
Constraint Query Language
A high level interface to SQL databases

Mike Elston
Matt Lilley

E-Mail: matt.s.lilley@gmail.com

February 10, 2017

Abstract

CQL is a high level Prolog interface to SQL databases. It is inspired by the work of Christoph
Draxler [Draxler, 1991] in the sense that SQL queries are generated but unlike Draxler’s work,
database tables are not mapped to Prolog predicates, but database queries are described by Prolog
terms. These terms allow for accessing table columns by name and provide access to several
aspects of SQL that have no natural Prolog equivalent, such as outer joins, inserts, etc.

1

Contents

1 library(cql/cql): CQL - Constraint Query Language 4
1.1 Warnings . 4

1.1.1 Comparisons with NULL . 4
1.1.2 Avoid setof/3 and bagof/3 . 4

1.2 Retrieved nulls have special logic to handle outer joins 4
1.3 Getting Started Quickly . 5
1.4 Debugging . 5
1.5 Prolog Variables . 6
1.6 Special Attributes . 7
1.7 Examples . 7

1.7.1 Simple INSERT . 7
1.7.2 Simple INSERT with retrieval of identity of the inserted 8
1.7.3 Simple DELETE . 8
1.7.4 Simple SELECT . 8
1.7.5 Simple UPDATE . 8
1.7.6 WHERE with arithmetic comparison . 9
1.7.7 Simple INNER JOIN . 9
1.7.8 Arithmetic UPDATE with an INNER JOIN and a WHERE restriction 9
1.7.9 Confirm row does not exist . 9
1.7.10 Aggregation - Count . 9
1.7.11 Aggregation - Sum . 9
1.7.12 Aggregation - Average . 10
1.7.13 Maximum Value . 10
1.7.14 Minimum Value . 10
1.7.15 Aggregation requiring GROUP BY . 10
1.7.16 INNER JOIN with an aggregation sub-query where the sub-query is con-

strained by a shared variable from the main query 10
1.7.17 INNER JOIN in an aggregation sub-query 11
1.7.18 Negation . 11
1.7.19 EXISTS . 11
1.7.20 Left Outer Join . 11
1.7.21 List-based Restrictions . 12
1.7.22 Compile time in-list constraint . 12
1.7.23 Disjunction resulting in OR in WHERE clause 13
1.7.24 Disjunction resulting in different joins (implemented as a SQL UNION) . . . 13
1.7.25 Disjunction resulting in different SELECT attributes (implemented as sepa-

rate ODBC queries) . 13
1.7.26 ORDER BY . 14
1.7.27 DISTINCT . 14
1.7.28 SELECT with NOT NULL restriction . 14
1.7.29 First N . 14
1.7.30 Self JOIN . 15
1.7.31 Removing null comparisions . 15
1.7.32 Three table JOIN . 15
1.7.33 Three table JOIN with NOLOCK locking hint 16

2

1.7.34 SELECT with LIKE . 16
1.7.35 Writing exceptions directly to the database 16
1.7.36 TOP N is Parametric . 16
1.7.37 Using compile time goal/1 . 17
1.7.38 ON . 17
1.7.39 Expressions In Where Restrictions . 18
1.7.40 Explicitly avoid the ”No WHERE restriction” message 18
1.7.41 HAVING . 18
1.7.42 INSERT and UPDATE value in-line formatting 19
1.7.43 Negations in WHERE Clauses . 19
1.7.44 Predicate-generated Attribute Values . 19
1.7.45 INSERT from SELECT . 20

1.8 Hooks . 20
1.8.1 Generated Code Hooks . 20
1.8.2 Data Representation Hooks . 20
1.8.3 Application Integration . 21
1.8.4 Inline values . 21
1.8.5 Schema . 22
1.8.6 Event Processing and History . 22
1.8.7 Statistical Hooks . 23

3

1 library(cql/cql): CQL - Constraint Query Language

Note that CQL is currently in a state of flux. Features may be dropped in future releases, and the
generated SQL may change between releases. In particular, runtime mode is deprecated.

CQL is a Prolog interface to SQL databases. There are two modes: fully compiled and runtime.
The fully compiled mode should be used if possible due to the far greater compile time checking it
provides.

1.1 Warnings

1.1.1 Comparisons with NULL

CQLv2 correctly compiles equality comparisons with NULL into the appropriate expression at run-
time. In CQLv1, executing

A={null}, {[A], foo :: [a-A]}

would never succeed, regardless of the value of foo.a. This is no longer the case: If A is {null}
then this will execute as SELECT WHERE a IS NULL and if A is not {null}, it will execute
as SELECT WHERE a = ?

See the section Removing null comparisions for the dealing with the common requirement to
ignore comparisons with null.

1.1.2 Avoid setof/3 and bagof/3

It is generally not a good idea to wrap CQL inside a setof/3 or a bagof/3 ... unless you are
prepared to declare all the CQL variables that are neither bound nor mentioned in the setof/bagof
template. If you want to sort, use findall/3 followed by sort/2. Note that sort/2 (like
setof/3) removes duplicates. If you don’t want to remove duplicates, use msort/2.

