Did you know ... Search Documentation:
Pack plml -- prolog/plml_dcg.pl
PublicShow source

Types

ml_stmt - A Matlab statement

X;Y     :: ml_stmt :-  X::ml_stmt, Y::ml_stmt.
X,Y     :: ml_stmt :-  X::ml_stmt, Y::ml_stmt.
X=Y     :: ml_stmt :-  X::ml_lval, Y::ml_expr.
hide(X) :: ml_stmt :-  X::ml_stmt.
ml_expr(A)       % A Matlab expression, possibly with multiple return values
ml_loc ---> mat(atom,atom).  % Matbase locator

Matlab expression syntax

The Matlab expression syntax adopted by this module allows Prolog terms to represent or denote Matlab expressions. Let T be the domain of recognised Prolog terms (corresponding to the type ml_expr), and M be the domain of Matlab expressions written in Matlab syntax. Then V : T->M is the valuation function which maps Prolog term X to Matlab expression V[X]. These are some of the constructs it recognises:

Constructs valid only in top level statements, not subexpressions:

X;Y             % |--> V[X]; V[Y]  (sequential evaluation hiding first result)
X,Y             % |--> V[X], V[Y]  (sequential evaluation displaying first result)
X=Y             % |--> V[X]=V[Y] (assignment, X must denote a valid left-value)
hide(X)         % |--> V[X]; (execute X but hide return value)
if(X,Y)         % |--> if V[X], V[Y], end
if(X,Y,Z)       % |--> if V[X], V[Y], else V[Z], end

Things that look and work like Matlab syntax (more or less):

+X              % |--> uplus(V[X])
-X              % |--> uminus(V[X])
X+Y             % |--> plus(V[X],V[Y])
X-Y             % |--> minus(V[X],V[Y])
X^Y             % |--> mpower(V[X],V[Y])
X*Y             % |--> mtimes(V[X],V[Y])
X/Y             % |--> mrdivide(V[X],V[Y])
X\Y             % |--> mldivide(V[X],V[Y])
X.^Y            % |--> power(V[X],V[Y])
X.*Y            % |--> times(V[X],V[Y])
X./Y            % |--> rdivide(V[X],V[Y])
X.\Y            % |--> ldivide(V[X],V[Y])
X:Y:Z           % |--> colon(V[X],V[Y],V[Z])
X:Z             % |--> colon(V[X],V[Z])
X>Z             % |--> gt(V[X],V[Y])
X>=Z            % |--> ge(V[X],V[Y])
X<Z             % |--> lt(V[X],V[Y])
X=<Z            % |--> le(V[X],V[Y])
X==Z            % |--> eq(V[X],V[Y])
[X1,X2,...]     % |--> [ V[X1], V[X2], ... ]
[X1;X2;...]     % |--> [ V[X1]; V[X2]; ... ]
{X1,X2,...}     % |--> { V[X1], V[X2], ... }
{X1;X2;...}     % |--> { V[X1]; V[X2]; ... }
@X              % |--> @V[X] (function handle)

Things that do not look like Matlab syntax but provide standard Matlab features:

'Infinity'      % |--> inf (positive infinity)
'Nan'           % |--> nan (not a number)
X``             % |--> ctranpose(V[X]) (conjugate transpose, V[X]')
X#Y             % |--> getfield(V[X],V[q(Y)])
X\\Y            % |--> @(V[X])V[Y] (same as lambda(X,Y))
\\Y             % |--> @()V[Y] (same as thunk(Y))
lambda(X,Y)     % |--> @(V[X])V[Y] (anonymous function with arguments X)
thunk(Y)        % |--> @()V[Y] (anonymous function with no arguments)
vector(X)       % |--> horzcat(V[X1],V[X2], ...)
atvector(X)     % as vector but assumes elements of X are assumed all atomic
cell(X)         % construct 1xN cell array from elements of X
`X              % same as q(X)
q(X)            % wrap V[X] in single quotes (escaping internal quotes)
qq(X)           % wrap V[X] in double quotes (escaping internal double quotes)
tq(X)           % wrap TeX expression in single quotes (escape internal quotes)

Referencing different value representations.

mat(X,Y)           % denotes a value in the Matbase using a dbload expression
mx(X:mx_blob)      % denotes an MX Matlab array in SWI memory
ws(X:ws_blob)      % denotes a variable in a Matlab workspace
wsseq(X:ws_blob)   % workspace variable containing list as cell array.

Tricky bits.

apply(X,AX)        % X must denote a function or array, applied to list of arguments AX.
cref(X,Y)          % cell dereference, |--> V[X]{ V[Y1], V[Y2], ... }
arr(Lists)         % multidimensional array from nested lists.
arr(Lists,Dims)    % multidimensional array from nested lists.

Things to bypass default formatting

noeval(_)          % triggers a failure when processed
atom(X)            % write atom X as write/1
term(X)            % write term X as write/1
\(P)               % escape and call phrase P directly to generate Matlab string
$(X)               % calls pl2ml_hook/2, denotes V[Y] where plml_hook(X,Y).
'$VAR'(N)          % gets formatted as p_N where N is assumed to be atomic.

All other Prolog atoms are written using write/1, while other Prolog terms are assumed to be calls to Matlab functions named according to the head functor. Thus V[ <head>( <arg1>, <arg2>, ...) ] = <head>(V[<arg1>, V[<arg2>], ...).

There are some incompatibilities between Matlab syntax and Prolog syntax, that is, syntactic structures that Prolog cannot parse correctly:

  • 'Command line' syntax, ie where a function of string arguments: "save('x','Y')" can be written as "save x Y" in Matlab, but in Prolog, you must use function call syntax with quoted arguments: save(`x,`'Y').
  • Matlab's postfix transpose operator "x'" must be written using a different posfix operator "x``" or function call syntax "ctranspose(x)".
  • Matlab cell referencing using braces, as in x{1,2} must be written as "cref(x,1,2)".
  • Field referencing using dot (.), eg x.thing - currently resolved by using hash (#) operator, eg x#thing.
  • Using variables as arrays and indexing them. The problem is that Prolog doesn't let you write a term with a variable as the head functor.
To be done
- Use mat(I) and tmp(I) as types to include engine Id.

Clarify relationship between return values and valid Matlab denotation.

Reshape/2 array representation: reshape([ ... ],Size) Expression language: arr(Vals,Shape,InnerFunctor) - allows efficient representation of arrays of arbitrary things. Will require more strict nested list form.

Deprecate old array(Vals::Type) and cell(Vals::Type) left-value syntax.

Remove I from ml_expr//2 and add to mx type?

 term_mlstring(+Id:ml_eng, +X:ml_expr, -Y:list(code)) is det
Convert term representing Matlab expression to a list of character codes.
 term_texatom(+X:tex_expr, -Y:atom) is det
Convert term representing TeX expression to a string in atom form.