibility version for xml quote cdata/3. Assumes ascii encoding.

xml name(+In, +Encoding)
Succeed if In is an atom or string that satisfies the rules for a valid XML element or

3Older versions also mapped ’ to '.

29

attribute name. As with the other predicates in this group, if Encoding cannot rep-
resent one of the characters, this function fails. Character classification is based on
http://www.w3.org/TR/2006/REC-xml-20060816.

xml name(+In)
Backward compatibility version for xml name/2. Assumes ascii encoding.

10 Unsupported features

The current parser is rather limited. While it is able to deal with many serious documents, it omits
several less-used features of SGML and XML. Known missing SGML features include

• NOTATION on entities
Though notation is parsed, notation attributes on external entity declarations are not handed to
the user.

• NOTATION attributes
SGML notations may have attributes, declared using
<!ATTLIST #NOTATION name attributes>. Those data attributes are provided
when you declare an external CDATA, NDATA, or SDATA entity.

XML does not include external CDATA, NDATA, or SDATA entities, nor any of the other uses
to which data attributes are put in SGML, so it doesn’t include data attributes for notations
either.

Sgml2pl does not support this feature and is unlikely to; you should be aware that SGML
documents using this feature cannot be converted faithfully to XML.

• SHORTTAG
The SGML SHORTTAG syntax is only partially implemented. Currently, <tag/content/
is a valid abbreviation for \bnfmeta{tag}content</tag>, which can also be
written as \bnfmeta{tag}content</>. Empty start tags (<>), unclosed start
tags (<a<b</verb>) and unclosed end tags (\bnfmeta{verb}</a<b) are
not supported.

• SGML declaration
The ‘SGML declaration’ is fixed, though most of the parameters are handled through indirec-
tions in the implementation.

• The DATATAG feature
It is regarded as superseeded by SHORTREF, which is supported. (SP does not support it either.)

• The RANK feature
It is regarded as obsolete.

• The LINK feature
It is regarded as too complicated.

• The CONCUR feature
Concurrent markup allows a document to be tagged according to more than one DTD at the
same time. It is not supported.

30

In XML mode the parser recognises SGML constructs that are not allowed in XML. Also various
extensions of XML over SGML are not yet realised. In particular, XInclude is not implemented be-
cause the designers of XInclude can’t make up their minds whether to base it on elements or attributes
yet, let alone details.

11 Installation

11.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install
sequence. SWI-Prolog should be installed before building this package. If SWI-Prolog is not installed
as pl, the environment variable PLmust be set to the name of the SWI-Prolog executable. Installation
is now accomplished using:

% ./configure
% make
% make install

This installs the foreign libraries in $PLBASE/lib/$PLARCH and the Prolog library files in
$PLBASE/library, where $PLBASE refers to the SWI-Prolog ‘home-directory’.

12 Acknowledgements

The Prolog representation for parsed documents is based on the SWI-Prolog interface to SP by Anjo
Anjewierden.

Richard O’Keefe has put a lot of effort testing and providing bug reports consisting of an illus-
trative example and explanation of the standard. He also made many suggestions for improving this
document.

31

	Introduction
	Bluffer's Guide
	`Goodies' Predicates

	Predicate Reference
	Loading Structured Documents
	Handling white-space
	XML documents
	XML Namespaces

	DTD-Handling
	The DOCTYPE declaration

	Extracting a DTD
	Parsing Primitives
	Partial Parsing

	Type checking

	Stream encoding issues
	library(xpath): Select nodes in an XML DOM
	Processing Indexed Files
	External entities
	library(pwp): Prolog Well-formed Pages
	Writing markup
	Writing documents
	XML Quote primitives

	Unsupported features
	Installation
	Unix systems

	Acknowledgements