1.2 Retrieved nulls have special logic to handle outer joins

In the course of executing a select query, the following rules are applied:

1. Any selected attribute that is null does not bind its associated variable.

2. Just before returning from the query any select variables that are still free are bound to {null}.

This is so we can handle outer joins. Consider this:

x :: [a-A] *== y :: [a-A]

Assume x.a binds A to a non-null value. If there is no matching row in y, then y.a = null.
If variable A was truly shared the query could never succeed. By not binding the variable associated
with y.a the query can succeed (rule 1) and A will be bound to the value in x.a.

4

1.3 Getting Started Quickly

Here is a simple example of a SQL SELECT from the table se_lt_x

test(A) :-
format(’About to call CQL with A=˜w’, [A]),
{[],
se_lt_x :: [a-A,

b-B,
c-C]},

format(’B=˜w, C=˜w’, [B, C]).

• The CQL is distinguished from the ordinary Prolog by appearing in curly brackets

• Prolog variables which are ground when the CQL is executed will appear in the resulting SQL
as part of the WHERE clause

Comparisons can be done in-line e.g.

[a-’ELSTON_M’]

or with the == operator e.g.

[a-A], A == ’ELSTON_M’.

The single = operator means unify, not compare. Use = for unification, not comparison
FIXME: Unification is deprecated.
The operators =:= and \== are also available for numerical value comparisons (they just translate

to SQL = and <>, so in fact you could use them for string comparisons)

1.4 Debugging

You can debug CQL using the meta-predicates ?/1, ??/2 and ???/3:

???{[], se_lt_x :: [a-A, b-_], A == ’ELSTON_M’}.

?/1 Display a summary form of the generated SQL before and after the goal is called.

[main] CALL SELECT slx_2.b, slx_2.a FROM se_lt_x AS slx_2 WHERE slx_2.a = ’ELSTON_M’
[main] EXIT SELECT slx_2.b, slx_2.a FROM se_lt_x AS slx_2 WHERE slx_2.a = ’ELSTON_M’ (0.006963s, 0.01cpu, 3,899 inferences)

??/1 Display the exact query (and results) in a format which can be executed directly by the DBMS
(In this case, SQL Server) The generated SQL may be significantly more complicated than
expected, and this can be used to debug the CQL compiler itself

5

[main] CALL
DECLARE @P0 VARCHAR(50);
SET @P0 = ’ELSTON_M’;
SELECT slx_450.b,

slx_450.a
FROM se_lt_x AS slx_450
WHERE slx_450.a = @P0 AND slx_450.a COLLATE Latin1_General_CS_AS = @P0
Result: se_lt_x.b = {null}

se_lt_x.a = ’ELSTON_M’
(0.003304s, 0.00cpu, 359 inferences)

???/1 Display simplified SQL before the goal is called and display the results afterwards

[main] CALL
SELECT slx_450.b,

slx_450.a
FROM se_lt_x AS slx_450
WHERE slx_450.a = ’ELSTON_M’
Result: se_lt_x.b = {null}

se_lt_x.a = ’ELSTON_M’
(0.003304s, 0.00cpu, 359 inferences)

1.5 Prolog Variables

A Prolog variable can be simultaneously a SELECT variable, a JOIN variable and a WHERE variable
as A is in the following example:

{[],
se_lt_x :: [a-A, c-C]
=*=
se_lt_y :: [d-A, f-F],
A == ’A4’}

which generates the following SQL

SELECT
x_192.a, x_192.c, y_73.d, y_73.f

FROM
se_lt_x x_192 INNER JOIN se_lt_y y_73 ON y_73.d=x_192.a

WHERE x_192.a = ? and y_73.d = ?

Note how all the variables referenced in the query are retrieved in the SELECT. This is done
to make the query Prolog-like. This means the retrieved row should behave like a Prolog fact so that
when a query succeeds all the variables become instantiated.

6

There is one notable exception however: WHERE variables and JOIN variables are not bound
in aggregation selections

FIXME: Is this still the case?

sum_test :-
{[],
#se_lt_x :: [a-ValueA,

sum(b)-Summation]
=*=
#se_lt_y :: [e-ValueB],

ValueA == ValueB, % Explicit join point

group_by([ValueA])},

writeln(ValueA-ValueB-Summation).

’ELSTON_M’-_G375971-99450
true ;

1.6 Special Attributes

The following attributes are automatically provided i.e if the attribute is present in the table, CQL will
automatically fill in the value:

1. generation Set to 0 on INSERT and incremented by 1 on each update

2. inserted Set to the current time at the time of the INSERT transaction

3. inserted by Set to the user ID corresponding to the access token supplied to the transaction

4. updated Set to the current time at the time of the UPDATE transaction. Note that updated is
also set by an INSERT

5. updated by Set to the user ID corresponding to the access token supplied to the transaction.
Note that updated by is also set by an INSERT

6. transaction id Set to the transaction ID

All the special attributes can be overridden by supplying the attribute-value pair explicitly.

1.7 Examples

Rather than provide an abstract description of CQL syntax here is a set of examples that show how to
use it.

