Did you know ... | Search Documentation: |
aggregate.pl -- SICStus 4 library(aggregate). |
The following predicates are exported from this file while their implementation is defined in imported modules or non-module files loaded by this module.
min(X)
, max(X)
,
min(X,Witness)
or max(X,Witness)
and Goal has no solutions, i.e.,
the minimum and maximum of an empty set is undefined.
The Template values count
, sum(X)
, max(X)
, min(X)
, max(X,W)
and
min(X,W)
are processed incrementally rather than using findall/3 and
run in constant memory.
call(Folder,V0,V1)
. This predicate provides behaviour similar to
aggregate_all/3-4, but operates in constant space and allows for
custom aggregation (Folder) operators. The example below uses plus/3
to realise aggregate_all(sum(X), between(1,10,X), Sum)
.
?- foldall(plus(X), between(1,10,X), 0, Sum). Sum = 55
The implementation uses nb_setarg/3 for non-backtrackable state updates.
foreach(Generator, Goal) :- findall(Goal, Generator, Goals), maplist(call, Goals).
The actual implementation uses findall/3 on a template created from the variables shared between Generator and Goal. Subsequently, it uses every instance of this template to instantiate Goal, call Goal and undo only the instantiation of the template and not other instantiations created by running Goal. Here is an example:
?- foreach(between(1,4,X), dif(X,Y)), Y = 5. Y = 5. ?- foreach(between(1,4,X), dif(X,Y)), Y = 3. false.
The predicate foreach/2 is mostly used if Goal performs backtrackable destructive assignment on terms. Attributed variables (underlying constraints) are an example. Another example of a backtrackable data structure is in library(hashtable). If we care only about the side effects (I/O, dynamic database, etc.) or the truth value of Goal, forall/2 is a faster and simpler alternative. If Goal instantiates its arguments it is will often fail as the argument cannot be instantiated to multiple values. It is possible to incrementally grow an argument:
?- foreach(between(1,4,X), member(X, L)). L = [1,2,3,4|_].
Note that SWI-Prolog up to version 8.3.4 created copies of Goal using copy_term/2 for each iteration, this makes the current implementation unable to properly handle compound terms (in Goal's arguments) that share variables with the Generator. As a workaround you can define a goal that does not use compound terms, like in this example:
mem(E,L) :- % mem/2 hides the compound argument from foreach/2 member(r(E),L). ?- foreach( between(1,5,N), mem(N,L)).
free_variables(Generator, Template, OldList, NewList)
finds this
set using OldList as an accumulator.
The following predicates are exported, but not or incorrectly documented.