Pepl v.2
An implementation of the FAM algorithm.
User’s Guide

Nicos Angelopoulos James Cussens
Imperial College University of York
nicos.angelopoulos@imperial.ac.uk jc@cs.york.ac.uk

http://stoics.org.uk/~nicos/sware/pepl

January 26, 2014

Contents
1 Introduction 1
2 Installation and sanity check 2
3 Running PE on your own SLPs 3
4 More canned examples 4
4.1 palindrome context free grammar 4
4.2 bloodtype PRISM example 4
5 Available predicates 5
6 On FAM 7
6.1 mnormalisation Lo Lo o 7
6.2 stored expression 7
6.3 equivalence class criteriono 8
7 Web-page 8

1 Introduction

Pepl is an implementation of the failure adjusted maximisation (FAM) algorithm
for Stochastic Logic Programs (Slps). The algorithm was introduced by James
Cussens in [CusO1]. An incomplete programmer’s view of the algorithm can be
found in doc/pfam.pdf [Ang0O1]. FAM is a Expectation-Maximisation algorithm
that allows one to estimate the probability labels of Slps from data.

nicos.angelopoulos@imperial.ac.uk
jc@cs.york.ac.uk
http://stoics.org.uk/~nicos/sware/pepl

Pepl comprises of a set of Prolog programs that can be used without com-
pilation. The supported systems are:

Yap (tested on 6.3.4)
http://www.cos.ufrj.br/~vitor/Yap/

SWI Prolog (tested on 7.1.4)
http://www.swi-prolog.org

Older versions worked on:
SICStus (tested on 3.8.5) http://www.sics.se/isl/sicstus.html
In what follows we use the following terms:
Data the observations we want to learn from.
Label or parameter, the probability ascribed to a clause.
Sampling the non SLD, but label driven, derivation of a goal against an SLP.

Samples the observations of a sampling.

2 Installation and sanity check

In SWI you can install via the package manager (otherwise follow Yap instruc-
tions).

% swipl

?- pack_install(pepl).

- [library(pepl)].

- [pack(’pepl/examples/main’)].

?- main.

YAP instructions, download latest sources from http://stoics.org.uk/~nicos/sware/pepl
% gunzip pepl-*tgz

% tar xf pepl-*tar

% cd pepl-*

% yap

- [main/.

?- main.

This will run five iterations on the example presented in Cussens2001 (sources in
slp/jcml_pe.slp). The default is to use exact counting (equiv. - main_exact.).
To run the same example with sample or stored expressions counting, use %-
main_sample. and ?- main_store. respectively.

http://www.cos.ufrj.br/~vitor/Yap/
http://www.cos.ufrj.br/~vitor/Yap/
http://www.swi-prolog.org
http://www.sics.se/isl/sicstus.html
http://stoics.org.uk/~nicos/sware/pepl

3 Running PE on your own SLPs

Since FAM is an instance of the EM algorithm, initial values for the parameters
must be supplied. Also, since FAM is only a parameter estimation algorithm,
the structure of the SLP must be given. In our implementation the user com-
poses an SLP with the appropriate structure and labels the clauses in this SLP
with the initial values of the parameters. The first step in running FAM is to
load this SLP. Suppose the SLP with the initial parameters were saved in the
file foo.slp; this SLP is loaded using sload_pe/1 (detailed description in Sec-
tion 5):

?- [pepl].

?- sload_pe(foo).
yes
2.

To run the EM algorithm we need a target sample space, comprising from
observables, and the expected number each observable should appear. Data
should be represented by a Prolog file of atomic formulae or a single formula
of the form : frequencies(Freqgs). where Freqgs is a list of Datum-Times,
pairs. In the former case atomic formulae can be of arbitrary format but they
should share common predicate name and arity. This is the same predicate
name and arity for the top goal in the user defined SLP. The intuition is that
each formula is a point sample in the target sample space to which we wish to fit
the parameters of a given SLP. When frequencies(Fregs) is used, Datum should
be as the formulae just described, while Times should be the times each Datum
appears in the target sample space. The target sample space can be passed to
fam/1 either with the option data_file/1, with its argument pointing to a data
file as described above, or with the option data/1, with its argument being a
frequencies list (Fregs, above). The two different ways to pass the target sample
space and the two formats of the data file option are shown in Table 1

Assume, foo_data.pl is the Prolog file containing the training data. To run
FAM with default settings, do:
2~ fam([]).