1.7.1 Simple INSERT

{[],
insert(se_lt_x, [a-’A’, b-’B’, c-100])}

7

1.7.2 Simple INSERT with retrieval of identity of the inserted

{[],
insert(se_lt_x, [a-’A’, b-’B’, c-100]),
identity(I)}

1.7.3 Simple DELETE

{[],
delete(se_lt_x, [x_pk-I])}

Note that the WHERE clause is part of the delete/2 term unlike update where the WHERE
clause is defined outside the update/2 term. I could have made delete consisent with update, but
this would have required the @ alias in the delete WHERE clause to identify the table where the rows
are to be deleted). This seems like overkill because a delete can in fact refer to only one table anyway
i.e. you can’t identify rows to delete via a JOIN.

1.7.4 Simple SELECT

{[],
se_lt_x :: [a-A, b-B]}

This query will either:

• If A is bound, and B are bound, fail if there are no such rows, or succeed (without binding
anything) the same number of times as there are matching rows in se lt x.

• If A is bound and B is unbound, bind B to each of the values in se_lt_x.b where
se_lt_x.a = A

• If B is bound and A is unbound, bind A to each of the values in se_lt_x.a where
se_lt_x.b = B

• If A and B are both unbound, bind A and B to each of the tuples in se_lt_x

1.7.5 Simple UPDATE

{[],
update(se_lt_x, [c-100]),
@ :: [a-’A1’],
row_count(N)}

This corresponds to UPDATE se_lt_x SET c=100 WHERE se_lt_x.a=’A1’. The ’@’
is a special alias referring to the table that is being updated. The row count/1 term gives the number
or rows updated.

8

1.7.6 WHERE with arithmetic comparison

{[],
se_lt_x :: [a-A, c-C],
C > 10}

1.7.7 Simple INNER JOIN

{[],
se_lt_x :: [a-J1, c-C]
=*=

se_lt_y :: [d-J1, f-F]}

The join is se_lt_x.a = se_lt_y.d because of the shared variable J1. se_lt_x.c will
be returned in C and se_lt_y.f will be returned in F

1.7.8 Arithmetic UPDATE with an INNER JOIN and a WHERE restriction

{[],
update(se_lt_x, [c-(C + 2 * F + 20)]),
@ :: [a-A, c-C] =*= se_lt_y :: [d-A, f-F],
C < 100}

This joins the table being updated (table se_lt_x) on table se_lt_y where
se_lt_x.a = se_lt_y.a and where se_lt_x.c < 200 then updates each identified
row se_lt_x.c with the specified expression.

1.7.9 Confirm row does not exist

\+ exists {[], se_lt_x :: [a-’Z’]}

1.7.10 Aggregation - Count

{[],
se_lt_x :: [count(c)-C]}

This will count the rows in table se lt x

1.7.11 Aggregation - Sum

{[],
se_lt_x :: [sum(c)-C]}

Sum the values of attribute c in table se lt x

9

1.7.12 Aggregation - Average

{[],
se_lt_x :: [avg(c)-C]}

Calculate the mean of the values of attribute c in table se lt x

1.7.13 Maximum Value

{[],
se_lt_x :: [max(c)-C]}

Calculate the maximum of the values of attribute c in table se lt x

1.7.14 Minimum Value

{[],
se_lt_x :: [min(c)-C]}

Calculate the minimum of the values of attribute c in table se lt x

1.7.15 Aggregation requiring GROUP BY

{[],
se_lt_z :: [g-G, sum(i)-I],
group_by([G])}

This will generate the GROUP BY SQL and sum se_lt_z.i for each value of se_lt_z.g

1.7.16 INNER JOIN with an aggregation sub-query where the sub-query is constrained by a
shared variable from the main query

{[],
se_lt_x :: [b-J1, a-A]
=*=

se_lt_z :: [h-J1, i-I, g-Z],
I > min(Y, se_lt_y :: [f-Y, d-Z])}

The main query and the sub-query share variable Z. The generated SQL is:

SELECT
x37.a, z4.i, z4.g

FROM
se_lt_x x37 INNER JOIN se_lt_z z4 ON x37.b=z4.h and z4.h=x37.b

WHERE
z4.i > (SELECT min(y11.f) FROM se_lt_y y11 WHERE z4.g=y11.d)

10

1.7.17 INNER JOIN in an aggregation sub-query

{[],
se_lt_y :: [d-D,f-F],
F < sum(I,

se_lt_x :: [b-J1]
=*=

se_lt_z :: [h-J1, i-I])}

1.7.18 Negation

{[],
se_lt_x :: [a-A, b-B],
\+ exists se_lt_y :: [d-A]}

The generated SQL is:

SELECT
x39.a, x39.b

FROM
se_lt_x x39

WHERE NOT EXISTS (SELECT * FROM se_lt_y y13 WHERE x39.a = y13.d)

1.7.19 EXISTS

An exists restriction translates to a WHERE sub-query and is used to say that ”each row returned in the
main query must satisfy some condition expressed by another query”.

Example

{[],
se_lt_x :: [a-A, b-B],
exists se_lt_y :: [d-A]}

compiles to:

SELECT
x.b, x.a

FROM
se_lt_x x

WHERE
EXISTS (SELECT * FROM se_lt_y WHERE x.a = y.d)

1.7.20 Left Outer Join

se_lt_x :: [a-J1, b-B]

*==
se_lt_y :: [d-J1, e-E]}

11

1.7.21 List-based Restrictions

CQL supports query restrictions based on lists. Note that in both cases \== [] and == [] are
equivalent despite the obvious logical inconsistency.

FIXME: Can we make this behaviour be controlled by a flag? It IS quite useful, even if it is
completely illogical

{[], se_lt_x :: [a-Bar], Bar == []}

and

{[], se_lt_x :: [a-Bar], Bar \== []}

both do exactly the same thing - they will not restrict the query based on Bar. The second case
seems to be logically consistent - all things are not in the empty list.

1.7.22 Compile time in-list constraint

If your list is bound at compile-time, you can simply use it as the attribute value in CQL, for example:

{[], se_lt_x :: [a-[’ELSTON_M’, ’LILLEY_N’]]}

This does not require the list to be ground, merely bound. For example, this is not precluded:

foo(V1, V2):-
{[], se_lt_x :: [a-[V1, V2]]}.

If, however, your list is not bound at compile-time, you must wrap the variable in list/1:

Bar = [a,b,c],
{[], se_lt_x :: [bar-list(Bar)]}

If you write

foo(V1):-
{[], se_lt_x :: [a-V1]}.

and at runtime call foo([value1]), you will get a type error.
Remember: If the list of IN values is empty then no restriction is generated i.e.

{[], se_lt_x :: [a-[], b-B}

is the exactly the same as

{[], se_lt_x :: [b-B}

12

1.7.23 Disjunction resulting in OR in WHERE clause

{[],
se_lt_x :: [a-A, b-B, c-C],
(C == 10 ; B == ’B2’, C < 4)}

The generated SQL is:

SELECT
x.a, x.b, x.c

FROM
se_lt_x x

WHERE
((x.b = ? AND x.c < ?) OR x.c = ?)

1.7.24 Disjunction resulting in different joins (implemented as a SQL UNION)

{[],
se_lt_x :: [a-A, c-C]
=*=
(se_lt_y :: [d-A] ; se_lt_z :: [g-A])}

The generated SQL is:

SELECT
x43.c

FROM
(se_lt_x x43 INNER JOIN se_lt_z z6 ON x43.a=z6.g AND z6.g=x43.a)

UNION

SELECT
x44.c

FROM
(se_lt_x x44 INNER JOIN se_lt_y y16 ON x44.a=y16.d AND y16.d=x44.a)

1.7.25 Disjunction resulting in different SELECT attributes (implemented as separate ODBC
queries)

{[],
(se_lt_x :: [a-A, c-10]
;
se_lt_y :: [d-A, f-25])}

The output variable A is bound to the value from two different attributes and so the query is
implemented as two separate ODBC queries

13

1.7.26 ORDER BY

{[],
se_lt_z :: [g-G, h-H],
order_by([-G])}

The order by specification is a list of ”signed” variables. The example above will order by se lt z.g
descending

1.7.27 DISTINCT

Use distinct(ListOfVars) to specify which attributes you want to be distinct:

test_distinct :-
findall(UserName,

{[],
se_lt_x :: [a-UserName,

c-Key],
Key >= 7,
distinct([UserName])},

L),
length(L, N),
format(’˜w solutions˜n’, [N]).

CALL : user:test_distinct/0
26 solutions
EXIT : user:test_distinct/0 (0.098133s, 0.00cpu, 1,488 inferences)

1.7.28 SELECT with NOT NULL restriction

{[],
se_lt_z :: [i-I, j-J],
J \== {null}}

1.7.29 First N

{[],
N = 3,
se_lt_z :: [i-I],
top(N),
order_by([+I])}

This generates a TOP clause in SQL Server, and LIMIT clauses for PostgreSQL and SQLite

14

1.7.30 Self JOIN

{[],
se_lt_z :: [h-H, i-I1]
=*=

se_lt_z :: [h-H, i-I2],
I1 \== I2}

1.7.31 Removing null comparisions

Use the ignore if null wrapper in your CQL to ’filter out’ null input values. This is a useful extension
for creating user-designed searches.

{[],
se_lt_x :: [a-UserName,

b-ignore_if_null(SearchKey),
...]}

At runtime, if SearchKey is bound to a value other than {null} then the query will contain
WHERE ... b = ?. If, however, SearchKey is bound to {null}, then this comparison will be
omitted.

Disjunctions
In general, don’t use ignore if null in disjunctions. Consider this query:

SearchKey = ’%ELSTON%’,
{[],
se_lt_x :: [a-UserName,

b-RealName],
(RealName =˜ SearchKey
; UserName =˜ SearchKey)}

The query means ”find a user where the UserName contains ELSTON OR the RealName con-
tain ELSTON”. If !SearchKey is {null} then RealName=˜ {null} will fail, which is correct. If
ignore if null was used, the test would succeed, which means the disjunction would always succeed
i.e. the query would contain no restriction, which is clearly not the intended result. FIXME: Mike,
what is this all about?