(see Section 5 for how to change these settings). To save the SLP with the
estimated parameters, to a file fitted _foo.slp, just do:
?- ssave(fitted_foo).
(File fitted foo.slp is created in current directory.)
To run fam without first loading the Slp to memory, call

?- fam([slp(foo)]).

data([s(a,p)—él,s(a,q()—?,s(b,p)&,s(b,q)—S])

s(a,p). s(a,q).
s(b,p). s(b,q).
s(a,p). s(a,q). frequencies([s(a,p)-4,s(a,q)-3,5(b,p)-2,5(b,q)-3]).
s(b,p). s(b,q).
s(a,p). s(a,q).
s(b,q). s(a,p).

(b) (c)

Table 1: Three alternative ways to pass the target sample space to FAM. Top,
(a), using the data/1 option. Bottom left, (b), one format for datafiles in
data_file/1 option; order of terms is not important. Bottom right, (c), the
alternative format, using a single term.

4 More canned examples

4.1 palindrome context free grammar

A usual trick to see if parameter estimation software works is to generate (sam-
ple) N data points from an slp according to some initial set of parameters, then
change this set to some generic values (often setting these to a uniform distri-
bution) and then proceed to guessing the original parameters. An example of
how this can be done in this implementation is in run/main_scfg.pl

For Yap:
% cd examples
% yap
?- [main_csfg).
?- main.

For Swi:
% swipl
- [pack(‘pepl/examples/main_csfg’)].

This example also illustrates :

(a) a situation where failure € is important.
(b) how to produce N samples (main_gen/1).

Again, default is main_exact and main_store with main_sample are also
provided.

4.2 bloodtype PRISM example

The example from http://sato-www.cs.titech.ac.jp/prism/overview-e.html can
also be seen in action. (Corresponding SLP can be found in slp/prism bt.
% cd run

% prolog (where prolog is in {yap,swipl}).

- [main_prism_bt].

?- main_ezact.

or

?- main_store.

or

?- main_sample.

after each of the above main calls, you can test accuracy by

?- test(10000).

(Frequency of ground successful goals should match the frequency of Data.)
Note that FAM is not strictly speaking applicable to this example since it does
not observe the equivalence class criterion of Section 6.3. Furthermore, since
this is an impure SLP, sampling does not work properly.

5 Available predicates

sload_pe(SIpSource),

Load an SLP to memory. If the source file has an slp extension the ex-
tension may be omitted. Pepl looks for SlpSource in directories ., and
./slp/ In SWI it also looks in pack(pepl/slp/).

sls/0 Listiing of the stochastic program currently in memory.
ssave(FileName) Save the stochastic program currently in memory to a file.

fam(Options) where its argument is a list that may include the following
options:

count(CountMeth), CountMeth in {*exact*, store, sample};
times(Tms), default is Tms = 1000 (only relevant with CountMeth=sample);

e termin(TermList), currently TermList knows about the following terms

— *interactive*- ask user if another iteration should be run,
— iter(I)- Iis the number of iterations,

— prm_e(e,)- parameter difference between iteration, that renders
termination due to convergence of all parameters, between two
iterations,

— 11_e(ey)- likelihood convergence limit;
e goal(Goal), the top goal, defaults to an all vars version of data pred-
icate;
e pregoal(PreGoal), a goal that called only once, before experiments
are run. The intuition is that PreGoal will partially instantiate Goal.

e data(Data), the data to use, overrides datafile/1. Data should be
a list of Yield-Times pairs. (All Yields of Goal should be included in
Data, even if that means some get Times = 0.)

prior(Prior), the distribution to replace the probability labels with.
Default is that no prior is used, Prior=none, input parameters are
used as given in Slp source file. System also knows about uniform
and random. Any other distribution should come in Prolog source
file named Prior.pl and define Prior/3 predicate. First argument is a
list of ranges (Beg-End) for each stochastic predicate in source file.
Second argument, is the list of actual probability labels in source file.
Finally, third argument should be instantiated to the list of labels
according to Prior.

datafile(DataFile), the data file to use, default is SLP_data.pl. DataFile
should have either a number of atomic formulae or a single formula
of the form: frequencies(Data).+

complement(Complement), one of : none (with PrbSc = PrbTrue,
the default), success (with PrbSc = 1 — PrbFail), or quotient (
with PrbSc = PrbTrue/(PrbTrue+ PrbFail)).