1.7.32 Three table JOIN

{[],
se_lt_x :: [a-A, c-C]
=*=

se_lt_y :: [d-A, f-F]
=*=

se_lt_z :: [i-F, g-G]}

The shared variable A joins se_lt_x and se_lt_y; the shared variable F joins se_lt_y and
se_lt_z

15

1.7.33 Three table JOIN with NOLOCK locking hint

{[],
se_lt_x :: [a-A, c-C]
=*=

#se_lt_y :: [d-A, f-F]
=*=

#se_lt_z :: [i-F, g-G]}

The hash operator indicates the table that should be accessed WITH (NOLOCK)

1.7.34 SELECT with LIKE

{[],
se_lt_z :: [g-G, i-I],
G =˜ ’A_’}

The operator =˜ means LIKE. If you are using PostgreSQL, it means ILIKE.

1.7.35 Writing exceptions directly to the database

You can write an exception term directly to a varchar-type column in the database. Note that it will
be rendered as text using ˜p, and truncated if necessary - so you certainly can’t read it out again and
expect to get an exception! Example code:

catch(process_message(Message),
Exception,
{[],
update(some_table, [status-’ERROR’,

status_comment-Exception]),
@ :: [some_table_primary_key-PrimaryKey]}).

FIXME: This code is specific to my usage of CQL

1.7.36 TOP N is Parametric

You can pass the ”N” is TOP N as a parameter (Subject to DBMS compatibility. This works in SQL
Server 2005 and later, and PostgreSQL 9 (possibly earlier versions) and SQLite3.

N = 3,
findall(I,

{[],
se_lt_z :: [i-I], top(N), order_by([+I])},
L)

16

1.7.37 Using compile time goal/1

You can include compile_time_goal(Goal) in your CQL. If you specify a module, it will be
used, otherwise the goal will be called in the current module. Note that the goal is executed in-order -
if you want to use the bindings in your CQL, you must put the compile time goal before them.

Example 1

{[],
se_lt_x :: [a-UserName,

b-RealName,
d-FavouriteColour],

compile_time_goal(standard_batch_size_for_search(StandardBatchSize)),
top(StandardBatchSize),
order_by([+UserName]}

Example 2

excellent_colours([’RED’, ’BLUE’]).

{[],
se_lt_x :: [a-UserName,

b-RealName,
d-FavouriteColour],

compile_time_goal(excellent_colours(Colours)),
FavouriteColour == Colours}

1.7.38 ON

CQL supports both constant and shared variable join specifications. This is particularly useful when
specifying outer joins.

Example

{[],
se_lt_x :: [a-UserNameA,

b-RealName,
d-FavouriteColour]

*==
se_lt_x :: [a-UserNameB,

e-FavouriteFood] on(UserNameA == UserNameB,
FavouriteColour == FavouriteFood,
FavouriteFood == ’ORANGE’)}

All the CQL comparison operators, <, =<, ==, =˜, \=˜, \==, >=, > can be used in
ON specifications.

For example:

17

{[],
se_lt_z :: [i-J1, k-K]

*==
se_lt_x :: [c-J1, a-A, b-B] on A \== ’A1’},

1.7.39 Expressions In Where Restrictions

Expressions in WHERE restrictions are supported, for example:

{[],
se_lt_n :: [i-I, j-J, k-K],
J > 10 * (K / I) + 15},

1.7.40 Explicitly avoid the ”No WHERE restriction” message

To avoid accidentally deleting or updating all rows in a table CQL raises an exception if there is no
WHERE restriction.

Sometimes however you really do need to delete or update all rows in a table.
To support this requirement in a disciplined way (and to avoid the creation of ”dummy” WHERE

restrictions) the keyword absence of where restriction is deliberate has been added. For example:

{[],
update(se_lt_x, [c-10]),

@ :: [],
absence_of_where_restriction_is_deliberate}

1.7.41 HAVING

HAVING restrictions can be specified. For example:

{[],
se_lt_z :: [sum(i)-I,

g-G],
group_by([G]),
having(I > 30)}

For a description of HAVING see http://en.wikipedia.org/wiki/Having_(SQL)
There is one important difference between SQL HAVING and SQL WHERE clauses. The SQL

WHERE clause condition is tested against each and every row of data, while the SQL HAVING
clause condition is tested against the groups and/or aggregates specified in the SQL GROUP BY
clause and/or the SQL SELECT column list.

18

http://en.wikipedia.org/wiki/Having_(SQL)

1.7.42 INSERT and UPDATE value in-line formatting

INSERT and UPDATE values can be formatted in-line at runtime. For example:

Suffix = ’NOGG’,
cql_transaction(Schema, UserId,

{[],
insert(se_lt_x, [a-’A’, b-’B’, c-100, d-format(’EGG_˜w’, [Suffix])])}),

will insert ’EGG NOGG’ into attribute ’d’.

1.7.43 Negations in WHERE Clauses

You can specify negations in CQL WHERE clauses e.g.

{[],
se_lt_z :: [g-G, h-H, i-I],
\+((G == ’A1’, H == ’B1’ ; G == ’D1’, H == ’B3’))},

Note that, just like in Prolog, \+ is a unary operator hence the ”double” brackets in the example
above.

1.7.44 Predicate-generated Attribute Values

It is possible to generate compile time attribute values by specifying a predicate which is executed
when the CQL statement is compiled.

The predicate must return the value you want as its last argument. You specify the predicate
where you would normally put the attribute value. The predicate is specified with its output argument
missing.

Example - Using domain allowed values in a query.
In the following CQL statement the predicate cql domain allowed value/3 is called

within findall/3 at compile time to generate a list of domain values that restrict favourite colour
to be ’ORANGE’ or ’PINK’ or ’BLUE’, or ’GREEN’.

colour(’ORANGE’).
colour(’PINK’).
colour(’BLUE’).
colour(’GREEN’).

{[],
se_lt_x :: [d-findall(Value,

permissible_colour(Value)),
a-UserName]}

Note how findall/3 is actually called by specifying findall/2.
There is not much point using predicate-generated attribute values in compile-at-runtime CQL as

you can always call the predicate to generate the required values outside the CQL statement.

19

1.7.45 INSERT from SELECT

INSERT from SELECT is supported:

Constant = ’MIKE’,
{[],
insert(se_lt_x1, [x_pk-Pk, a-A, b-B, c-C, d-Constant]),
se_lt_x :: [x_pk-Pk, a-A, b-B, c-C, as(d)-Constant]}

which generates the following SQL:

INSERT INTO se_lt_x1 (x_pk, a, b, c, d)
SELECT se_lt_x_955.x_pk, se_lt_x_955.a, se_lt_x_955.b, se_lt_x_955.c, ? AS d
FROM se_lt_x lt_x_955

Note the use of the as(d) construct in the SELECT part of the CQL to make the constant ’MIKE’
appear to come from the SELECT thus setting lt_x1.d to ’MIKE’ in every row inserted.

1.8 Hooks

CQL provides a large number of hooks to fine-tune behaviour and allow for customization. These are:

1.8.1 Generated Code Hooks

• cql:cql_dependency_hook(+EntitySet, +Module) can be defined to be notified
when a given Module references a list of database entities. This can be used to manage meta-
data/code dependency

• cql:cql_generated_sql_hook(+Filename, +LineNumber, +Goals) can be
defined to examine generated SQL. Use cql_sql_clause(+Goals, -SQL, -Parameters)
to examine the goals

• cql:cql_index_suggestion_hook(+Index) can be defined if you are interested in
proposed indices for your schema. Note that this is not very mature (yet)

1.8.2 Data Representation Hooks

• cql:cql_atomic_value_check_hook(+Value) can be defined to declare new ’atomic’
types (That is, types which can be written directly to the database), such as a representation like
boolean(true) for 1.

• cql:cql_check_value_hook(+Value) can be used to check that a value is legal

• cql:application_value_to_odbc_value_hook(+OdbcDataType, +Schema, +TableName, +ColumnName, +Qualifiers, +ApplicationValue, -OdbcValue).

• cql:odbc_value_to_application_value_hook(+OdbcDataType, +Schema, +TableName, +ColumnName, +Domain, +OdbcValue, -ApplicationValue).

20

1.8.3 Application Integration

• cql:cql_access_token_hook(+AccessToken, -UserId) can be defined to map
the generic ’AccessToken’ passed to cql transaction/3 to a user ID. If not defined, the
AccessToken is assumed to be the user ID. This UserID is used in logging.

• cql:log selects can be defined if you want to receive logging information about selects. By
default only update, delete and insert are logged

• cql:cql_execution_hook(+Statement, +OdbcParameters, +OdbcParameterDataTypes, -Row)
can be defined if you want to implement the exeuction yourself (for example, to add extra
debugging)

• cql:cql_log_hook(+Topics, +Level, +Format, +Args) can be defined to redi-
rect CQL logging.

– Levels is one of informational, warning, or error

– Topics is a list of topics. Currently the only lists possible are [] and
[debug(deadlocks)]

• cql:sql_gripe_hook(+Level, +Format, +Args) is called when suspect SQL is
found by the SQL parser

• cql:cql_normalize_atom_hook(+DBMS, +ApplciationAtom, -DBMSAtom)
can be used to create a map for atoms in a specific DBMS. For example, your schema may
have arbitrarily long table names, but your DBMS may only allow names up to 64 bytes long.
In this case, you can create a scheme for mapping the application-level atom to the DBMS.
Other uses include deleting or normalizing illegal characters in names

• cql:cql_error_hook(+ErrorId, +Format, +Args) can be defined to generate a
specific exception term from the given arguments. If not defined (or if it does not throw an
exception, or fails), you will get cql_error(ErrorId, FormattedMessage).

• cql:cql_max_db_connections_hook(-Max) can be defined to limit the number of si-
multaneous connections each thread will attempt to have

• cql:odbc_connection_complete_hook(+Schema, +Details, +Connection)
can be hooked if you want to know every time a connection is made

• cql:cql_transaction_info_hook(+AccessToken, +Connection, +DBMS, +Goal, -Info)
can be defined if you want to define any application-defined in-
formation on a per-transaction level. This can be recovered via
database_transaction_query_info(?ThreadId, ?Goal, ?Info).