setrand(SetRand), sets random seeds. SetRand = true sets the seeds
to some random triplet while the default SetRand = false, does
not set them. Any other value for SetRand is taken to be of the
form rand(S1,S52,83) as expected by system predicate random of
the supported prolog systems.

eps(Eps), the depth Epsilon. Sets the probability limit under which
Pepl considers a path as a failed one.

write_iterations(Wrt) indicates which set of parameters to output.
Values for Wrt are: all, which is the default, last, and none.

write_ll(Bool) takes a boolean argument, indicating where loglikeli-
hoods should be printed or not. Default is true.

debug(Dbg) should be set to on or off (later is the default). If on,
various information about intermediate calculations will be printed.

return(RetOpts), a list of return options, default is the empty list.
The terms RetOpts contain variables. These will be instantiated
to the appropriate values signified by the name of each correspond-
ing term. Recognised are, initial_pps/1 for the initial parameters,
final pps for the final/learned parameters, termin/1 for the termi-
nating reason, 11/1 for the last loglikelihood calculated, iter/1 for
the number of iterations performed, and seeds/1 for the seeds used.

keep_pl(KeepBool, if true, the temporary Prolog file that contains
the translated SLP, is not deleted. Default is false.

exception(Handle), identifies the action to be taken if an exception
is raised while running Fam. The default value for Handle is rerun.
This means the same Fam call is executed repeatedly. Any other
value for Handle will cause execution to abort after printing the ex-
ception raised.

switch_dbg(4+Switch. Switch debugging of fam/1 to either on or off.

scall(Goal,Eps,Meth,Path,Succ,BrPrb) Note: this is a predicate for peo-
ple interested in the internals. Use at your own peril. The following
describes the arguments to this call.
e The vanilla prolog Goal to call.

e The value of Eps(ilon) at which branches are to be considered as
failures.

o The search Meth(od) to be used, i.e. all for all solutions or sample
for a single solution.

e The Path(s) of the derivation(s).

e A flag indicating a Succ(essful) derivation or otherwise-Succ is bound
to the atom fail if this was a failed derivation and remains unbound
otherwise.

e BrPrb the branch probability of the derivation.

See predicate main_gen/1, in examples/main_scfg.pl for example usage.

all_paths(+4SlpFile,+Call) Display to standard output all derivation paths
and plenty of associated information associated with calling stochastic goal
Call on the Slp defined in +SIpFile.

6 On FAM

6.1 normalisation
Since FAM works on normalised SLPs, Pepl automatically normalises the labels
of all stochastic clauses, at read-in time.
6.2 stored expression
Currently we effect some straight forward simplifications such as :
e 0+A— A,
e 1+xB— B,
e AxB/AxC — B/C,

Our plans are to provide more interesting simplifications, either by consid-
ering graph operations on some representation of the SLD-tree, or reductions of
the polynomial expressions derived from the tree.

6.3 equivalence class criterion

FAM works on equivalence classes of derivations rather than on instances. This
allows us to deal with impure SLPs, since multiple proofs due to non-stochastic
clauses are represented as a single probability point. This approach is applicable
to cases where all members of the equivalence class have the same yield.

Since this is a severe restriction in Pepl we have relax this condition by

allowing :
Zyon = D)/ Y () + Y ()
re€R reR fer
rather than
Zyw =y (r)
reER

The two equations are equivalent when > (1) + >, p ¥(f) = 1 which
is the case for, equivalent class having same yield, programs.

Although initial experiments (e.g. blood type example 4.2) allows to be
optimistic, there is no guarantee that FAM will perform over programs that do
not observe the equivalence class criterion.

7 Web-page

The main page for Pepl is: http://stoics.org.uk/~nicos/sware/pepl/.

References

[Ang01] Nicos Angelopoulos. Programming FAM, May 2001. In doc/pfam.ps.

[Cus01] James Cussens. Parameter estimation in stochastic logic programs.
Machine Learning, 2001. to appear.

http://stoics.org.uk/~nicos/sware/pepl/

	Introduction
	Installation and sanity check
	Running PE on your own SLPs
	More canned examples
	palindrome context free grammar
	bloodtype PRISM example

	Available predicates
	On FAM
	normalisation
	stored expression
	equivalence class criterion

	Web-page