1.8.4 Inline values

cql : cql inline domain value hook(+DomainName, +Value)
can be defined if you want the given value to be ’inlined’ into the CQL (ie not supplied as a
parameter). Great care must be taken to avoid SQL injection attacks if this is used.

21

1.8.5 Schema

These define the schema. You MUST either define them, or include
library(cql/cql_autoschema) and add two directives to build the schema automati-
cally:

• :-register_database_connection_details(+Schema, +ConnectionInfo).

• :-build_schema(+Schema).

Otherwise, you need to define at least cql:default schema/1 and cql:dbms/2, and then
as many of the other facts as needed for your schema.

• cql:default_schema(-Schema) MUST be defined. CQL autoschema will define this for
you if you use it.

• cql:dbms(+Schema, -DBMS) MUST be defined for every schema you use. CQL au-
toschema will define this for you if you use it. DBMS must be one of the following:

– ’Microsoft SQL Server’
– ’PostgreSQL’
– ’SQLite’

• cql:odbc_data_type(+Schema, +TableName, +ColumnName, +OdbcDataType).

• cql:primary_column_name(+Schema, +Tablename, +ColumnName).

• cql:database_attribute(+EntityType:table/view, +Schema:atom, +EntityName:atom, +ColumnName:atom, +DomainOrNativeType:atom, +AllowsNulls:allows_nulls(true/false), +IsIdentity:is_identity(true/false), +ColumnDefault).

• cql:database_domain(+DomainName, +OdbcDataType).

• cql:routine_return_type(+Schema, +RoutineName, +OdbcDataType).

• cql:database_constraint(+Schema, +EntityName, +ConstraintName, +Constraint).

1.8.6 Event Processing and History

CQL provides hooks for maintaining detailed history of data in the database.
The hook predicates are:

• cql:cql_event_notification_table(+Schema, +TableName)

• cql:cql_history_attribute(+Schema, +TableName, +ColumnName)

• cql:cql_update_history_hook(+Schema, +TableName, +ColumnName, +PrimaryKeyColumnName, +PrimaryKeyValue, +ApplicationValueBefore, +ApplicationValueAfter, +AccessToken, +TransactionId, +TransactionTimestamp, +ThreadId, +Connection, +Goal).

• cql:process_database_events(+Events)

Event Processing and History recording can be suppressed for a particular update/insert/delete
statement by including the no state change actions 9 directive.

For example

22

{[],
update(se_lt_x, [f-’LILAC’]
@ :: [a-’ELSTON_M’],
no_state_change_actions, % Don’t want history to record this change
row_count(RowCount)}

1.8.7 Statistical Hooks

CQL has hooks to enable in-memory statistics to be tracked for database tables. Using this hook, it’s
possible to monitor the number of rows in a table with a particular value in a particular column.

Often the kind of statistics of interest are ’how many rows in this table are in ERROR’ or ’how
many in this table are at NEW’? While it may be possible to maintain these directly in any code which
updates tables, it can be difficult to ensure all cases are accounted for, and requires developers to
remember which attributes are tracked.

To ensure that all (CQL-originated) updates to statuses are captured, it’s possible to use the CQL
hook system to update them automatically. Define add a fact like:

cql_statistic_monitored_attribute_hook(my_schema, my_table,
my_table_status_column).

This will examine the domain for the column ’my table status column’, and generate a statistic
for each of my table::my_table_status_column(xxx), where xxx is each possible allowed
value for the domain. Code will be automatically generated to trap updates to this specific column,
and maintain the state. This way, if you are interested in the number of rows in my table which have
a status of ’NEW’, you can look at my table::my_table_status_column(’NEW’), without
having to manage the state directly. CQL update statements which affect the status will automatically
maintain the statistics.

The calculations are vastly simpler than the history mechanism, so as to keep performance as high
as possible. For inserts, there is no cost to monitoring the table (the insert simply increments the
statistic if the transaction completes). For deletes, the delete query is first run as a select, aggregating
on the monitored columns to find the number of deletes for each domain allowed value. This means
that a delete of millions of rows might requires a select returning only a single row for statistics
purposes. For updates, the delete code is run, then the insert calculation is done, multiplied by the
number of rows affected by the update.

In all cases, CQL ends up calling cql statistic monitored attribute change hook/5,
where the last argument is a signed value indicating the number of changes to that particular statistic.

cql set module default schema(+Schema)
Set the Schema for a module

cql get module default schema(+Module, ?ModuleDefaultSchema)

cql goal expansion(?Schema, ?Cql, ?GoalExpansion)
Expand at compile time if the first term is a list of unbound input variables

23

Expand at runtime if the first term is compile at runtime

cql runtime(+Schema, +IgnoreIfNullVariables, +CqlA, +CqlB, +VariableMap, +FileName, +LineNumber)

cql temporary column name(?Schema, ?DataType, ?ColumnName, ?Type)

cql show(:Goal, +Mode)
Called when ?/1, ??/1, and ???/1 applied to CQL

Arguments
Goal goal term
Mode minimal ; explicit ; full

statistic monitored attribute(+Schema, +TableName, +ColumnName)

dbms(+Schema, -DBMSName) [multifile]

Determine the DBMS for a given Schema. Can be autoconfigured.

odbc data type(+Schema, +TableSpec, +ColumnName, ?OdbcDataType) [multifile]

OdbcDataType must be a native SQL datatype, such as varchar(30) or decimal(10, 5)
Can be autoconfigured.

primary key column name(+Schema, +TableName, -PrimaryKeyAttributeName) [multifile]

Can be autoconfigured.

database attribute(?EntityType:table/view, ?Schema:atom, ?EntityName:atom, ?ColumnName:atom, ?DomainOrNativeType:atom, ?AllowsNulls:allows nulls(true/false), ?IsIdentity:is identity(true/false), ?ColumnDefault)[nondet,multifile]

Can be autoconfigured.

routine return type(?Schema:atom, ?EntityName:atom, ?OdbcType) [multifile]

Can be autoconfigured

database constraint(?Schema:atom, ?EntityName:atom, ?ConstraintName:atom, ?Constraint)[nondet,multifile]

Constraint is one of:

• primary_key(ColumnNames:list)
• foreign_key(ForeignTableName:atom, ForeignColumnNames:list, ColumnNames:list)

• unique(ColumnNames:list)
• check(CheckClause)

In theory this can be autoconfigured too, but I have not written the code for it yet

attribute domain(+Schema, +TableName, +ColumnName, -Domain)

database identity(?Schema:atom, ?EntityName:atom, ?ColumnName:atom)

24

database key(?Schema:atom, ?EntityName:atom, ?ConstraintName:atom, ?KeyColumnNames:list, ?KeyType)
Arguments

KeyColumnNames list of atom in database-supplied order
KeyType identity ; ’primary key’ ; unique

cql event notification table(+Schema, +TableName) [multifile]

cql history attribute(+Schema, +TableName, +ColumnName) [multifile]

sql gripe hook(+Level, +Format, +Args) [multifile]

Called when something dubious is found by the SQL parser.

cql normalize name(+DBMS, +Name, -NormalizedName)
Normalize a name which is potentially longer than the DBMS allows to a unique truncation

register database connection details(+Schema:atom, +ConnectionDetails) [det]

This should be called once to register the database connection details.

Arguments
ConnectionDetails driver_string(DriverString) or

dsn(Dsn, Username, Password)

References

[Draxler, 1991] C. Draxler. Accessing relational and NF 2 databases through database set predicates.
In Geraint A. Wiggins, Chris Mellish, and Tim Duncan, editors, ALPUK91: Pro-
ceedings of the 3rd UK Annual Conference on Logic Programming, Edinburgh 1991,
Workshops in Computing, pages 156–173. Springer-Verlag, 1991.

25

Index
attribute domain/4, 24

cql event notification table/2, 25
cql get module default schema/2, 23
cql goal expansion/3, 23
cql history attribute/3, 25
cql normalize name/3, 25
cql runtime/7, 24
cql set module default schema/1, 23
cql show/2, 24
cql temporary column name/4, 24

database attribute/8, 24
database constraint/4, 24
database identity/3, 24
database key/5, 25
dbms/2, 24

odbc data type/4, 24

primary key column name/3, 24

register database connection details/2, 25
routine return type/3, 24

sql gripe hook/3, 25
statistic monitored attribute/3, 24

26

	library(cql/cql): CQL - Constraint Query Language
	Warnings
	Comparisons with NULL
	Avoid setof/3 and bagof/3

	Retrieved nulls have special logic to handle outer joins
	Getting Started Quickly
	Debugging
	Prolog Variables
	Special Attributes
	Examples
	Simple INSERT
	Simple INSERT with retrieval of identity of the inserted
	Simple DELETE
	Simple SELECT
	Simple UPDATE
	WHERE with arithmetic comparison
	Simple INNER JOIN
	Arithmetic UPDATE with an INNER JOIN and a WHERE restriction
	Confirm row does not exist
	Aggregation - Count
	Aggregation - Sum
	Aggregation - Average
	Maximum Value
	Minimum Value
	Aggregation requiring GROUP BY
	INNER JOIN with an aggregation sub-query where the sub-query is constrained by a shared variable from the main query
	INNER JOIN in an aggregation sub-query
	Negation
	EXISTS
	Left Outer Join
	List-based Restrictions
	Compile time in-list constraint
	Disjunction resulting in OR in WHERE clause
	Disjunction resulting in different joins (implemented as a SQL UNION)
	Disjunction resulting in different SELECT attributes (implemented as separate ODBC queries)
	ORDER BY
	DISTINCT
	SELECT with NOT NULL restriction
	First N
	Self JOIN
	Removing null comparisions
	Three table JOIN
	Three table JOIN with NOLOCK locking hint
	SELECT with LIKE
	Writing exceptions directly to the database
	TOP N is Parametric
	Using compile_time_goal/1
	ON
	Expressions In Where Restrictions
	Explicitly avoid the "No WHERE restriction" message
	HAVING
	INSERT and UPDATE value in-line formatting
	Negations in WHERE Clauses
	Predicate-generated Attribute Values
	INSERT from SELECT

	Hooks
	Generated Code Hooks
	Data Representation Hooks
	Application Integration
	Inline values
	Schema
	Event Processing and History
	Statistical Hooks

